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Revealing evolutions in dynamical networks
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Wavelet Transforms



Continuous Wavelet Transform

Wavelet: 1) € L?(R) locally oscillating, integrable with / Y(s)ds =0
R

Example: real Shannon wavelet A =l
02\ /\ /\ AN
, sin(27t) — sin(7t) N N
P(t) =
Tt
L 2 0 2 4

t



Continuous Wavelet Transform

Wavelet: ¢ € L?(R) locally oscillating, integrable with / Y(s)ds =0
R

Example: real Shannon wavelet /\
NPENWA AN
W(t) = sin(27t) — sin(7t) N \/ \/ N
Tt
L 2 0 2 4
t
1 ; :
(\
1 ‘ S — t 0 /\V /\V A [\v Vf\ \/
Vt,a(8) = —=0 V v
" 2 0 2 1

t

= {14, (t,a) € R x Ry} atoms with different time supports



Continuous Wavelet Transform

Wavelet: 1) € L?(R) locally oscillating, integrable with / Y(s)ds =0
R

Example: real Shannon wavelet /\ =l
NPNBWA AN
sin(27t) — sin(7t) N N
P(t) =
Tt
L 2 0 2 4
t

S|

- 1 / s—1t 0 MR TA N
e

= {14, (t,a) € R x Ry} atoms with different time supports



Continuous Wavelet Transform

Wavelet: 1) € L?(R) locally oscillating, integrable with / Y(s)ds =0
R

Example: real Shannon wavelet /\ =l
NPNBWA AN
sin(27t) — sin(7t) N N
¥(t)
Tt
L 2 0 2 4

brals) = 720 (°3)

= {14, (t,a) € R x Ry} atoms with different time supports

S|




Continuous Wavelet Transform

Wavelet: ¢ € L?(R) locally oscillating, integrable with / Y(s)ds =0
R

Example: real Shannon wavelet /\
NPNBWA AN
W(t) = sin(27t) — sin(7t) N \/ \/ N
Tt
L 2 0 2 4

t

Continuous Wavelet Transform of a finite-energy signal f € L?(R)

Wi(t.a) = (f.wea) = [ 1) ( = t) s

(-,+) scalar product in L?(R), = complex conjugate

= {14, (t,a) € R x Ry} atoms with different time supports



Example of a gravitational wave

1 1

Physics: two objects M = m; + my at distance R, = = mj ' +my

£(8) = Alto — 1)~ cos(d(to — %/ + )1 _aosso((®
107d
chirp: amplitude a(t) = A(to — t)~ 1, frequency w(t) = O%(to — t)*%

— to: time of coalescence,

— d: instantaneous frequency parameter d~ 241/\455/8’
— A: amplitude reference A ~3.37 x 10_21/\/1%/4/3_

Unknown: Mg = p3/5M?/5/Myg: chirp mass in solar mass unit M,
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Continuous Wavelet Transform

Reconstruction formula For z,N the Fourier transform of 1,

0 2
iF Cip = / 1/)(w|)| dw < oo then v is admissible and for f € L2(R)
JR w

1 1 s—t da
Ft) = — wf<s,a>ﬁw(9a ) as

CL*‘?' RxR4

with Wf(s,a) = (f,Vs.a) [A. P. Calderén, 1964, Stud. Math.;
A. Grossmann & J. Morlet, 1984, SIAM J. Math. Anal.]



Continuous Wavelet Transform

Reconstruction formula For Q,N the Fourier transform of 1,

T(0o) |12
if Cy = / 1/)|(w|)| dw < oo then 9 is admissible and for f € L%(R)
JR w

1 1 s—t da
t) = s, a)—1 ds—
=g [ wiea e () s
with Wf(s,a) = (f,Vs.a) [A. P. Calderén, 1964, Stud. Math.;

A. Grossmann & J. Morlet, 1984, SIAM J. Math. Anal.]

Reproducing kernel Wy (¢, a) redundant representation of f

da

We(t',a') = K t;a',a)Wy(t,a) dta—2

Cy JrxR,

with (', t;a’,a) = (Y1,q,%1 ') correlations between wavelets



Continuous Wavelet Transform

Translation invariance

Let fA(t) = f(t — At), then Weae(t,a) = Wy(t — At,a).
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Discrete Signals and Wavelets

From continuous signals to discrete vectors

= f continuous on [0, 1], discretized in z, = f (%) n=0,1,...,N

discrete wavelet transform can be computed at scales N™!' < ¢/ < 1

= discrete scales: a = 2'/Y = v intermediate scales in octave [27,27+1)
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' 1 [s—1t\ — 1 /m-—n\
5 — (m—n
We(t,a) = f(s)—= < > ds W.n, j] = E Zm—— < - )
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From continuous signals to discrete vectors

. . o n
= f continuous on [0, 1], discretized in z, = f (N) n=0,1,...,N
discrete wavelet transform can be computed at scales N™!' < ¢/ < 1

= discrete scales: a = 2'/Y = v intermediate scales in octave [27,27+1)

Practical implementation

Integral representation z % Pra(—-)
. - N-1 -
1 s—t 1 /m-—n
We(t,a) = f(s —'g&( >ds W.n, j] = zm—_w< - )
(t,0) '/Rf()\/& ; i) =3 e o (55
= at each scale: O(N log, N) operations

= If ¢ with support in [-K /2, K/2]: vlog, (N/(2K)) accessible scales
complexity O (UN (log, N)Z)

[S. Mallat, 2009, Academic Press, Elsevier|



Multiresolution Analysis



Aims and principles of multiresolution analysis

process only details at relevant discrete resolutions

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.]
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Multiresolution analysis

~

r

Definition: A multiresolution analysis of L?(RR) is a subpaces sequence
{0}c...cVicVoCVyC...V;...CV_(j11)C...C L*(R) satisfying

» self-similarity in time: (Vj €Z,f € V;;meZ) f(-—m27)eV;

= self-similarity in scale: (Vj€Z) feV,<f (§> € Vi

= regularity:  father wavelet or scaling function such that

{o(t —k), Kk €Z}is an orthonormal basis of 1}
= completeness: U;czV; is dense in L?(R) and NjezV; = {0}
=V at scale 27, i.e., resolution 277.

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.;
S. Mallat, 1989, Trans. Amer. Math. Soc.;

S. Mallat, 1989, IEEE Trans. Pattern Anal. Mach. Intell.:

Y. Meyer, 1992, Cambridge University Press]




Aims and principles of multiresolution analysis

process only details at relevant discrete resolutions

scale 4 <= resolution 1/4 scale 2 <= resolution 1/2  scale 1 <= resolution 1

[ scale 27 <= resolution 277 ]

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.]
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Multiresolution analysis — Daubechies 2 wavelets

From time and scale invariance and regularity condition:

{V2-ip(t/2? — k), k€ Z} is an orthonormal basis of V;
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J e
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Multiresolution analysis — Daubechies 2 wavelets

Approximation and details: V;_; = V; @ W;, W;: lost information between
fly,_, at resolution 2-0-1 and fly, at resolution 277
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Theorem There exists a mother wavelet ¢ € L?(R) such that
{1 = V2-32(t/27 — k), k€ Z} is an orthonormal basis of W;.

Approximation at scale a = 23

Orthogonal decomposition of f

Vi1

Ao

f|ijl - fle u f|W_7‘
with flVVJ = ZC/k\/Fl,/}(t/Qj o k)

kEz
involving

Capy = /f(s) 1{ ¥(s/27 — k)ds
JRr

2
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Orthonormal wavelet basis

By the completeness property of the multiresolution analysis

{(V2=iy(t/2' — k), (5 k) € 2%}

is an orthonormal wavelet basis of L?(R).
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Orthonormal wavelet basis

By the completeness property of the multiresolution analysis

{(V2=iy(t/2' — k), (5 k) € 2%}

is an orthonormal wavelet basis of L?(R).

Tiling of the time—scale half-plane

scale 27

N

. (4
time n
13



Vanishing Moments of Wavelets

4 A

Theorem: Let ¢ scaling function, 1) mother wavelet and v its Fourier transform s.t.

O] = O+, o] = 0(0+8) ")

|t]|— o0 [t]—




Vanishing Moments of Wavelets

~

r

Theorem: Let ¢ scaling function, 1) mother wavelet and ¥ its Fourier transform s.t.
()] = O+ e = O ()T
[t]—o0 It =00

Then the propositions
i) /t”u‘;‘(t) dt =0, forn=0,1,...,np—1

d'n Q)

i) den

(0)=0, forn=0,1,...,ny —1
i) (V0<k<p) tw— Z n*o(t —n) is a polynomial of degree k (Fix-Strang)

are equivalent. [S. Mallat, 2009, Academic Press, Elsevier|

\ J
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Vanishing Moments of Wavelets

~

r

Theorem: Let ¢ scaling function, 1) mother wavelet and v its Fourier transform s.t.

el = 0(@+)™ ), ] = o(A+e)T)

|t]|— o0 [t]—o0

Then the propositions
i) /t”z;)(t) dt =0, forn=0,1,...,np—1

d'n Q)

i) den

(0)=0, forn=0,1,...,ny —1

i) (V0<k<p) tw— Z n*o(t —n) is a polynomial of degree k (Fix-Strang)

n=-—oo
are equivalent. [S. Mallat, 2009, Academic Press, Elsevier|
\ J
Interpretation:
m mother wavelet orthogonal to polynomials of degree at most n, — 1

m if signal fis C* k < ny
wavelet coefficients (jn = (f, ;) small at fine scales 14



Support size and number vanishing moments trade-off

If f has an isolated singularity at o contained in the support of %, then

the wavelet coefficient (f, ;) is large.
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Support size and number vanishing moments trade-off

If f has an isolated singularity at o contained in the support of %, then

the wavelet coefficient (f, ;) is large.

Theorem: If scaling function ¢ has compact support [a, b], then
1 also has a compact support [(a —b+1)/2,(b—a+1)/2]

of size b — a, centered at 1/2.

If 1) has a compact support of size A € N*, at scale 27
A wavelet coefficients (., = (f,1;n) are large

= to reduce the number of significant coefficients, of 1.
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Support size and number vanishing moments trade-off

Theorem: Let ¢ a wavelet with n,, vanishing moments generating an orthonormal basis
of L*(R), then its support is of size at least 2n, — 1.

A Daubechies wavelet has a minimum-size support [—ny + 1,n4] and the support of
the corresponding scaling function is [0, 2ny — 1].
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Support size and number vanishing moments trade-off

Theorem: Let ¢ a wavelet with n,, vanishing moments generating an orthonormal basis

of L*(R), then its support is of size at least 2n, — 1.

A Daubechies wavelet has a minimum-size support [—ny + 1,n4] and the support of

the corresponding scaling function is [0, 2ny — 1].

i — S0
-1 if0<t<1/2 : ;
0 T
Haar wavelet: ¢ (t) = 1 if1/2<t<1 ! :
otherwise B - > 2

t
—> shortest support among all orthogonal wavelets.
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Support size and number vanishing moments trade-off

Theorem: Let ¢ a wavelet with n,, vanishing moments generating an orthonormal basis
of L*(R), then its support is of size at least 2n, — 1.

A Daubechies wavelet has a minimum-size support [—ny + 1,n4] and the support of

the corresponding scaling function is [0, 2ny — 1].
i e—— S0)
-1 ifo<t<i/z | | ;
Haar wavelet: ¢ (t) = 1 if1/2<t<1 . :
otherwise ! - e °1

t
—> shortest support among all orthogonal wavelets.

Daubechies wavelet:

—(t) —u]| 1 —(t)
/\ ‘
0 TAN

0 N TV VY \/ V

Ny =2 Ty = & Ny =4

2

o
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Decompositions on Wavelet Frames




Theory of Frames

H: Hilbert space, e.g., L?(R) or subspace of L?(R); I C N: set of indices

Definition A family of elements of H, {e,,n € I}, s.t.

Vfer) plfI> < 1{fen)l® <TlfI?

nez

for some bounds 0 < 1<, is a frame.
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Theory of Frames

H: Hilbert space, e.g., L?(R) or subspace of L?(R); I C N: set of indices

Definition A family of elements of H, {e,,n € I}, s.t.

VfeH) plfl> <D 1(fen” <allfI?

nez

for some bounds 0 < 1<, is a frame.

Tight frame If © = i = p, tight frame of bound .

Union of L orthonormal wavelet bases: tight frame of bound L.

f€H— ((f.en)),en £°(I) bounded linear operator

(fr)nen € (1) — Z fnen € H bounded linear operator
nez
17



Theory of Frames

reconstruction of irregularly sampled band-limited signals

[Duffin & Schaeffer, 1952, Trans. Amer. Math. Soc.]
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reconstruction of irregularly sampled band-limited signals

[Duffin & Schaeffer, 1952, Trans. Amer. Math. Soc.]

Motivations in multiresolution analysis:

Continuous Wavelet Transform: highly redundant, computationally costly

We(t,a) = /P f(s)%t/) (é ; t) ds

Orthonomal wavelet basis decomposition: not invariant under translations
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Motivations in multiresolution analysis:

Continuous Wavelet Transform: highly redundant, computationally costly

We(t,a) = /P f(s)%t/) (é ; t) ds

Orthonomal wavelet basis decomposition: not invariant under translations

VG, k) €Z°)  Gion = (fithin) = V273 / F@&)p(t/2’ —k)dt

~(t— bn~d .
Wavelet frames: ("% = {]w <7flwy> ,(4,n) € Zz}, vy>1,b>0

Jm \/’Yi‘] 'y.l

— more freedom in the design of the wavelet (7%
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Wavelet Decomposition of Images




Mathematical representation of images

Real-valued square-integrable

X:R? 5 R

restricted to a rectangular domain Q = [0, 7y — 1] X [0, 72 — 1]

19



Two-dimensional wavelet decomposition

( A

Separable wavelet bases:

 and v the scaling function and mother wavelet of a 1D multiresolution analysis

. PO (z) = p(z1)p(e2), ¥V (2) = P(a1)p(z2)
pefine { ¥ (@) = pla)i(@a), ¥ () = (a1 (rs).

Then, the family

{27-771/1("” (gZﬁj — Q) ,me{1,2,3},x = (z1,22) € R? n = (n1,n9) € 22}
defines an orthonormal wavelet basis of L2(R).
The wavelet coefficients of a 2D field X € L?(IR?) are defined as

¢ = (X, ™y, ™ () = 27T ptm) (2277 — )

Jn JH

20



Wavelet transform of images

Albert Marquet, Paysage, baie Daubechies wavelet transform
méditerranéenne, vue d’Agay, 1905  with n, = 2 vanishing moments
at scale 2!

21



Wavelet transform of images

Albert Marquet, Paysage, baie Daubechies wavelet transform
méditerranéenne, vue d’Agay, 1905  with n, = 2 vanishing moments
at scale 23
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Wavelet transform of images

Albert Marquet, Paysage, baie Daubechies wavelet transform
méditerranéenne, vue d’Agay, 1905  with n, = 2 vanishing moments
at scale 23

Application: compression of images and videos: JPEG2000, MPEG-4
22
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Multiresolution /multilevel

Multiresolution
to perform
image restoration E

(~2000-2015) v ¥ ¥

Multiresolution
to perform
texture

segmentation

(~2014- now)
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to

(~2016- now) 24
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