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Overview of the history of wavelets
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Wavelet Transforms



Continuous Wavelet Transform

Wavelet: ψ ∈ L2(R) locally oscillating, integrable with
∫
R
ψ(s) ds = 0

Example: real Shannon wavelet

ψ(t) = sin(2πt)− sin(πt)
πt

=⇒ {ψt,a, (t, a) ∈ R× R+} atoms with different time supports
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Continuous Wavelet Transform

Wavelet: ψ ∈ L2(R) locally oscillating, integrable with
∫
R
ψ(s) ds = 0

Example: real Shannon wavelet

ψ(t) = sin(2πt)− sin(πt)
πt

Continuous Wavelet Transform of a finite-energy signal f ∈ L2(R)

Wf (t, a) = 〈f, ψt,a〉 =
∫
R
f(s) 1√

a
ψ

(
s− t
a

)
ds

〈·, ·〉 scalar product in L2(R), · complex conjugate

=⇒ {ψt,a, (t, a) ∈ R× R+} atoms with different time supports
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Example of a gravitational wave

Physics: two objects M = m1 +m2 at distance R, µ−1 = m−1
1 +m−1

2

f(t) = A(t0 − t)−1/4 cos(d(t0 − t)5/8 + ϕ)1(−∞;t0[(t)

chirp: amplitude a(t) = A(t0 − t)−
1
4 , frequency ω(t) = 10πd

8 (t0 − t)−
3
8

– t0: time of coalescence,
– d: instantaneous frequency parameter d ' 241M−5/8

� ,
– A: amplitude reference A ' 3.37× 10−21M5/4

� /R.
Unknown: M� = µ3/5M2/5/M�: chirp mass in solar mass unit M�

LIGO Open Science Center
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Continuous Wavelet Transform

Reconstruction formula For ψ̃ the Fourier transform of ψ,

if Cψ =
∫
R

|ψ̃(ω)|2

|ω|
dω <∞ then ψ is admissible and for f ∈ L2(R)

f(t) = 1
Cψ

∫
R×R+

Wf (s, a) 1√
a
ψ

(
s− t
a

)
dsda
a2

with Wf (s, a) = 〈f, ψs,a〉 [A. P. Calderón, 1964, Stud. Math.;
A. Grossmann & J. Morlet, 1984, SIAM J. Math. Anal.]

Reproducing kernel Wf (t, a) redundant representation of f

Wf (t′, a′) = 1
Cψ

∫
R×R+

K(t′, t; a′, a)Wf (t, a) dtda
a2

with K(t′, t; a′, a) = 〈ψt,a, ψt′,a′〉 correlations between wavelets
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Continuous Wavelet Transform

Translation invariance

Let f∆t(t) = f(t−∆t), then Wf∆t(t, a) =Wf (t−∆t, a).

t0 = 0.44 [sec] t0 = 0.34 [sec]
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Discrete Signals and Wavelets

From continuous signals to discrete vectors

• f continuous on [0, 1], discretized in zn = f
(
n

N

)
, n = 0, 1, . . . , N

discrete wavelet transform can be computed at scales N−1 < aj < 1

• discrete scales: a = 21/v =⇒ v intermediate scales in octave [2j , 2j+1)

Practical implementation

Integral representation

Wf (t, a) =
∫
R
f(s) 1√

a
ψ
(
s− t
a

)
ds Wz[n, j] =

N−1∑
m=0

zm
1√
aj
ψ
(
m− n
aj

)
• Fast Fourier Transform at each scale: O(N log2 N) operations
• If ψ with support in [−K/2,K/2]: v log2 (N/(2K)) accessible scales

complexity O
(
vN (log2 N)2)

[S. Mallat, 2009, Academic Press, Elsevier ]
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Multiresolution Analysis



Aims and principles of multiresolution analysis

Motivation: process only details at relevant discrete resolutions

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.]
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Multiresolution analysis

Definition: A multiresolution analysis of L2(R) is a subpaces sequence
{0} ⊂ . . . ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . . V−j . . . ⊂ V−(j+1) ⊂ . . . ⊂ L2(R) satisfying

• self-similarity in time: (∀j ∈ Z, f ∈ Vj ,m ∈ Z) f(· −m2j) ∈ Vj

• self-similarity in scale: (∀j ∈ Z) f ∈ Vj ⇐⇒ f
( ·

2

)
∈ Vj+1

• regularity: ϕ father wavelet or scaling function such that
{ϕ(t− k), k ∈ Z} is an orthonormal basis of V0

• completeness: ∪j∈ZVj is dense in L2(R) and ∩j∈ZVj = {0}

=⇒ Vj approximation space at scale 2j , i.e., resolution 2−j .

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.;
S. Mallat, 1989, Trans. Amer. Math. Soc.;
S. Mallat, 1989, IEEE Trans. Pattern Anal. Mach. Intell.;
Y. Meyer, 1992, Cambridge University Press]
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Aims and principles of multiresolution analysis

Motivation: process only details at relevant discrete resolutions

scale 4 ⇐⇒ resolution 1/4 scale 2 ⇐⇒ resolution 1/2 scale 1 ⇐⇒ resolution 1

scale 2j ⇐⇒ resolution 2−j

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.]
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Multiresolution analysis – Daubechies 2 wavelets

From time and scale invariance and regularity condition:
{
√

2−jϕ(t/2j − k), k ∈ Z} is an orthonormal basis of Vj

Orthogonal projection of f onto Vj

f |Vj =
∑
k∈Z

φj,k
√

2−jϕ(t/2j − k)

with approximation coefficients

φj,k =
∫
R
f(s) 1√

2j
ϕ(s/2j − k) ds

11



Multiresolution analysis – Daubechies 2 wavelets

From time and scale invariance and regularity condition:
{
√

2−jϕ(t/2j − k), k ∈ Z} is an orthonormal basis of Vj

Orthogonal projection of f onto Vj

f |Vj =
∑
k∈Z

φj,k
√

2−jϕ(t/2j − k)

with approximation coefficients

φj,k =
∫
R
f(s) 1√

2j
ϕ(s/2j − k) ds

11



Multiresolution analysis – Daubechies 2 wavelets

From time and scale invariance and regularity condition:
{
√

2−jϕ(t/2j − k), k ∈ Z} is an orthonormal basis of Vj

Orthogonal projection of f onto Vj

f |Vj =
∑
k∈Z

φj,k
√

2−jϕ(t/2j − k)

with approximation coefficients

φj,k =
∫
R
f(s) 1√

2j
ϕ(s/2j − k) ds

11



Multiresolution analysis – Daubechies 2 wavelets

From time and scale invariance and regularity condition:
{
√

2−jϕ(t/2j − k), k ∈ Z} is an orthonormal basis of Vj

Orthogonal projection of f onto Vj

f |Vj =
∑
k∈Z

φj,k
√

2−jϕ(t/2j − k)

with approximation coefficients

φj,k =
∫
R
f(s) 1√

2j
ϕ(s/2j − k) ds

11



Multiresolution analysis – Daubechies 2 wavelets

From time and scale invariance and regularity condition:
{
√

2−jϕ(t/2j − k), k ∈ Z} is an orthonormal basis of Vj

Orthogonal projection of f onto Vj

f |Vj =
∑
k∈Z

φj,k
√

2−jϕ(t/2j − k)

with approximation coefficients

φj,k =
∫
R
f(s) 1√

2j
ϕ(s/2j − k) ds

11



Multiresolution analysis – Daubechies 2 wavelets

Approximation and details: Vj−1 = Vj ⊕Wj , Wj : lost information between
f |Vj−1

at resolution 2−(j−1) and f |Vj at resolution 2−j

Theorem There exists a mother wavelet ψ ∈ L2(R) such that
{ψj,k =

√
2−jψ(t/2j − k), k ∈ Z} is an orthonormal basis of Wj .

Orthogonal decomposition of f |Vj−1

f |Vj−1
= f |Vj + f |Wj

with f |Wj =
∑
k∈Z

ζj,k
√

2−jψ(t/2j − k)

involving wavelet coefficients

ζj,k =
∫
R
f(s) 1√

2j
ψ(s/2j − k) ds

12
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Orthonormal wavelet basis

By the completeness property of the multiresolution analysis

{
√

2−jψ(t/2j − k), (j, k) ∈ Z2}

is an orthonormal wavelet basis of L2(R).

Tiling of the time–scale half-plane

time n

scale 2j

13
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Vanishing Moments of Wavelets

Theorem: Let ϕ scaling function, ψ mother wavelet and ψ̃ its Fourier transform s.t.

|ϕ(t)| =
|t|→∞

O
(
(1 + t2)−nψ/2−1) , |ψ(t)| =

|t|→∞
O
(
(1 + t2)−nψ/2−1)

Then the propositions

i)
∫
R
tnψ(t) dt = 0, for n = 0, 1, . . . , nψ − 1

ii) dnψ̃
dtn (0) = 0, for n = 0, 1, . . . , nψ − 1

iii) (∀0 ≤ k < p) t 7→
∞∑

n=−∞

nkϕ(t− n) is a polynomial of degree k (Fix-Strang)

are equivalent. [S. Mallat, 2009, Academic Press, Elsevier ]

Interpretation:
� mother wavelet orthogonal to polynomials of degree at most nψ − 1
� if signal f is Ck, k < nψ

wavelet coefficients ζj,n = 〈f, ψj,n〉 small at fine scales
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Support size and number vanishing moments trade-off

If f has an isolated singularity at t0 contained in the support of ψj,n then
the wavelet coefficient 〈f, ψj,n〉 is large.

Theorem: If scaling function ϕ has compact support [a, b], then
ψ also has a compact support [(a− b+ 1)/2, (b− a+ 1)/2]

of size b− a, centered at 1/2.

If ψ has a compact support of size ∆ ∈ N∗, at scale 2j

∆ wavelet coefficients ζj,n = 〈f, ψj,n〉 are large

=⇒ to reduce the number of significant coefficients, reduce support size of ψ.
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Support size and number vanishing moments trade-off

Theorem: Let ψ a wavelet with nψ vanishing moments generating an orthonormal basis
of L2(R), then its support is of size at least 2nψ − 1.

A Daubechies wavelet has a minimum-size support [−nψ + 1, nψ] and the support of
the corresponding scaling function is [0, 2nψ − 1].

Haar wavelet: ψ(t) =


−1 if 0 ≤ t < 1/2
1 if 1/2 ≤ t < 1

otherwise

=⇒ shortest support among all orthogonal wavelets.

Daubechies wavelet:

nψ = 2 nψ = 3 nψ = 4
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Decompositions on Wavelet Frames



Theory of Frames

H: Hilbert space, e.g., L2(R) or subspace of L2(R); I ⊂ N: set of indices

Definition A family of elements of H, {en, n ∈ I}, s.t.

(∀f ∈ H) µ‖f‖2 ≤
∑
n∈Z
|〈f, en〉|2 ≤ µ‖f‖2

for some bounds 0 < µ ≤ µ, is a frame.

Tight frame If µ = µ = µ, tight frame of bound µ.
Union of L orthonormal wavelet bases: tight frame of bound L.

Stable analysis and synthesis

f ∈ H 7→ (〈f, en〉)n∈N `
2(I) bounded linear operator

(fn)n∈N ∈ `
2(I) 7→

∑
n∈Z

fnen ∈ H bounded linear operator

17
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Theory of Frames

Initially: reconstruction of irregularly sampled band-limited signals

[Duffin & Schaeffer, 1952, Trans. Amer. Math. Soc.]

Motivations in multiresolution analysis:

Continuous Wavelet Transform: highly redundant, computationally costly

Wf (t, a) =
∫
R
f(s) 1√

a
ψ
(
s− t
a

)
ds

Orthonomal wavelet basis decomposition: not invariant under translations

(∀(j, k) ∈ Z2) ζj,n = 〈f, ψj,n〉 =
√

2−j
∫
R
f(t)ψ(t/2j − k) dt

Wavelet frames: ψ(γ,b)
j,n =

{
1√
γj
ψ̃

(
t− bnγj

γj

)
, (j, n) ∈ Z2

}
, γ > 1, b > 0

=⇒ more freedom in the design of the wavelet ψ(γ,b)
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Wavelet Decomposition of Images



Mathematical representation of images

Real-valued square-integrable field

X : R2 → R

restricted to a rectangular domain Ω = [0, n1 − 1]× [0, n2 − 1]

19



Two-dimensional wavelet decomposition

Separable wavelet bases:

ϕ and ψ the scaling function and mother wavelet of a 1D multiresolution analysis

Define
{

ψ(0)(x) = ϕ(x1)ϕ(x2), ψ(1)(x) = ψ(x1)ϕ(x2)
ψ(2)(x) = ϕ(x1)ψ(x2), ψ(3)(x) = ψ(x1)ψ(x2).

Then, the family{
2−jψ(m) (x2−j − n

)
,m ∈ {1, 2, 3}, x = (x1, x2) ∈ R2, n = (n1, n2) ∈ Z2

}
defines an orthonormal wavelet basis of L2(R).

The wavelet coefficients of a 2D field X ∈ L2(R2) are defined as

ζ
(m)
j,n = 〈X, ψ(m)

j,n 〉, ψ
(m)
j,n (x) = 2−jψ(m) (x2−j − n

)
20



Wavelet transform of images

Albert Marquet, Paysage, baie
méditerranéenne, vue d’Agay, 1905

Daubechies wavelet transform
with nψ = 2 vanishing moments

at scale 21
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Wavelet transform of images

Albert Marquet, Paysage, baie
méditerranéenne, vue d’Agay, 1905

Daubechies wavelet transform
with nψ = 2 vanishing moments

at scale 23

Application: compression of images and videos: JPEG2000, MPEG-4
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Multiresolution/multilevel
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