

Nantes✓ Université

Detection of change in cancer breast tissues from fractal indicators:

A brief introduction

Journées RT² ANAIS & MAIAGES

Aléatoire et Fractales à Vannes

April 2, 2025

Barbara Pascal

CompuMAINE:* K. Batchelder, A. Khalil, B. G. White

Laboratoire des Sciences du Numérique de Nantes: B. Pascal

Laboratoire de Physique ENSL: P. Abry, B. Audit, L. Davy, N. Pustelnik

* Computational Modeling, Analysis of Imagery and Numerical Experiments

Breast cancer:

- most common cancer amongst women with ~ 1 over 8 diagnosed
- early detection is critical for the patient's survival

Breast cancer:

- most common cancer amongst women with ~ 1 over 8 diagnosed
- early detection is critical for the patient's survival

X-ray imaging: most used imaging technique yielding a so-called mammogram

Breast cancer:

- most common cancer amongst women with \sim 1 over 8 diagnosed
- early detection is critical for the patient's survival

X-ray imaging: most used imaging technique yielding a so-called mammogram

Assessment by a radiologist:

- fatty tissues: translucent to X-rays (black)
- epithelial and stromal tissues: absorb X-rays (white)
- tumorous tissues: also absorb X-rays (white)
- \implies errors of both I and II types

Breast cancer:

- most common cancer amongst women with ~ 1 over 8 diagnosed
- early detection is critical for the patient's survival

X-ray imaging: most used imaging technique yielding a so-called mammogram

Assessment by a radiologist:

- fatty tissues: translucent to X-rays (black)
- epithelial and stromal tissues: absorb X-rays (white)
- tumorous tissues: also absorb X-rays (white)
- \implies errors of both I and II types

Computer-Aided Detection: used in 92% of screening mammograms in the U.S.

Tissue density fluctuations in normal vs. cancerous breasts

Breast Imaging Reporting And Data System (BI-RADS): four categories

- I: Almost entirely fatty tissue
- II: Scattered areas of density
- III: Heterogeneous density
- IV: Extremely dense

(C. Balleyguier et al., 2007, Eur. J. Radiol.)

(10% of women in U.S.)

- (40% of women in U.S.)
- (40% of women in U.S.)
- (10% of women in U.S.)

Tissue density fluctuations in normal vs. cancerous breasts

Breast Imaging Reporting And Data System (BI-RADS): four categories

- I: Almost entirely fatty tissue
- II: Scattered areas of density
- III: Heterogeneous density
- IV: Extremely dense

(C. Balleyguier et al., 2007, Eur. J. Radiol.)

(10% of women in U.S.)

- (40% of women in U.S.)
- (40% of women in U.S.)
- (10% of women in U.S.)

Source: B. White, 2023, Electronic Theses and Dissertations, University of Maine.

Tissue density fluctuations in normal vs. cancerous breasts

Breast Imaging Reporting And Data System (BI-RADS): four categories

- I: Almost entirely fatty tissue
- II: Scattered areas of density
- III: Heterogeneous density
- IV: Extremely dense
- (C. Balleyguier et al., 2007, Eur. J. Radiol.)

(10% of women in U.S.)

- (40% of women in U.S.)
- (40% of women in U.S.)
- (10% of women in U.S.)

Source: B. White, 2023, Electronic Theses and Dissertations, University of Maine.

Overall mammographic density: (S. S. Nazari et al., 2018, Breast cancer)

 \implies important risk factor for breast cancer radiological assessment

BI-RADS limitations:

- subjective, with both inter- and intra-observer variability
- classification in four classes not reflecting continuous changes in tissues

BI-RADS limitations:

- subjective, with both inter- and intra-observer variability
- classification in four classes not reflecting continuous changes in tissues

Self-similar isotropic random fields: $f(\mathbf{x}_0 + \lambda \mathbf{u}) - f(\mathbf{x}_0) \stackrel{(law)}{\simeq} \lambda^H (f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0))$

Mammogram

fractal random field

BI-RADS limitations:

- subjective, with both inter- and intra-observer variability
- classification in four classes not reflecting continuous changes in tissues

Self-similar isotropic random fields: $f(\mathbf{x}_0 + \lambda \mathbf{u}) - f(\mathbf{x}_0) \stackrel{(law)}{\simeq} \lambda^H (f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0))$

Mammogram

fractal random field

Self-similar textures: fractal analysis, e.g., fractal dimension of a rough surface, for

- classification of mammogram density (Caldwell et al., 1990, Phys. Med. Biol.)
- lesion detection in mammograms (Burgess et al., 2001, Med. Biol.)
- assessment of breast cancer risk (Heine et al., 2002, Acad. Radiol.)

Physiological motivations and goals

Breast microenvironment plays a crucial role in tumorigenesis:

- structure integrity preserved \implies lesions are suppressed
- structure lost by tissue disruption \Longrightarrow tumor is promoted

Tumor vs. healthy not only in tumor but more fundamentally in surrounding tissue

Physiological motivations and goals

Breast microenvironment plays a crucial role in tumorigenesis:

- structure integrity preserved \implies lesions are suppressed
- structure lost by tissue disruption \Longrightarrow tumor is promoted

Tumor vs. healthy not only in tumor but more fundamentally in surrounding tissue

Pioneer work: Marin et al., 2017, Med. Phys. quantitatively and objectively assessed

- tissue disruption
- loss of homeostasis in breast tissue microenvironment
- bilateral asymmetry

via wavelet-based mammogram local analysis.

Physiological motivations and goals

Breast microenvironment plays a crucial role in tumorigenesis:

- structure integrity preserved \implies lesions are suppressed
- structure lost by tissue disruption \Longrightarrow tumor is promoted

Tumor vs. healthy not only in tumor but more fundamentally in surrounding tissue

Pioneer work: Marin et al., 2017, Med. Phys. quantitatively and objectively assessed

- tissue disruption
- loss of homeostasis in breast tissue microenvironment
- bilateral asymmetry

via wavelet-based mammogram local analysis.

Main idea: quantify density fluctuations through the Hölder exponent $h(x_0)$ probed via

multifractal formalism based on 2D Wavelet Transform Modulus Maxima

 \Longrightarrow risk assessment and tumorous breasts detection without seeing a tumor

fBf of Hurst exponent $H \in [0, 1]$ denoted $\{B_H(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- and for some $\sigma^2 > 0$, correlation function writing

$$\mathbb{E}\left[B_{H}(\boldsymbol{x})B_{H}(\boldsymbol{y})\right] = \frac{\sigma^{2}}{2}\left(\|\boldsymbol{x}\|^{2H} + \|\boldsymbol{y}\|^{2H} - \|\boldsymbol{x} - \boldsymbol{y}\|^{2H}\right)$$

fBf of Hurst exponent $H \in [0, 1]$ denoted $\{B_H(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- and for some $\sigma^2 > 0$, correlation function writing

$$\mathbb{E}\left[B_{H}(\boldsymbol{x})B_{H}(\boldsymbol{y})\right] = \frac{\sigma^{2}}{2}\left(\|\boldsymbol{x}\|^{2H} + \|\boldsymbol{y}\|^{2H} - \|\boldsymbol{x} - \boldsymbol{y}\|^{2H}\right)$$

Stationary increments

$$\forall u \in \mathbb{R}^2, \quad \mathbb{E}\left[(B_H(x+u) - B_H(x))(B_H(y+u) - B_H(y)) \right] \\ = \|x+u-y\|^{2H} + \|x-u-y\|^{2H} - 2\|x-y\|^{2H}$$

fBf of Hurst exponent $H \in [0, 1]$ denoted $\{B_H(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- and for some $\sigma^2 > 0$, correlation function writing

$$\mathbb{E}\left[B_{H}(\boldsymbol{x})B_{H}(\boldsymbol{y})\right] = \frac{\sigma^{2}}{2}\left(\|\boldsymbol{x}\|^{2H} + \|\boldsymbol{y}\|^{2H} - \|\boldsymbol{x} - \boldsymbol{y}\|^{2H}\right)$$

Stationary increments

$$\begin{aligned} \forall \boldsymbol{u} \in \mathbb{R}^2, \quad \mathbb{E}\left[(B_H(\boldsymbol{x} + \boldsymbol{u}) - B_H(\boldsymbol{x}))(B_H(\boldsymbol{y} + \boldsymbol{u}) - B_H(\boldsymbol{y})) \right] \\ &= \|\boldsymbol{x} + \boldsymbol{u} - \boldsymbol{y}\|^{2H} + \|\boldsymbol{x} - \boldsymbol{u} - \boldsymbol{y}\|^{2H} - 2\|\boldsymbol{x} - \boldsymbol{y}\|^{2H} \end{aligned}$$

For $\|\boldsymbol{u}\| \ll \|\boldsymbol{x} - \boldsymbol{y}\|, \qquad \mathbb{E}\left[(B_H(\boldsymbol{x} + \boldsymbol{u}) - B_H(\boldsymbol{x}))(B_H(\boldsymbol{y} + \boldsymbol{u}) - B_H(\boldsymbol{y})) \right] \\ &= \|\boldsymbol{x} - \boldsymbol{y}\|^{2(H-1)} 2H(2H-1)\|\boldsymbol{u}\|^2 + o\left(\|\boldsymbol{u}\|^2\right) \end{aligned}$

fBf of Hurst exponent $H \in [0, 1]$ denoted $\{B_H(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- and for some $\sigma^2 > 0$, correlation function writing

$$\mathbb{E}\left[B_{H}(\boldsymbol{x})B_{H}(\boldsymbol{y})\right] = \frac{\sigma^{2}}{2}\left(\|\boldsymbol{x}\|^{2H} + \|\boldsymbol{y}\|^{2H} - \|\boldsymbol{x} - \boldsymbol{y}\|^{2H}\right)$$

Stationary increments

$$\forall u \in \mathbb{R}^2, \quad \mathbb{E}\left[(B_H(x+u) - B_H(x))(B_H(y+u) - B_H(y)) \right] \\ = \|x+u-y\|^{2H} + \|x-u-y\|^{2H} - 2\|x-y\|^{2H}$$

For $||\mathbf{u}|| \ll ||\mathbf{x} - \mathbf{y}||$, $\mathbb{E}[(B_H(\mathbf{x} + \mathbf{u}) - B_H(\mathbf{x}))(B_H(\mathbf{y} + \mathbf{u}) - B_H(\mathbf{y}))]$ = $||\mathbf{x} - \mathbf{y}||^{2(H-1)}2H(2H-1)||\mathbf{u}||^2 + o(||\mathbf{u}||^2)$

- H < 1/2: anti-correlated
- H = 1/2: uncorrelated \implies disruption
- H > 1/2: long-range correlated

Self-similarity

$$\forall \boldsymbol{x}_0 \in \mathbb{R}^2, \lambda > 0, \quad B_H(\boldsymbol{x}_0 + \lambda \boldsymbol{x}) - B_H(\boldsymbol{x}_0) \stackrel{(law)}{\simeq} \lambda^H(B_H(\boldsymbol{x}_0 + \boldsymbol{x}) - B_H(\boldsymbol{x}_0)) \text{ in } \mathcal{V}(\boldsymbol{x}_0)$$

Self-similarity

$$\forall \boldsymbol{x}_0 \in \mathbb{R}^2, \lambda > 0, \quad B_H(\boldsymbol{x}_0 + \lambda \boldsymbol{x}) - B_H(\boldsymbol{x}_0) \stackrel{(law)}{\simeq} \lambda^H(B_H(\boldsymbol{x}_0 + \boldsymbol{x}) - B_H(\boldsymbol{x}_0)) \text{ in } \mathcal{V}(\boldsymbol{x}_0)$$

The larger the Hurst exponent H, the smoother the texture.

I: fatty tissues

 $H\simeq 0.30$

 $H\simeq 0.65$

(Kestener et al., 2001, Image Anal. Stereol.)

CompuMAINE local mammogram analysis (Marin et al., 2017, Phys. Med. Biol.)

• H < 1/2 monofractal anti-correlated: fatty tissues (healthy)

- H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)

- H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

- H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

Dataset: University of South Florida, Digital Database for Screening Mammography

- Mediolateral oblique views only;
- 43 normal, 49 cancer, 35 benign;
- for benign and cancer microcalcification only, masses excluded;

Image sliding-window analysis:

- squared 360 \times 360-pixel window
- with 32-pixel horizontal and vertical shifts
- \Longrightarrow analysis of all 360 \times 360-pixel overlapping patches

Example: mammogram of size 4459×2155 pixels

4457 patches \iff 4457 measures of the roughness *H*

Cancer risk metric: number of yellow patches

 $H \sim 1/2$: disrupted tissues

 \implies more specific than BI-RADS and quantitative

Q.: Is the quantity of disrupted tissues, $H \simeq 1/2$, indicative of a tumorous breast?

Q.: Is the quantity of disrupted tissues, $H \simeq 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

H0: $\mathbb{P}(X > Y) = \mathbb{P}(Y > X)$

Q.: Is the quantity of disrupted tissues, $H \simeq 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

HO:
$$\mathbb{P}(X > Y) = \mathbb{P}(Y > X)$$

(i) order elements of $X \cup Y$ to form an increasing sequence;

(ii) assign to each element in $X \cup Y$ its rank in the sequence;

(iii) sum the ranks of elements in X: variable S_x .

Q.: Is the quantity of disrupted tissues, $H \simeq 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

$$\mathbf{H0}: \mathbb{P}(X > Y) = \mathbb{P}(Y > X)$$

(i) order elements of $X \cup Y$ to form an increasing sequence;

(ii) assign to each element in $X \cup Y$ its *rank* in the sequence;

(iii) sum the ranks of elements in X: variable S_x .

If at least 20 samples, law of S_x well approximated by a Gaussian with

$$\mu = n_x n_y/2; \quad \sigma^2 = n_x n_y (n_x + n_y + 1)/2.$$

If $|S_x - \mu|/\sigma > 1.96$, H0 is rejected with confidence level $\alpha = 0.05$.

Q.: Is the quantity of disrupted tissues, $H \simeq 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

H0:
$$\mathbb{P}(X > Y) = \mathbb{P}(Y > X)$$

(i) order elements of $X \cup Y$ to form an increasing sequence;

(ii) assign to each element in $X \cup Y$ its *rank* in the sequence;

(iii) sum the ranks of elements in X: variable S_x .

If at least 20 samples, law of S_x well approximated by a Gaussian with

$$\mu = n_x n_y/2; \quad \sigma^2 = n_x n_y (n_x + n_y + 1)/2.$$

If $|S_x - \mu|/\sigma > 1.96$, H0 is rejected with confidence level $\alpha = 0.05$.

Tumorous breasts have more disrupted tissues: <u>normal vs. tumor</u>: $P \sim 0.0006$ In details, <u>normal vs. cancer</u>: $P \sim 0.0023$, normal vs. benign: $P \sim 0.0049$.

Fractal features piecewise constant estimation from leaders

 \implies estimation of local Hölder exponent h(x) at the **pixel** level from wavelet leaders

(Pascal et al., 2020, Ann. Telecommun.; Pascal et al., 2021, Appl. Comput. Harmon. Anal.; Pascal et al., 2021, J. Math. Imaging Vis.)

But first: assess that wavelet leaders formalism agrees with UMaine analyzes

But first: assess that wavelet leaders formalism agrees with UMaine analyzes

Wavelet leaders: $\mathcal{L}_{a,n}$ at scale a and pixel <u>n</u> supremum of wavelet coefficients

- at all finer scales $a' \leq a$
- in a spatial neighborhood

But first: assess that wavelet leaders formalism agrees with UMaine analyzes

Wavelet leaders: $\mathcal{L}_{a,n}$ at scale a and pixel <u>n</u> supremum of wavelet coefficients

- at all finer scales $a' \leq a$
- in a spatial neighborhood

•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•
-				_									
•	•	•	•	•	•	•	•	•	•	•	•	•	•

For a grid of pixels $\Omega \subset \mathbb{R}^2$, scaling exponent $\zeta(q)$ accessible through

$$\frac{1}{|\Omega|}\sum_{\underline{n}\in\Omega}\mathcal{L}^{q}_{a,\underline{n}}=\textit{F}_{q}\textit{a}^{\zeta(q)},\quad\textit{a}\rightarrow0^{+}$$

homogeneous monofractal texture of Hurst exponent $H \Longrightarrow \zeta(q) = qH$

(Wendt et al., 2007, IEEE Signal Process. Mag.)

But first: assess that wavelet leaders formalism agrees with UMaine analyzes

Wavelet leaders: $\mathcal{L}_{a,n}$ at scale *a* and pixel <u>*n*</u> supremum of wavelet coefficients

- at all finer scales $a' \leq a$
- in a spatial neighborhood

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•
-				_									
•	•	•	•	•	•	•	•	•	•	•	•	•	•

For a grid of pixels $\Omega\subset\mathbb{R}^2$, scaling exponent $\zeta(q)$ accessible through

$$\frac{1}{|\Omega|}\sum_{\underline{n}\in\Omega}\mathcal{L}^{q}_{a,\underline{n}}=F_{q}a^{\zeta(q)},\quad a\to 0^{+}$$

homogeneous monofractal texture of Hurst exponent $H \Longrightarrow \zeta(q) = qH$

(Wendt et al., 2007, IEEE Signal Process. Mag.)

 \implies linear regression to estimate H for all 360 \times 360-pixel overlapping patches
Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine

Leaders

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- *H* < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine

Leaders

13/26

A general framework for texture analysis: multifractal formalism

Multifractal formalism: local Hölder regularity $h(x_0)$

$$|f(\mathbf{x}) - P_n(\mathbf{x} - \mathbf{x}_0)| \leq C |\mathbf{x} - \mathbf{x}_0|^{h(\mathbf{x}_0)}$$
 for $\mathbf{x} \in \mathcal{V}(\mathbf{x}_0)$

with P_n a polynomial of degree $n < h(x_0)$

Local isotropic scale invariance: $f(\mathbf{x}_0 + \lambda \mathbf{u}) - f(\mathbf{x}_0) \stackrel{(law)}{\simeq} \lambda^{h(\mathbf{x}_0)} (f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0))$

A general framework for texture analysis: multifractal formalism

Multifractal formalism: local Hölder regularity $h(x_0)$

$$|f(\mathbf{x}) - P_n(\mathbf{x} - \mathbf{x}_0)| \leq C |\mathbf{x} - \mathbf{x}_0|^{h(\mathbf{x}_0)}$$
 for $\mathbf{x} \in \mathcal{V}(\mathbf{x}_0)$

with P_n a polynomial of degree $n < h(\mathbf{x}_0)$

Local isotropic scale invariance: $f(\mathbf{x}_0 + \lambda \mathbf{u}) - f(\mathbf{x}_0) \stackrel{(law)}{\simeq} \lambda^{h(\mathbf{x}_0)} (f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0))$

For $h(x_0) \in (0,1)$ and cusp-like only singularities

$$h(x) \equiv h_1 = 0.9$$
 $h(x) \equiv h_2 = 0.3$

A general framework for texture analysis: multifractal formalism

Multifractal formalism: local Hölder regularity $h(x_0)$

$$|f(\mathbf{x}) - P_n(\mathbf{x} - \mathbf{x}_0)| \leq C |\mathbf{x} - \mathbf{x}_0|^{h(\mathbf{x}_0)}$$
 for $\mathbf{x} \in \mathcal{V}(\mathbf{x}_0)$

with P_n a polynomial of degree $n < h(\mathbf{x}_0)$

Local isotropic scale invariance: $f(\mathbf{x}_0 + \lambda \mathbf{u}) - f(\mathbf{x}_0) \stackrel{(law)}{\simeq} \lambda^{h(\mathbf{x}_0)} (f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0))$

For $h(x_0) \in (0, 1)$ and cusp-like only singularities

Singularity spectrum: $\mathcal{D}(h)$ Haussdorff dimension of $\{x \in \mathbb{R}^2, h(x) = h\}$

For a monofractal field, e.g., fractional Brownian field B_H : $h(x_0) \equiv H$ and

$$\mathcal{D}(h) = \begin{cases} 2 & h = H \\ -\infty & h \neq H \end{cases}$$

14/26

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

2D Wavelet Transform: $\{f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$ 2D-field

Smoothing function $\varphi(\mathbf{x}) \Longrightarrow$ wavelets $\psi_1(\mathbf{x}) = \partial_{x_1} \varphi(x_1, x_2), \ \psi_2(\mathbf{x}) = \partial_{x_2} \varphi(x_1, x_2)$

$$\mathbf{T}_{\psi}[f](\boldsymbol{b}, \boldsymbol{a}) = \begin{pmatrix} \boldsymbol{a}^{-2} \int \psi_1 \left(\boldsymbol{a}^{-1}(\boldsymbol{x} - \boldsymbol{b}) \right) f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \\ \boldsymbol{a}^{-2} \int \psi_2 \left(\boldsymbol{a}^{-1}(\boldsymbol{x} - \boldsymbol{b}) \right) f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \end{pmatrix} \stackrel{\text{(complex)}}{=} \mathbf{M}_{\psi}[f](\boldsymbol{b}, \boldsymbol{a}) \exp\left(\mathrm{i}\mathbf{A}_{\psi}[f](\boldsymbol{b}, \boldsymbol{a})\right)$$

Example: Gaussian and Mexican hat smoothing functions

$$\varphi_{Gauss}(\mathbf{x}) = \exp(-\|\mathbf{x}\|^2/2); \quad \varphi_{Mex}(\mathbf{x}) = (2 - \|\mathbf{x}\|^2)\exp(-\|\mathbf{x}\|^2/2)$$

leading respectively to $n_\psi=1$ and $n_\psi=3$ vanishing moments

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

2D Wavelet Transform: $\{f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$ 2D-field

Smoothing function $\varphi(\mathbf{x}) \Longrightarrow$ wavelets $\psi_1(\mathbf{x}) = \partial_{x_1} \varphi(x_1, x_2), \ \psi_2(\mathbf{x}) = \partial_{x_2} \varphi(x_1, x_2)$

$$\mathbf{T}_{\psi}[f](\boldsymbol{b},\boldsymbol{a}) = \begin{pmatrix} \boldsymbol{a}^{-2} \int \psi_1 \left(\boldsymbol{a}^{-1}(\boldsymbol{x} - \boldsymbol{b}) \right) f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \\ \boldsymbol{a}^{-2} \int \psi_2 \left(\boldsymbol{a}^{-1}(\boldsymbol{x} - \boldsymbol{b}) \right) f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \end{pmatrix} \stackrel{\text{(complex)}}{=} \mathbf{M}_{\psi}[f](\boldsymbol{b},\boldsymbol{a}) \exp\left(\mathrm{i}\mathbf{A}_{\psi}[f](\boldsymbol{b},\boldsymbol{a})\right)$$

Example: Gaussian and Mexican hat smoothing functions

$$\varphi_{\text{Gauss}}(\boldsymbol{x}) = \exp(-\|\boldsymbol{x}\|^2/2); \quad \varphi_{\text{Mex}}(\boldsymbol{x}) = (2 - \|\boldsymbol{x}\|^2)\exp(-\|\boldsymbol{x}\|^2/2)$$

leading respectively to $n_\psi=1$ and $n_\psi=3$ vanishing moments

Wavelet Transform Modulus Maxima

 $\{(\boldsymbol{b},\boldsymbol{a})\in\mathbb{R}^2,\times\mathbb{R}^*_+\quad\mathsf{M}_\psi[f](\boldsymbol{b},\boldsymbol{a})\text{ locally maximal in direction }\mathsf{A}_\psi[f](\boldsymbol{b},\boldsymbol{a})\}$

Figure 4.2: The maxima chains are shown for scales $a = 2^{1}\sigma_{w}$ (left), $a = 2^{2}\sigma_{w}$ (middle), and $a = 2^{3}\sigma_{w}$ (right) (where $\sigma_{w} = 7$ pixels) overlaid onto a 2D fBm image with H = 0.5. The local maxima along \mathcal{M}_{ψ} (WTMMM) are shown through small filled black dots.

Source: Basel G. White

Figure 4.2: The maxima chains are shown for scales $a = 2^{1}\sigma_{w}$ (left), $a = 2^{2}\sigma_{w}$ (middle), and $a = 2^{3}\sigma_{w}$ (right) (where $\sigma_{w} = 7$ pixels) overlaid onto a 2D fBm image with H = 0.5. The local maxima along \mathcal{M}_{ψ} (WTMMM) are shown through small filled black dots.

Source: Basel G. White

Wavelet Transform space-scale skeleton: $\mathcal{L}(a)$

lines formed by WTMM maxima across scales

Figure 4.2: The maxima chains are shown for scales $a = 2^{1}\sigma_{w}$ (left), $a = 2^{2}\sigma_{w}$ (middle), and $a = 2^{3}\sigma_{w}$ (right) (where $\sigma_{w} = 7$ pixels) overlaid onto a 2D fBm image with H = 0.5. The local maxima along \mathcal{M}_{ψ} (WTMMM) are shown through small filled black dots.

Source: Basel G. White

Wavelet Transform space-scale skeleton: $\mathcal{L}(a)$

lines formed by WTMM maxima across scales

If a maxima line $\mathcal{L}_{\mathbf{x}_0}(a)$ is pointing toward a singularity \mathbf{x}_0 as $a \to 0^+$, then

$$\mathsf{M}_{oldsymbol{\psi}}[f](\mathcal{L}_{oldsymbol{x}_0}(a))\sim a^{h(oldsymbol{x}_0)}, \quad a
ightarrow 0^+$$

provided that the wavelet has $n_{\psi} > h(\mathbf{x}_0)$ vanishing moments.

Partition function: for a set $\mathfrak{L}(a)$ of maxima lines

$$\mathcal{Z}(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \left(\sup_{(b, a') \in \ell, a' \leq a} \mathsf{M}_{\psi}[f](b, a')
ight)^q$$

q: statistical order moment

Partition function: for a set $\mathfrak{L}(a)$ of maxima lines

$$\mathcal{Z}(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \left(\sup_{(b, a') \in \ell, a' \leq a} \mathsf{M}_{\psi}[f](b, a')
ight)^q$$

q: statistical order moment

Roughness, quantified by Hölder exponent, characterized by $\tau(q)$ spectrum

$$\mathcal{Z}({m q},{m a})\sim {m a}^{ au({m q})}, \quad {m a}
ightarrow 0^+$$

For 2D fractional Brownian field: $\tau(q) = qH - 2$ is **linear**.

Partition function: for a set $\mathfrak{L}(a)$ of maxima lines

$$\mathcal{Z}(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \left(\sup_{(b, a') \in \ell, a' \leq a} \mathsf{M}_{\psi}[f](b, a')
ight)^{q}$$

q: statistical order moment

Roughness, quantified by Hölder exponent, characterized by $\tau(q)$ spectrum

$$\mathcal{Z}({m q},{m a})\sim {m a}^{ au({m q})}, \quad {m a} o 0^+$$

For 2D fractional Brownian field: $\tau(q) = qH - 2$ is **linear**.

Singularity spectrum: $\mathcal{D}(h)$ Haussdorff dimension of $\{x \in \mathbb{R}^2, h(x) = h\}$

$$\mathcal{D}(h) = \min_{q} (qh - \tau(q))$$
 (Legendre transform of τ)

Numerically: unstable estimation of $\tau(q)$ and $\mathcal{D}(q)$

 \Longrightarrow Mean quantities in a canonical ensemble with Boltzmann weights

$$W_{\psi}[f](q, \ell, a) = \frac{\left|\sup_{(\boldsymbol{b}, a') \in \ell, a' \leq a} \mathsf{M}_{\psi}[f](\boldsymbol{b}, a')\right|^{q}}{\mathcal{Z}(q, a)}$$

Numerically: unstable estimation of $\tau(q)$ and $\mathcal{D}(q)$

 \Longrightarrow Mean quantities in a canonical ensemble with Boltzmann weights

$$\mathrm{W}_{\psi}[f](q,\ell,a) = rac{\left| \displaystyle \sup_{(m{b},a') \in \ell, a' \leq a} m{\mathsf{M}}_{\psi}[f](m{b},a')
ight|^q}{\mathcal{Z}(q,a)}$$

Roughness: robust local regularity estimation

$$h(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \ln \left(\left| \sup_{(\boldsymbol{b}, a') \in \ell, a' \leq a} \mathsf{M}_{\psi}[f](\boldsymbol{b}, a') \right| \right) W_{\psi}[f](q, \ell, a),$$
$$h(q) = \frac{\mathrm{d}\tau}{\mathrm{d}q} = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$$

Numerically: unstable estimation of $\tau(q)$ and $\mathcal{D}(q)$

 \Longrightarrow Mean quantities in a canonical ensemble with Boltzmann weights

$$\mathrm{W}_{\psi}[f](q,\ell,a) = rac{\left| \displaystyle \sup_{(m{b},a') \in \ell, a' \leq a} m{\mathsf{M}}_{\psi}[f](m{b},a')
ight|^{q}}{\mathcal{Z}(q,a)}$$

Roughness: robust local regularity estimation

$$h(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \ln \left(\left| \sup_{(\boldsymbol{b}, a') \in \ell, a' \leq a} \mathsf{M}_{\psi}[f](\boldsymbol{b}, a') \right| \right) W_{\psi}[f](q, \ell, a),$$
$$h(q) = \frac{\mathrm{d}\tau}{\mathrm{d}q} = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$$

Singularity spectrum:

$$egin{aligned} \mathcal{D}(q,a) &= \sum_{\ell \in \mathfrak{L}(a)} \ln \left(\mathrm{W}_{\psi}[f](q,\ell,a)
ight) \mathrm{W}_{\psi}[f](q,\ell,a), \ &\mathcal{D}(q) &= \lim_{a o 0^+} rac{\mathcal{D}(q,a)}{\ln a} \end{aligned}$$

18/26

Roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; **Singularity spectrum:** $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

- The larger the patch, the larger the range of q values, the better the estimate;
- but risk of confusing average of several monofractal signatures and multifractal.
- \Longrightarrow estimation on overlapping patches of size 360 \times 360 pixels with 32-pixel shift

Roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; **Singularity spectrum:** $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

- The larger the patch, the larger the range of q values, the better the estimate;
- but risk of confusing average of several monofractal signatures and multifractal.
- \Longrightarrow estimation on overlapping patches of size 360 \times 360 pixels with 32-pixel shift

Image sliding window analysis

- 1. Check that the central 256×256 pixels are contained in the mask;
- 2. if so, compute the Wavelet Transform for 50 scales, from a = 7 to 120 pixels;
- 3. extract the space-scale skeleton from the central 256 \times 256 pixels;
- 4. compute h(q, a) and $\mathcal{D}(q, a)$ from the partition function $\mathcal{Z}(q, a)$;
- 5. linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$:

how to choose the range of scales $[a_{\min}, a_{\max}]$?

For each patch of 360 \times 360 pixels, i.e., $15.5 \times 15.5 \text{ mm}$

roughness:
$$h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$$
; singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

For each patch of 360 \times 360 pixels, i.e., $15.5 \times 15.5 \mbox{ mm}$

roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{\max} - \log_2 a_{\min} \ge 1$ explore

$$\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, \ , \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \$$
with $\ \sigma_w = 7$ pixels

and select $[a_{\min}, a_{\max}]$ if and only if

For each patch of 360 \times 360 pixels, i.e., $15.5 \times 15.5 \mbox{ mm}$

roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{\max} - \log_2 a_{\min} \ge 1$ explore

$$\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, \ , \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \ \text{with} \ \ \sigma_w = 7 \ \text{pixels}$$

and select $[a_{\min}, a_{\max}]$ if and only if

• linear regression on h(q = 0, a) from a_{\min} to a_{\max} yields

$$-0.2 < \widehat{h}(q=0) = \widehat{H} < 1$$

- $H \leq -0.2$: high roughness \implies abnormally high noise
- $H \ge 1$: low roughness, differentiable field \implies artificially smooth

For each patch of 360 \times 360 pixels, i.e., $15.5 \times 15.5 \mbox{ mm}$

roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{\max} - \log_2 a_{\min} \ge 1$ explore

$$\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, \ , \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \$$
with $\ \sigma_w = 7$ pixels

and select $[a_{\min}, a_{\max}]$ if and only if

• linear regression on $\mathcal{D}(q=0,a)$ from a_{\min} to a_{\max} yields

 $1.7 < \widehat{\mathcal{D}}(h(q=0)) < 2.5$

for a monofractal field of Hurst exponent H, expected to be $\mathcal{D}(H) = 2$

but finite size effect affect the maxima lines as $a \rightarrow 0^+$

For each patch of 360 \times 360 pixels, i.e., $15.5 \times 15.5 \mbox{ mm}$

roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{\max} - \log_2 a_{\min} \ge 1$ explore

$$\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, \ , \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \ \text{with} \ \ \sigma_w = 7 \ \text{pixels}$$

and select $[a_{\min}, a_{\max}]$ if and only if

• coefficient of determination of linear regression on h(q = 0, a) from a_{\min} to a_{\max}

 $R^2 > 0.96$

sufficiently linear to extract the Hurst exponent H

For each patch of 360 \times 360 pixels, i.e., $15.5 \times 15.5 \text{ mm}$

roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{max} - \log_2 a_{min} \ge 1$ explore

$$\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, \ , \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \$$
with $\ \sigma_w = 7$ pixels

and select $[a_{\min}, a_{\max}]$ if and only if

• weighted standard deviation across q of the $\widehat{h}(q)$ estimated from a_{\min} to a_{\max}

 $sd_w < 0.06$

 \implies excludes multifractal scaling

q	-2	-1.5	$^{-1}$	-0.5	-0.3	-0.2	-0.1	0	0.1	0.2	0.3	0.5	1	1.5	2	2.5	3
w	0.1	0.5	1	3	5	7	9	10	9	8	7	5	3	2	1	0.5	0.2

20/26

For each patch of 360 \times 360 pixels, i.e., $15.5 \times 15.5 \text{ mm}$

roughness: $h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}$; singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{max} - \log_2 a_{min} \ge 1$ explore

$$\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, \ , \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \$$
with $\ \sigma_w = 7$ pixels

and select $[a_{\min}, a_{\max}]$ if and only if

• weighted average of goodness of fit of $\widehat{h}(q)$ estimated from a_{\min} to a_{\max}

 $\langle R_w^2 \rangle > 0.96$

 \implies ensures self-similarity

w 0.1 0.5 1 3 5 7 9 10 9 8 7 5 3 2 1 0.5 0.2	q	-2	-1.5	-1	-0.5	-0.3	-0.2	-0.1	0	0.1	0.2	0.3	0.5	1	1.5	2	2.5	3
	w	0.1	0.5	1	3	5	7	9	10	9	8	7	5	3	2	1	0.5	0.2

20/26

For **each** patch of 360×360 pixels:

 \implies linear regressions h(q, a) vs. $\log_2(a)$ and $\mathcal{D}(q, a)$ vs. $\log_2(a)$ across $[a_{\min}, a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{max} - \log_2 a_{min} \ge 1$ explore 418 couples

$$\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, \ , \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \$$
with $\ \sigma_w = 7$ pixels

and select $[a_{\min}, a_{\max}]$ if and only if

- -0.2 < h(q = 0) < 1: expected roughness
- $1.7 < \widehat{D} < 2.5$: expect 2
- $R^2 > 0.96$: accurate estimation of H
- sd_w < 0.06: monofractal scaling
- $\langle R_w^2 \rangle > 0.96$: h(q, a) sufficiently linear
- \implies If no scale range $[a_{\min}, a_{\max}]$ for which all conditions are satisfied: **no scaling**.

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- *H* < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine

fixed scales

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

fixed scales

adaptive scales

$$[a_{\min}, a_{\max}] = [2^3, 2^5] \quad [a_{\min}, a_{\max}] \subset [2^2, 2^8]$$

22/26

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- *H* < 1/2 monofractal anti-correlated: fatty tissues (healthy)
- H > 1/2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

fixed scales

adaptive scales

22/26

$$[a_{\min}, a_{\max}] = [2^3, 2^5] \quad [a_{\min}, a_{\max}] \subset [2^2, 2^8]$$

Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography 43 normal vs. 49 cancer, 35 benign

 \implies digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0, 4095]) Tumorous breasts have more disrupted tissues compared to normal breasts: <u>normal vs. cancer:</u> $P \sim 0.0023$, <u>normal vs. benign:</u> $P \sim 0.0049$.

Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography 43 normal vs. 49 cancer, 35 benign

 \implies digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0, 4095])

Tumorous breasts have more disrupted tissues compared to normal breasts:

<u>normal vs. cancer</u>: $P \sim 0.0023$, normal vs. benign: $P \sim 0.0049$.

Gerasimova-Chechkina et al., 2021, Front. Physiol.

Russian: Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0, 255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: $P \sim 0.003$

Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography 43 normal vs. 49 cancer, 35 benign

 \implies digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0,4095])

Tumorous breasts have more disrupted tissues compared to normal breasts:

<u>normal vs. cancer:</u> $P \sim 0.0023$, normal vs. benign: $P \sim 0.0049$.

Gerasimova-Chechkina et al., 2021, Front. Physiol. \implies shared with us, with analyses Russian: Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0, 255]) Cancerous breasts have more disrupted tissues compared to breasts with benign lesions: cancer vs. benign: $P \sim 0.003$ Gerasimova-Chechkina et al., 2021, Front. Physiol. \implies shared with us, with analyses **Russian:** Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0,255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: $P \sim 0.003$

Gerasimova-Chechkina et al., 2021, Front. Physiol. \implies shared with us, with analyses **Russian:** Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0,255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: $P \sim 0.003$

Patch-wise analysis with wavelet leaders

- Daubechies wavelets with $n_{\Psi} = 2$ vanishing moments
- $\bullet~\sim$ scales selected by the CompuMaine autofit method, up to rounding errors
Gerasimova-Chechkina et al., 2021, Front. Physiol. \implies shared with us, with analyses **Russian:** Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0,255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: $P \sim 0.003$

Patch-wise analysis with wavelet leaders

- Daubechies wavelets with $n_{\Psi} = 2$ vanishing moments
- $\bullet~\sim$ scales selected by the CompuMaine autofit method, up to rounding errors

cancer vs. benign: $P \sim 0.074$

Conclusions

Patch-wise fractal analysis of mammograms with WT modulus maxima method

- disrupted tissues, characterized by $H \sim 1/2$, indicate loss of homeostasis
- quantity of disrupted tissues discriminates between

(Marin et al., 2017) <u>tumorous vs. normal</u> $P \sim 0.0006$ (Gerasimova-Chechkina et al., 2021) cancer vs. benign $P \sim 0.0030$

 \implies exploration of 418 couples of (a_{\min}, a_{\max}) for each patch and strict conditions

Conclusions

Patch-wise fractal analysis of mammograms with WT modulus maxima method

- disrupted tissues, characterized by $H \sim 1/2$, indicate loss of homeostasis
- quantity of disrupted tissues discriminates between

(Marin et al., 2017) <u>tumorous vs. normal</u> $P \sim 0.0006$ (Gerasimova-Chechkina et al., 2021) cancer vs. benign $P \sim 0.0030$

 \implies exploration of 418 couples of (a_{\min}, a_{\max}) for each patch and strict conditions

Reproduction with wavelet leaders formalism on Russian dataset

- range of scales for each patch extracted from CompuMaine analyses,
- remains less informative: $P \sim 0.0740$

Perspectives

From patch-wise to pixel-wise fractal analysis

- using wavelet leaders framework,
- combined with variational methods,
- with PyTorch implementation to benefit from fast GPU computing,
- reduced number of hyperparameters & fine-tuned automatically

 \Longrightarrow increase the sensibility in the measurement of the quantity of disrupted tissues

Perspectives

From patch-wise to pixel-wise fractal analysis

- using wavelet leaders framework,
- combined with variational methods,
- with PyTorch implementation to benefit from fast GPU computing,
- reduced number of hyperparameters & fine-tuned automatically

 \Longrightarrow increase the sensibility in the measurement of the quantity of disrupted tissues

Anisotropic Gaussian fields for mammogram modeling

- observed in Richard & Biermé, 2010, J. Math. Imaging Vis.,
- many tools that have never been applied to mammograms yet:

Biermé, Carré, Lacaux, & Launay, 2024, hal-04659825

• other mammograms datasets: VinDr-Mammo.