Multiscale analysis in image processing

Preliminaries on wavelets

Barbara Pascal[†] and Nelly Pustelnik[‡]

 ${\tt bpascal-fr.github.io/talks}$

June 2025

[†] Nantes Université, École Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France [‡] CNRS, ENSL, Laboratoire de physique, F-69342 Lyon, France

Overview of the history of wavelets

Revealing evolutions in dynamical networks

Wavelet Transforms

Wavelet: $\psi \in L^2(\mathbb{R})$ locally oscillating, integrable with $\int_{\mathbb{R}} \psi(s) \, \mathrm{d}s = 0$

Wavelet: $\psi \in L^2(\mathbb{R})$ locally oscillating, integrable with $\int_{\mathbb{R}} \psi(s) \, \mathrm{d}s = 0$

Wavelet: $\psi \in L^2(\mathbb{R})$ locally oscillating, integrable with $\int_{\mathbb{R}} \psi(s) \, \mathrm{d}s = 0$

Wavelet: $\psi \in L^2(\mathbb{R})$ locally oscillating, integrable with $\int_{\mathbb{R}} \psi(s) \, \mathrm{d}s = 0$

Wavelet: $\psi \in L^2(\mathbb{R})$ locally oscillating, integrable with $\int_{\mathbb{R}} \psi(s) \, \mathrm{d}s = 0$

Continuous Wavelet Transform of a finite-energy signal $f \in L^2(\mathbb{R})$

$$\mathcal{W}_f(t,a) = \langle f, \psi_{t,a} \rangle = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{a}} \overline{\psi\left(\frac{s-t}{a}\right)} \, \mathrm{d}s$$

 $\langle \cdot, \cdot
angle$ scalar product in $L^2(\mathbb{R})$, $\overline{\cdot}$ complex conjugate

Physics: two objects $M = m_1 + m_2$ at distance R, $\mu^{-1} = m_1^{-1} + m_2^{-1}$

$$f(t) = A(t_0 - t)^{-1/4} \cos(d(t_0 - t)^{5/8} + \varphi) \mathbf{1}_{(-\infty;t_0[}(t))$$

chirp: amplitude $a(t) = A(t_0 - t)^{-\frac{1}{4}}$, frequency $\omega(t) = \frac{10\pi d}{8}(t_0 - t)^{-\frac{3}{8}}$

- t_0 : time of coalescence,
- d: instantaneous frequency parameter $d \simeq 241 \mathcal{M}_{\odot}^{-5/8}$, - A: amplitude reference $A \simeq 3.37 \times 10^{-21} \mathcal{M}_{\odot}^{5/4} / R$.

Unknown: $\mathcal{M}_{\odot} = \mu^{3/5} M^{2/5} / M_{\odot}$: chirp mass in solar mass unit M_{\odot}

Physics: two objects $M = m_1 + m_2$ at distance R, $\mu^{-1} = m_1^{-1} + m_2^{-1}$

$$f(t) = A(t_0 - t)^{-1/4} \cos(d(t_0 - t)^{5/8} + \varphi) \mathbf{1}_{(-\infty;t_0[}(t)$$

chirp: amplitude $a(t) = A(t_0 - t)^{-\frac{1}{4}}$, frequency $\omega(t) = \frac{10\pi d}{8}(t_0 - t)^{-\frac{3}{8}}$

- t_0 : time of coalescence,
- d: instantaneous frequency parameter $d \simeq 241 \mathcal{M}_{\odot}^{-5/8}$, - A: amplitude reference $A \simeq 3.37 \times 10^{-21} \mathcal{M}_{\odot}^{5/4} / R$.

Unknown: $\mathcal{M}_{\odot} = \mu^{3/5} M^{2/5} / M_{\odot}$: chirp mass in solar mass unit M_{\odot}

Physics: two objects $M = m_1 + m_2$ at distance R, $\mu^{-1} = m_1^{-1} + m_2^{-1}$

$$f(t) = A(t_0 - t)^{-1/4} \cos(d(t_0 - t)^{5/8} + \varphi) \mathbf{1}_{(-\infty;t_0[}(t)$$

chirp: amplitude $a(t) = A(t_0 - t)^{-\frac{1}{4}}$, frequency $\omega(t) = \frac{10\pi d}{8}(t_0 - t)^{-\frac{3}{8}}$

- t_0 : time of coalescence,
- d: instantaneous frequency parameter $d \simeq 2$
 - A: amplitude reference

$$d \simeq 241 \mathcal{M}_{\odot}^{5/6},$$

 $A \simeq 3.37 \times 10^{-21} \mathcal{M}_{\odot}^{5/4} / R.$

5/8

Unknown: $\mathcal{M}_{\odot}=\mu^{3/5}M^{2/5}/M_{\odot}$: chirp mass in solar mass unit M_{\odot}

Physics: two objects $M = m_1 + m_2$ at distance R, $\mu^{-1} = m_1^{-1} + m_2^{-1}$

$$f(t) = A(t_0 - t)^{-1/4} \cos(d(t_0 - t)^{5/8} + \varphi) \mathbf{1}_{(-\infty;t_0[}(t)$$

chirp: amplitude $a(t) = A(t_0 - t)^{-\frac{1}{4}}$, frequency $\omega(t) = \frac{10\pi d}{8}(t_0 - t)^{-\frac{3}{8}}$

- t_0 : time of coalescence,
- d: instantaneous frequency parameter $d \simeq 241 \mathcal{M}_{\odot}^{-5/8}$, - A: amplitude reference $A \simeq 3.37 \times 10^{-21} \mathcal{M}_{\odot}^{5/4} / R$.

Unknown: $\mathcal{M}_{\odot}=\mu^{3/5}M^{2/5}/M_{\odot}$: chirp mass in solar mass unit M_{\odot}

Physics: two objects $M = m_1 + m_2$ at distance R, $\mu^{-1} = m_1^{-1} + m_2^{-1}$

$$f(t) = A(t_0 - t)^{-1/4} \cos(d(t_0 - t)^{5/8} + \varphi) \mathbf{1}_{(-\infty;t_0[}(t)$$

chirp: amplitude $a(t) = A(t_0 - t)^{-\frac{1}{4}}$, frequency $\omega(t) = \frac{10\pi d}{8}(t_0 - t)^{-\frac{3}{8}}$

- t_0 : time of coalescence,
- d: instantaneous frequency parameter
- A: amplitude reference

$$d \simeq 241 \mathcal{M}_{\odot}^{-5/8}$$
,
 $A \simeq 3.37 \times 10^{-21} \mathcal{M}_{\odot}^{5/4} / R.$

Unknown: $\mathcal{M}_{\odot}=\mu^{3/5}M^{2/5}/M_{\odot}$: chirp mass in solar mass unit M_{\odot}

Reconstruction formula For $\widetilde{\psi}$ the Fourier transform of ψ ,

if $C_{\psi} = \int_{\mathbb{R}} \frac{|\tilde{\psi}(\omega)|^2}{|\omega|} d\omega < \infty$ then ψ is admissible and for $f \in L^2(\mathbb{R})$ $f(t) = \frac{1}{C_{\psi}} \int_{\mathbb{R} \times \mathbb{R}_+} \mathcal{W}_f(s, a) \frac{1}{\sqrt{a}} \psi\left(\frac{s-t}{a}\right) ds \frac{da}{a^2}$

with $\mathcal{W}_f(s,a) = \langle f, \psi_{s,a} \rangle$ [A. P. Calderón, 1964, *Stud. Math.*; A. Grossmann & J. Morlet, 1984, *SIAM J. Math. Anal.*] **Reconstruction formula** For $\widetilde{\psi}$ the Fourier transform of ψ ,

if $C_{\psi} = \int_{\mathbb{R}} \frac{|\tilde{\psi}(\omega)|^2}{|\omega|} d\omega < \infty$ then ψ is admissible and for $f \in L^2(\mathbb{R})$ $f(t) = \frac{1}{C_{\psi}} \int_{\mathbb{R} \times \mathbb{R}_+} \mathcal{W}_f(s, a) \frac{1}{\sqrt{a}} \psi\left(\frac{s-t}{a}\right) ds \frac{da}{a^2}$

with $\mathcal{W}_f(s,a) = \langle f, \psi_{s,a} \rangle$ [A. P. Calderón, 1964, *Stud. Math.*; A. Grossmann & J. Morlet, 1984, *SIAM J. Math. Anal.*]

Reproducing kernel $W_f(t, a)$ **redundant** representation of f

$$\mathcal{W}_f(t',a') = \frac{1}{C_{\psi}} \int_{\mathbb{R} \times \mathbb{R}_+} \mathcal{K}(t',t;a',a) \mathcal{W}_f(t,a) \, \mathrm{d}t \frac{\mathrm{d}a}{a^2}$$

with $\mathcal{K}(t',t;a',a)=\langle\psi_{t,a},\psi_{t',a'}\rangle$ correlations between wavelets

Translation invariance

Let
$$f^{\Delta t}(t) = f(t - \Delta t)$$
, then $\mathcal{W}_{f^{\Delta t}}(t, a) = \mathcal{W}_f(t - \Delta t, a)$.

From continuous signals to discrete vectors

- f continuous on [0, 1], discretized in $z_n = f\left(\frac{n}{N}\right)$, $n = 0, 1, \dots, N$ discrete wavelet transform can be computed at scales $N^{-1} < a^j < 1$
- discrete scales: $a = 2^{1/v} \Longrightarrow v$ intermediate scales in octave $[2^j, 2^{j+1})$

From continuous signals to discrete vectors

- f continuous on [0, 1], discretized in $z_n = f\left(\frac{n}{N}\right)$, n = 0, 1, ..., Ndiscrete wavelet transform can be computed at scales $N^{-1} < a^j < 1$
- discrete scales: $a = 2^{1/v} \Longrightarrow v$ intermediate scales in octave $[2^j, 2^{j+1})$

Practical implementation

From continuous signals to discrete vectors

- f continuous on [0, 1], discretized in $z_n = f\left(\frac{n}{N}\right)$, n = 0, 1, ..., Ndiscrete wavelet transform can be computed at scales $N^{-1} < a^j < 1$
- discrete scales: $a = 2^{1/v} \Longrightarrow v$ intermediate scales in octave $[2^j, 2^{j+1})$

Practical implementation

Integral representation $\mathcal{W}_{f}(t,a) = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{a}} \overline{\psi\left(\frac{s-t}{a}\right)} \, \mathrm{d}s$ $\begin{array}{l} \textbf{Discrete convolution } \mathbf{z} * \overline{\psi_{t,a}(-\cdot)} \\ \mathcal{W}_{z}[n,j] = \sum_{m=0}^{N-1} z_{m} \frac{1}{\sqrt{a^{j}}} \overline{\psi\left(\frac{m-n}{a^{j}}\right)} \end{array}$

• Fast Fourier Transform at each scale: $\mathcal{O}(N \log_2 N)$ operations

From continuous signals to discrete vectors

- f continuous on [0, 1], discretized in $z_n = f\left(\frac{n}{N}\right)$, n = 0, 1, ..., Ndiscrete wavelet transform can be computed at scales $N^{-1} < a^j < 1$
- discrete scales: $a = 2^{1/v} \Longrightarrow v$ intermediate scales in octave $[2^j, 2^{j+1})$

Practical implementation

Integral representation $\mathcal{W}_{f}(t,a) = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{a}} \overline{\psi\left(\frac{s-t}{a}\right)} \, \mathrm{d}s$ $\begin{array}{l} \textbf{Discrete convolution } \mathbf{z} * \overline{\psi_{t,a}(-\cdot)} \\ \mathcal{W}_{z}[n,j] = \sum_{m=0}^{N-1} z_{m} \frac{1}{\sqrt{a^{j}}} \overline{\psi\left(\frac{m-n}{a^{j}}\right)} \end{array}$

- Fast Fourier Transform at each scale: $\mathcal{O}(N \log_2 N)$ operations
- If ψ with support in [-K/2,K/2]: $v\log_2{(N/(2K))}$ accessible scales

From continuous signals to discrete vectors

- f continuous on [0, 1], discretized in $z_n = f\left(\frac{n}{N}\right)$, n = 0, 1, ..., Ndiscrete wavelet transform can be computed at scales $N^{-1} < a^j < 1$
- discrete scales: $a = 2^{1/v} \Longrightarrow v$ intermediate scales in octave $[2^j, 2^{j+1})$

Practical implementation

Integral representation $\mathcal{W}_{f}(t,a) = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{a}} \overline{\psi\left(\frac{s-t}{a}\right)} \, \mathrm{d}s$ $\begin{array}{l} \textbf{Discrete convolution } \mathbf{z} * \overline{\psi_{t,a}(-\cdot)} \\ \mathcal{W}_{z}[n,j] = \sum_{m=0}^{N-1} z_{m} \frac{1}{\sqrt{a^{j}}} \overline{\psi\left(\frac{m-n}{a^{j}}\right)} \end{array}$

- Fast Fourier Transform at each scale: $\mathcal{O}(N \log_2 N)$ operations
- If ψ with support in [-K/2,K/2]: $v\log_2{(N/(2K))}$ accessible scales

complexity $\mathcal{O}\left(vN\left(\log_2 N\right)^2\right)$

[S. Mallat, 2009, Academic Press, Elsevier]

Multiresolution Analysis

Motivation: process only details at relevant discrete resolutions

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.]

• self-similarity in time: $(\forall j \in \mathbb{Z}, f \in V_j, m \in \mathbb{Z}) \quad f(\cdot - m2^j) \in V_j$

• self-similarity in time: $(\forall j \in \mathbb{Z}, f \in V_j, m \in \mathbb{Z}) \quad f(\cdot - m2^j) \in V_j$

• self-similarity in scale: $(\forall j \in \mathbb{Z})$ $f \in V_j \iff f\left(\frac{\cdot}{2}\right) \in V_{j+1}$

- self-similarity in time: $(\forall j \in \mathbb{Z}, f \in V_j, m \in \mathbb{Z}) \quad f(\cdot m2^j) \in V_j$
- self-similarity in scale: $(\forall j \in \mathbb{Z})$ $f \in V_j \iff f\left(\frac{\cdot}{2}\right) \in V_{j+1}$
- regularity: φ father wavelet or scaling function such that $\{\varphi(t-k), k \in \mathbb{Z}\}$ is an orthonormal basis of V_0
- completeness: $\cup_{j \in \mathbb{Z}} V_j$ is dense in $L^2(\mathbb{R})$ and $\cap_{j \in \mathbb{Z}} V_j = \{0\}$

 $\implies V_j$ approximation space at scale 2^j , i.e., resolution 2^{-j} .

- [P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.;
- S. Mallat, 1989, Trans. Amer. Math. Soc.;
- S. Mallat, 1989, IEEE Trans. Pattern Anal. Mach. Intell.;
- Y. Meyer, 1992, Cambridge University Press]

Motivation: process only details at relevant discrete resolutions

scale $4 \iff$ resolution 1/4 scale $2 \iff$ resolution 1/2 scale $1 \iff$ resolution 1

scale
$$2^j \iff$$
 resolution 2^{-j}

[P. J. Burt & E. H.Adelson, 1983, Proc. IEEE Int. Conf. Commun.]

From time and scale invariance and regularity condition:

 $\{\sqrt{2^{-j}} arphi(t/2^j-k), \quad k\in\mathbb{Z}\}$ is an orthonormal basis of V_j

 $\{\sqrt{2^{-j}}\varphi(t/2^j-k), k \in \mathbb{Z}\}$ is an orthonormal basis of V_j

Orthogonal projection of f onto V_j

$$f|_{V_j} = \sum_{k \in \mathbb{Z}} \phi_{j,k} \sqrt{2^{-j}} \varphi(t/2^j - k)$$

$$\phi_{j,k} = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{2^j}} \overline{\varphi(s/2^j - k)} \, \mathrm{d}s$$

 $\{\sqrt{2^{-j}}\varphi(t/2^j-k), \quad k\in\mathbb{Z}\}$ is an orthonormal basis of V_j

Orthogonal projection of f onto V_j

$$f|_{V_j} = \sum_{k \in \mathbb{Z}} \phi_{j,k} \sqrt{2^{-j}} \varphi(t/2^j - k)$$

$$\phi_{j,k} = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{2^j}} \overline{\varphi(s/2^j - k)} \, \mathrm{d}s$$

 $\{\sqrt{2^{-j}}\varphi(t/2^j-k), k \in \mathbb{Z}\}$ is an orthonormal basis of V_j

Orthogonal projection of f onto V_j

$$f|_{V_j} = \sum_{k \in \mathbb{Z}} \phi_{j,k} \sqrt{2^{-j}} \varphi(t/2^j - k)$$

$$\phi_{j,k} = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{2^j}} \overline{\varphi(s/2^j - k)} \, \mathrm{d}s$$

 $\{\sqrt{2^{-j}}\varphi(t/2^j-k), k \in \mathbb{Z}\}$ is an orthonormal basis of V_j

Orthogonal projection of f onto V_j

$$f|_{V_j} = \sum_{k \in \mathbb{Z}} \phi_{j,k} \sqrt{2^{-j}} \varphi(t/2^j - k)$$

$$\phi_{j,k} = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{2^j}} \overline{\varphi(s/2^j - k)} \, \mathrm{d}s$$

Approximation and details: $V_{j-1} = V_j \oplus W_j$, W_j : lost information between $f|_{V_{j-1}}$ at resolution $2^{-(j-1)}$ and $f|_{V_j}$ at resolution 2^{-j}

Approximation and details: $V_{j-1} = V_j \oplus W_j$, W_j : lost information between $f|_{V_{j-1}}$ at resolution $2^{-(j-1)}$ and $f|_{V_j}$ at resolution 2^{-j}

Theorem There exists a mother wavelet $\psi \in L^2(\mathbb{R})$ such that

 $\{\psi_{j,k} = \sqrt{2^{-j}}\psi(t/2^j - k), k \in \mathbb{Z}\}$ is an orthonormal basis of W_j .

Approximation and details: $V_{j-1} = V_j \oplus W_j$, W_j : lost information between $f|_{V_{j-1}}$ at resolution $2^{-(j-1)}$ and $f|_{V_j}$ at resolution 2^{-j} Theorem There exists a mother wavelet $\psi \in L^2(\mathbb{R})$ such that $\{\psi_{j,k} = \sqrt{2^{-j}}\psi(t/2^j - k), k \in \mathbb{Z}\}$ is an orthonormal basis of W_j .

Approximation and details: $V_{j-1} = V_j \oplus W_j$, W_j : lost information between $f|_{V_i}$, at resolution $2^{-(j-1)}$ and $f|_{V_i}$ at resolution 2^{-j} **Theorem** There exists a mother wavelet $\psi \in L^2(\mathbb{R})$ such that

 $\{\psi_{i,k} = \sqrt{2^{-j}}\psi(t/2^j - k), k \in \mathbb{Z}\}\$ is an orthonormal basis of W_j .

involving wavelet coefficients

$$\zeta_{j,k} = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{2^j}} \overline{\psi(s/2^j - k)} \, \mathrm{d}s$$

Approximation and details: $V_{j-1} = V_j \oplus W_j$, W_j : lost information between $f|_{V_{j-1}}$ at resolution $2^{-(j-1)}$ and $f|_{V_j}$ at resolution 2^{-j} Theorem There exists a mother wavelet $\psi \in L^2(\mathbb{R})$ such that

 $\{\psi_{j,k} = \sqrt{2^{-j}}\psi(t/2^j - k), k \in \mathbb{Z}\}\$ is an orthonormal basis of W_j .

By the completeness property of the multiresolution analysis

$$\{\sqrt{2^{-j}}\psi(t/2^j-k), (j,k) \in \mathbb{Z}^2\}$$

is an orthonormal wavelet basis of $L^2(\mathbb{R})$.

By the completeness property of the multiresolution analysis

$$\{\sqrt{2^{-j}}\psi(t/2^j-k), \quad (j,k) \in \mathbb{Z}^2\}$$

is an orthonormal wavelet basis of $L^2(\mathbb{R})$.

Tiling of the time-scale half-plane

Vanishing Moments of Wavelets

Theorem: Let φ scaling function, ψ mother wavelet and $\widetilde{\psi}$ its Fourier transform s.t.

$$|\varphi(t)| = \mathcal{O}\left((1+t^2)^{-n_{\psi}/2-1}\right), \quad |\psi(t)| = \mathcal{O}\left((1+t^2)^{-n_{\psi}/2-1}\right)$$

Theorem: Let φ scaling function, ψ mother wavelet and ψ its Fourier transform s.t. $|\varphi(t)| \stackrel{=}{}_{|t| \to \infty} \mathcal{O}\left((1+t^2)^{-n_{\psi}/2-1}\right), \quad |\psi(t)| \stackrel{=}{}_{|t| \to \infty} \mathcal{O}\left((1+t^2)^{-n_{\psi}/2-1}\right)$ Then the propositions *i*) $\int_{\mathbb{R}} t^n \psi(t) \, \mathrm{d}t = 0, \quad \text{for } n = 0, 1, \dots, n_{\psi} - 1$

ii)
$$\frac{\mathrm{d}^{-\psi}}{\mathrm{d}t^n}(0) = 0$$
, for $n = 0, 1, \dots, n_{\psi} - 1$

 $\textit{iii)} \ (\forall 0 \leq k < p) \quad t \mapsto \sum_{n=-\infty}^{\infty} n^k \varphi(t-n) \text{ is a polynomial of degree } k \text{ (Fix-Strang)}$

are equivalent.

 $1n\widetilde{l}$

[S. Mallat, 2009, Academic Press, Elsevier]

Theorem: Let φ scaling function, ψ mother wavelet and ψ its Fourier transform s.t. $|\varphi(t)| = \mathcal{O}\left((1+t^2)^{-n_{\psi}/2-1}\right), \quad |\psi(t)| = \mathcal{O}\left((1+t^2)^{-n_{\psi}/2-1}\right)$ Then the propositions *i*) $\int t^n \psi(t) dt = 0$, for $n = 0, 1, ..., n_{\psi} - 1$ *ii*) $\frac{\mathrm{d}^n \tilde{\psi}}{\mathrm{d}^{4n}}(0) = 0$, for $n = 0, 1, \dots, n_{\psi} - 1$ iii) $(\forall 0 \le k < p) \quad t \mapsto \sum_{k=1}^{\infty} n^k \varphi(t-n)$ is a polynomial of degree k (Fix-Strang) $n = -\infty$ [S. Mallat, 2009, Academic Press, Elsevier] are equivalent.

Interpretation:

 \blacksquare mother wavelet orthogonal to polynomials of degree at most $n_\psi-1$

• if signal
$$f$$
 is \mathcal{C}^k , $k < n_{\psi}$

wavelet coefficients $\zeta_{j,n} = \langle f, \psi_{j,n} \rangle$ small at fine scales

If f has an **isolated singularity** at t_0 contained in the support of $\psi_{j,n}$ then the wavelet coefficient $\langle f, \psi_{j,n} \rangle$ is **large**. If f has an **isolated singularity** at t_0 contained in the support of $\psi_{j,n}$ then the wavelet coefficient $\langle f, \psi_{j,n} \rangle$ is **large**.

Theorem: If scaling function φ has compact support [a, b], then ψ also has a compact support [(a - b + 1)/2, (b - a + 1)/2]of size b - a, centered at 1/2. If f has an **isolated singularity** at t_0 contained in the support of $\psi_{j,n}$ then the wavelet coefficient $\langle f, \psi_{j,n} \rangle$ is **large**.

Theorem: If scaling function φ has compact support [a, b], then ψ also has a compact support [(a - b + 1)/2, (b - a + 1)/2]of size b - a, centered at 1/2.

If ψ has a compact support of size $\Delta \in \mathbb{N}^*$, at scale 2^j

 Δ wavelet coefficients $\zeta_{j,n} = \langle f, \psi_{j,n} \rangle$ are large

 \implies to reduce the number of significant coefficients, reduce support size of ψ .

Support size and number vanishing moments trade-off

Theorem: Let ψ a wavelet with n_{ψ} vanishing moments generating an orthonormal basis of $L^2(\mathbb{R})$, then its support is of size at least $2n_{\psi} - 1$.

A Daubechies wavelet has a minimum-size support $[-n_{\psi} + 1, n_{\psi}]$ and the support of the corresponding scaling function is $[0, 2n_{\psi} - 1]$.

Support size and number vanishing moments trade-off

Theorem: Let ψ a wavelet with n_{ψ} vanishing moments generating an orthonormal basis of $L^2(\mathbb{R})$, then its support is of size at least $2n_{\psi} - 1$.

A Daubechies wavelet has a minimum-size support $[-n_{\psi} + 1, n_{\psi}]$ and the support of the corresponding scaling function is $[0, 2n_{\psi} - 1]$.

 \implies shortest support among all orthogonal wavelets.

Support size and number vanishing moments trade-off

Theorem: Let ψ a wavelet with n_{ψ} vanishing moments generating an orthonormal basis of $L^2(\mathbb{R})$, then its support is of size at least $2n_{\psi} - 1$.

A Daubechies wavelet has a minimum-size support $[-n_{\psi} + 1, n_{\psi}]$ and the support of the corresponding scaling function is $[0, 2n_{\psi} - 1]$.

Daubechies wavelet:

16

Decompositions on Wavelet Frames

 \mathcal{H} : Hilbert space, e.g., $L^2(\mathbb{R})$ or subspace of $L^2(\mathbb{R})$; $\mathbb{I} \subset \mathbb{N}$: set of indices

Definition A family of elements of \mathcal{H} , $\{e_n, n \in \mathbb{I}\}$, s.t.

$$(\forall f \in \mathcal{H}) \quad \underline{\mu} \| f \|^2 \leq \sum_{n \in \mathbb{Z}} \left| \langle f, \mathbf{e}_n \rangle \right|^2 \leq \overline{\mu} \| f \|^2$$

for some bounds $0 < \mu \leq \overline{\mu}$, is a frame.

 \mathcal{H} : Hilbert space, e.g., $L^2(\mathbb{R})$ or subspace of $L^2(\mathbb{R})$; $\mathbb{I} \subset \mathbb{N}$: set of indices

Definition A family of elements of \mathcal{H} , $\{e_n, n \in \mathbb{I}\}$, s.t.

$$(\forall f \in \mathcal{H}) \quad \underline{\mu} \| f \|^2 \leq \sum_{n \in \mathbb{Z}} \left| \langle f, \mathbf{e}_n \rangle \right|^2 \leq \overline{\mu} \| f \|^2$$

for some bounds $0 < \underline{\mu} \leq \overline{\mu}$, is a frame.

Tight frame If $\mu = \overline{\mu} = \mu$, **tight frame** of bound μ .

Union of L orthonormal wavelet bases: **tight frame** of bound L.

 \mathcal{H} : Hilbert space, e.g., $L^2(\mathbb{R})$ or subspace of $L^2(\mathbb{R})$; $\mathbb{I} \subset \mathbb{N}$: set of indices

Definition A family of elements of \mathcal{H} , $\{e_n, n \in \mathbb{I}\}$, s.t.

$$(\forall f \in \mathcal{H}) \quad \underline{\mu} \| f \|^2 \leq \sum_{n \in \mathbb{Z}} \left| \langle f, \mathbf{e}_n \rangle \right|^2 \leq \overline{\mu} \| f \|^2$$

for some bounds $0 < \mu \leq \overline{\mu}$, is a frame.

Tight frame If $\mu = \overline{\mu} = \mu$, **tight frame** of bound μ .

Union of L orthonormal wavelet bases: tight frame of bound L.

Stable analysis and synthesis

$$f \in \mathcal{H} \mapsto (\langle f, e_n \rangle)_{n \in \mathbb{N}} \ell^2(\mathbb{I})$$
 bounded linear operator
 $(f_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{I}) \mapsto \sum_{n \in \mathbb{Z}} f_n e_n \in \mathcal{H}$ bounded linear operator

Initially: reconstruction of irregularly sampled band-limited signals

[Duffin & Schaeffer, 1952, Trans. Amer. Math. Soc.]

Initially: reconstruction of irregularly sampled band-limited signals [Duffin & Schaeffer, 1952, Trans. Amer. Math. Soc.]

Motivations in multiresolution analysis:

Continuous Wavelet Transform: highly redundant, computationally costly

$$\mathcal{W}_f(t,a) = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{a}} \overline{\psi\left(\frac{s-t}{a}\right)} \,\mathrm{d}s$$

Orthonomal wavelet basis decomposition: not invariant under translations

$$(\forall (j,k) \in \mathbb{Z}^2) \quad \zeta_{j,n} = \langle f, \psi_{j,n} \rangle = \sqrt{2^{-j}} \int_{\mathbb{R}} f(t) \psi(t/2^j - k) \, \mathrm{d}t$$

Initially: reconstruction of irregularly sampled band-limited signals [Duffin & Schaeffer, 1952, Trans. Amer. Math. Soc.]

Motivations in multiresolution analysis:

Continuous Wavelet Transform: highly redundant, computationally costly

$$\mathcal{W}_f(t,a) = \int_{\mathbb{R}} f(s) \frac{1}{\sqrt{a}} \overline{\psi\left(\frac{s-t}{a}\right)} \,\mathrm{d}s$$

Orthonomal wavelet basis decomposition: not invariant under translations

$$(\forall (j,k) \in \mathbb{Z}^2) \quad \zeta_{j,n} = \langle f, \psi_{j,n} \rangle = \sqrt{2^{-j}} \int_{\mathbb{R}} f(t)\psi(t/2^j - k) \,\mathrm{d}t$$

Wavelet frames:
$$\psi_{j,n}^{(\gamma,b)} = \left\{ \frac{1}{\sqrt{\gamma^j}} \widetilde{\psi}\left(\frac{t - bn\gamma^j}{\gamma^j}\right), (j,n) \in \mathbb{Z}^2 \right\}, \ \gamma > 1, \ b > 0$$

 \Rightarrow more freedom in the design of the wavelet $\psi^{(\gamma,b)}$

Wavelet Decomposition of Images

Mathematical representation of images

Real-valued square-integrable field

$$\mathsf{X}:\mathbb{R}^2\to\mathbb{R}$$

restricted to a **rectangular** domain $\Omega = [0, n_1 - 1] \times [0, n_2 - 1]$

Separable wavelet bases:

1

 φ and ψ the scaling function and mother wavelet of a ${\bf 1D}$ multiresolution analysis

Define

$$\begin{cases} \psi^{(0)}(\underline{x}) = \varphi(x_1)\varphi(x_2), & \psi^{(1)}(\underline{x}) = \psi(x_1)\varphi(x_2) \\ \psi^{(2)}(\underline{x}) = \varphi(x_1)\psi(x_2), & \psi^{(3)}(\underline{x}) = \psi(x_1)\psi(x_2). \end{cases}$$

Then, the family

$$\left\{2^{-j}\psi^{(m)}\left(\underline{x}2^{-j}-\underline{n}\right), m\in\{1,2,3\}, \underline{x}=(x_1,x_2)\in\mathbb{R}^2, \underline{n}=(n_1,n_2)\in\mathbb{Z}^2\right\}$$

defines an **orthonormal wavelet basis** of $L^2(\mathbb{R})$.

The wavelet coefficients of a 2D field $X \in L^2(\mathbb{R}^2)$ are defined as

$$\zeta_{j,\underline{n}}^{(m)} = \langle \mathsf{X}, \psi_{j,\underline{n}}^{(m)} \rangle, \quad \psi_{j,\underline{n}}^{(m)}(\underline{x}) = 2^{-j} \psi^{(m)}\left(\underline{x}2^{-j} - \underline{n}\right)$$

Wavelet transform of images

Daubechies wavelet transform with $n_{\psi} = 2$ vanishing moments at scale 2^1

Wavelet transform of images

Albert Marquet, Paysage, baie méditerranéenne, vue d'Agay, 1905

Daubechies wavelet transform with $n_{\psi}=2$ vanishing moments at scale 2^3

Wavelet transform of images

Albert Marquet, Paysage, baie méditerranéenne, vue d'Agay, 1905

Daubechies wavelet transform with $n_{\psi} = 2$ vanishing moments at scale 2^3

Application: compression of images and videos: JPEG2000, MPEG-4

References and further readings

Pesquet-Popescu, B., & Pesquet, J. -C. (2001). "Ondelettes et applications", *Techniques de l'ingénieur*, Réf. TE, 5, 215.

Chaux, C. (2006). "Analyse en ondelettes M-bandes en arbre dual; application à la restauration d'images", *Université de Marne la Vallée*.

Pustelnik, N. (2010). "Proximal methods for the resolution of inverse problems: application to positron emission tomography", *Universite Paris-Est*.

Multiresolution/multilevel

Multiresolution to perform image restoration (-2000-2015)

Multiresolution to perform texture segmentation (-2014- now)

