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® carly detection is critical for the patient’s survival

X-ray imaging: most used imaging technique yielding a so-called mammogram

Assessment by a radiologist:

® fatty tissues: translucent to X-rays (black)
® epithelial and stromal tissues: absorb X-rays (white)

® tumorous tissues: also absorb X-rays (white)

= errors of both | and Il types

Computer-Aided Detection: used in 92% of screening mammograms in the U.S.
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Tissue density fluctuations in normal vs. cancerous breasts

Breast Imaging Reporting And Data System (BI-RADS): four categories

® I: Almost entirely fatty tissue (10% of women in U.S.)
® II: Scattered areas of density (40% of women in U.S.)
e III: Heterogeneous density (40% of women in U.S.)
e IV: Extremely dense (10% of women in U.S.)

(C. Balleyguier et al., 2007, Eur. J. Radiol.)
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Breast Imaging Reporting And Data System (BI-RADS): four categories

® I: Almost entirely fatty tissue (10% of women in U.S.)
® II: Scattered areas of density (40% of women in U.S.)
e III: Heterogeneous density (40% of women in U.S.)
e IV: Extremely dense (10% of women in U.S.)

(C. Balleyguier et al., 2007, Eur. J. Radiol.)

I III

Source: B. White, 2023, Electronic Theses and Dissertations, University of Maine.

Overall mammographic density: (S. S. Nazari et al., 2018, Breast cancer)

= important risk factor for breast cancer radiological assessment
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BI-RADS limitations:

® subjective, with both inter- and intra-observer variability

® classification in four classes not reflecting continuous changes in tissues
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BI-RADS limitations:

® subjective, with both inter- and intra-observer variability

® classification in four classes not reflecting continuous changes in tissues

law
Self-similar isotropic random fields: f(xo + Au) — f(xo) vl M (F(x0 + u) — f(x0))

Mammogram fractal random field

Self-similar textures: fractal analysis, e.g., fractal dimension of a rough surface, for
® classification of mammogram density (Caldwell et al., 1990, Phys. Med. Biol.)
® |esion detection in mammograms (Burgess et al., 2001, Med. Biol.)

® assessment of breast cancer risk (Heine et al., 2002, Acad. Radiol.) y
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Physiological motivations and goals

Breast microenvironment plays a crucial role in tumorigenesis:

® structure integrity preserved = lesions are suppressed

® structure lost by tissue disruption = tumor is promoted

Tumor vs. healthy not only in tumor but more fundamentally in surrounding tissue
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Physiological motivations and goals

Breast microenvironment plays a crucial role in tumorigenesis:
® structure integrity preserved = lesions are suppressed
® structure lost by tissue disruption = tumor is promoted

Tumor vs. healthy not only in tumor but more fundamentally in surrounding tissue

Pioneer work: Marin et al., 2017, Med. Phys. quantitatively and objectively assessed
® tissue disruption
® |oss of homeostasis in breast tissue microenvironment
® bilateral asymmetry
via wavelet-based mammogram local analysis.
Main idea: quantify density fluctuations through the Hélder exponent h(xg) probed via
multifractal formalism based on 2D Wavelet Transform Modulus Maxima

—> risk assessment and tumorous breasts detection without seeing a tumor
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A very short reminder about fractional Brownian fields

fBf of Hurst exponent H € [0, 1] denoted {By(x), x € R*}

® Gaussian field with zero-mean

¢ and for some o > 0, correlation function writing

E [Bn(x)Bu(y)] = % (Il I = lx = 127
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fBf of Hurst exponent H € [0, 1] denoted {Bx(x), x € R?}

® Gaussian field with zero-mean

¢ and for some o > 0, correlation function writing

E [Bn(x)Bu(y)] = % (Il I = lx = 127

Stationary increments
Vu €R®,  E[(Bu(x + u) = Bu(x))(Bu(y + u) = Bu(y))]
= lx+u =yl + [Ix = u =yl = 2]x - y|*"
For [lull <[|lx — y|

o E[(Br(x +u) = Bu(x))(Buly + u) = Bu(y))]
=[x =y P2H2H — 1)][ul* + o (Jlul*)
® H < 1/2: anti-correlated

® H =1/2: uncorrelated = disruption

® H > 1/2: long-range correlated
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A very short reminder about fractional Brownian fields

Self-similarity

aw
~

|
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A very short reminder about fractional Brownian fields

Self-similarity

aw

(law) .
Vxq € RQ, A >0, BH(XO + /\X) — BH(X()) " )\H(BH(XO + X) — BH(X())) n V(Xo)

The larger the Hurst exponent H, the smoother the texture.

I: fatty tissues IV: dense tissues

H ~0.30 H ~ 0.65

(Kestener et al., 2001, Image Anal. Stereol.)
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Local fractal analysis of mammographic breast tissue

CompuMAINE local mammogram analysis (Marin et al., 2017, Phys. Med. Biol.)
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Assessment of the role of disruption in tumor promotion

Dataset: University of South Florida, Digital Database for Screening Mammography
® Mediolateral oblique views only;
® 43 normal, 49 cancer, 35 benign;

® for benign and cancer microcalcification only, masses excluded;
Image sliding-window analysis:
® squared 360 x 360-pixel window

® with 32-pixel horizontal and vertical shifts

= analysis of all 360 x 360-pixel overlapping patches

Example: mammogram of size 4459 x 2155 pixels
4457 patches <= 4457 measures of the roughness H
Cancer risk metric: number of yellow patches

. disrupted tissues

— more specific than BI-RADS and quantitative
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Assessment of the role of disruption in tumor promotion

Q.: Is the quantity of disrupted tissues, , indicative of a tumorous breast?

10/26



Assessment of the role of disruption in tumor promotion

Q.: Is the quantity of disrupted tissues, , indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities ny and n, respectively

HO: P(X > Y) =P(Y > X)

10/26



Assessment of the role of disruption in tumor promotion

Q.: Is the quantity of disrupted tissues, , indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities ny and n, respectively
HO: P(X > Y) =P(Y > X)

(i) order elements of X U Y to form an increasing sequence;

(ii) assign to each element in X U Y its rank in the sequence;

(iii) sum the ranks of elements in X: variable S;.

10/26



Assessment of the role of disruption in tumor promotion

Q.: Is the quantity of disrupted tissues, , indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities ny and n, respectively
HO: P(X > Y) =P(Y > X)

(i) order elements of X U Y to form an increasing sequence;
(ii) assign to each element in X U Y its rank in the sequence;

(iii) sum the ranks of elements in X: variable S;.
If at least 20 samples, law of S, well approximated by a Gaussian with
p=nen,/2; o’ =neny(ne+n,+1)/2.

If |Sx — p|/o > 1.96, HO is rejected with confidence level oz = 0.05.

10/26



Assessment of the role of disruption in tumor promotion

Q.: Is the quantity of disrupted tissues, , indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities ny and n, respectively
HO: P(X > Y) =P(Y > X)

(i) order elements of X U Y to form an increasing sequence;
(ii) assign to each element in X U Y its rank in the sequence;

(iii) sum the ranks of elements in X: variable S;.
If at least 20 samples, law of S, well approximated by a Gaussian with
p=nen,/2; o’ =neny(ne+n,+1)/2.

If |Sx — p|/o > 1.96, HO is rejected with confidence level oz = 0.05.

Tumorous breasts have : normal vs. tumor: P ~ 0.0006

In details, normal vs. cancer: P ~ 0.0023, normal vs. benign: P ~ 0.0049.

10/26



Fractal features piecewise constant estimation from leaders

Séminaire Cristolien d’Analyse Multifractale: February 4, 2021 (online)
bpascal-fr.github.io/assets/pdfs/SCAM21.pdf

Mask Texture HLR

};ROF

= estimation of local Hélder exponent h(x) at the pixel level from wavelet leaders

(Pascal et al., 2020, Ann. Telecommun.; Pascal et al., 2021, Appl. Comput. Harmon. Anal.;
Pascal et al., 2021, J. Math. Imaging Vis.)
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Patch-wise fractal analysis of mammographic breast tissue

But first: assess that wavelet leaders formalism agrees with UMaine analyzes

Wavelet leaders: L., at scale a and pixel n supremum of wavelet coefficients

o o o o oo o o o o o o ofe

® at all finer scales a’ < a

® in a spatial neighborhood d

For a grid of pixels Q C R?, scaling exponent ((q) accessible through

ﬁ Z[Zg’ﬂ = anC(q), a—0"
neQ

homogeneous monofractal texture of Hurst exponent H = ((q) = gH

(Wendt et al., 2007, IEEE Signal Process. Mag.)

= linear regression to estimate H for all 360 x 360-pixel overlapping patches
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Patch-wise fractal analysis of mammographic breast tissue

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)
® H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
® H > 1/2 monofractal long-range correlated: dense tissues (healthy)

L monofractal uncorrelated: disrupted tissues (tumorous)
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A general framework for texture analysis: multifractal formalism

Multifractal formalism: local Hélder regularity h(xo)
|F(x) — Pa(x — X0)| < Clx — xo|"™  forx € V(xo)

with P, a polynomial of degree n < h(xo)

law
Local isotropic scale invariance: f(xo + Au) — f(xo) 2 M) (£(x0 + 1) — £(x0))
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A general framework for texture analysis: multifractal formalism

Multifractal formalism: local Hélder regularity h(xo)
[£(x) = Pa(x — x0)| < Clx — x0/"™  forx € V(xo)

with P, a polynomial of degree n < h(xo)

law
Local isotropic scale invariance: f(xo + Au) — f(xo) 2 M) (£(x0 + 1) — £(x0))

For h(xo) € (0,1) and cusp-like only singularities

M/Mw”

x)=h =0.9

Singularity spectrum: D(h) Haussdorff dimension of {x € R?, h(x) = h}

For a monofractal field, e.g., fractional Brownian field By: h(xo) = H and
2 h=H
D(h) = { —o00 h#H
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Multifractal analysis using Wavelet Transform Modulus Maxima

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021
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Multifractal analysis using Wavelet Transform Modulus Maxima

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

2D Wavelet Transform: {f(x), x € R?} 2D-field

Smoothing function ¢(x) = wavelets 1(x) = O\, (x1, x2), V2(x) = Ox, p(x1, X2)

a2 [y (a7 (x — b)) f(x)dx
a2 [ (afl(x — b)) f(x)dx

Example: Gaussian and Mexican hat smoothing functions

peauss(X) = exp(—[|x[*/2);  omex(x) = (2 = [|x]I*) exp(~ I x][*/2)

leading respectively to ny = 1 and ny = 3 vanishing moments

TolFl(b,2) = ( ) ) M )b 2) exp (A [F](b, 2)
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Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

2D Wavelet Transform: {f(x), x € R?} 2D-field

Smoothing function ¢(x) = wavelets 1(x) = O\, (x1, x2), V2(x) = Ox, p(x1, X2)

a2 [y (a7 (x — b)) f(x)dx
a2 [ (afl(x — b)) f(x)dx

Example: Gaussian and Mexican hat smoothing functions

peauss(X) = exp(—[|x[*/2);  omex(x) = (2 = [|x]I*) exp(~ I x][*/2)

leading respectively to ny = 1 and ny = 3 vanishing moments

TylFl(b. ) = ( ) ) M )b 2) exp (A [F](b, 2)

Wavelet Transform Modulus Maxima

{(b,a) € R?, xR% My][f](b, a) locally maximal in direction Ay[f](b, a)}
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Multifractal analysis using Wavelet Transform Modulus Maxima

Figure 4.2: The maxima chains are shown for scales a = 2!y, (left), a = 220, (middle), and
a = 2%0,, (right) (where o,, = 7 pixels) overlaid onto a 2D fBm image with H = 0.5. The local
maxima along My, (WTMMM) are shown through small filled black dots.

Source: Basel G. White
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Multifractal analysis using Wavelet Transform Modulus Maxima

Figure 4.2: The maxima chains are shown for scales a = 2!y, (left), a = 220, (middle), and
a = 2%0,, (right) (where o,, = 7 pixels) overlaid onto a 2D fBm image with H = 0.5. The local
maxima along My, (WTMMM) are shown through small filled black dots.

Source: Basel G. White
Wavelet Transform space-scale skeleton: £(a)
lines formed by WTMM maxima across scales
If a maxima line L4, (a) is pointing toward a singularity xo as a — 0T, then
My [F](Lxy(a)) ~ a"*) a2 —0F

provided that the wavelet has ny, > h(xo) vanishing moments.
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Multifractal analysis using Wavelet Transform Modulus Maxima

Partition function: for a set £(a) of maxima lines

Z(q.a)= Y (( sup Mw[f](baa')>

! /<
teg(a) b,a’)el,a’<a

q: statistical order moment
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Multifractal analysis using Wavelet Transform Modulus Maxima

Partition function: for a set £(a) of maxima lines
q
Z(q.a)= Y ( sup  My[f](b, a’))
teg(a) (b,a’")et,a’<a

q: statistical order moment

Roughness, quantified by Holder exponent, characterized by 7(g) spectrum
Z(g,a)~a'”, a—0"

For 2D fractional Brownian field: 7(q) = gH — 2 is linear.

Singularity spectrum: D(h) Haussdorff dimension of {x € R?, h(x) = h}

D(h) = min(gh —7(q)) (Legendre transform of 7)
q
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Multifractal analysis using Wavelet Transform Modulus Maxima

Numerically: unstable estimation of 7(q) and D(q)

—= Mean quantities in a canonical ensemble with Boltzmann weights
q

sup  My[f](b, ')
(b,a’)el,a’<a

Z(q,a)

Ww[f](q, 67 a) =
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Numerically: unstable estimation of 7(q) and D(q)

—= Mean quantities in a canonical ensemble with Boltzmann weights
q

sup  Mylf](b, )
(b,a’)el,a’<a

Z(q, a)

Ww[f]((% 67 a) =

Roughness: robust local regularity estimation

h(g,a) = Z In <

Leg(a)

sup  My[f](b, )
(b,a’)et,a’<a

_dr lim h(q, 2)
dg aoo0t Ina

) W IF1(, L, 2),

h(q)

Singularity spectrum:

D(g,a) = »_ In(Wy[f](q,¢,a)) Wulf](a, £, a),

LeL(a)

D(q) = lim D(g, 2)

amot  Ina
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Patch-wise fractal analysis of mammographic breast tissue

Roughness: h(q) = lim h(q’a); Singularity spectrum: D(q,a) = lim D(q,a)
asot Ina asot Ina

® The larger the patch, the larger the range of g values, the better the estimate;
® but risk of confusing average of several monofractal signatures and multifractal.

= estimation on overlapping patches of size 360 x 360 pixels with 32-pixel shift
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Patch-wise fractal analysis of mammographic breast tissue

Roughness: h(q) = lim h(q’a); Singularity spectrum: D(q,a) = lim D(q,a)
asot Ina asot Ina

® The larger the patch, the larger the range of g values, the better the estimate;
® but risk of confusing average of several monofractal signatures and multifractal.

= estimation on overlapping patches of size 360 x 360 pixels with 32-pixel shift

Image sliding window analysis
1. Check that the central 256 x 256 pixels are contained in the mask;
2. if so, compute the Wavelet Transform for 50 scales, from a = 7 to 120 pixels;
3. extract the space-scale skeleton from the central 256 x 256 pixels;
4. compute h(q, a) and D(q, a) from the partition function Z(q, a);
5. linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a):

how to choose the range of scales [amin, amax]?
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Patch-wise fractal analysis of mammographic breast tissue

For each patch of 360 x 360 pixels, i.e., 15.5 x 15.5 mm

h D
roughness: h(q) = alij& (IZ:)); singularity spectrum: D(q, a) = aILrBL I(niaa)

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]
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Patch-wise fractal analysis of mammographic breast tissue

For each patch of 360 x 360 pixels, i.e., 15.5 x 15.5 mm

h D
roughness: h(q) = JH{)L (IZ:)); singularity spectrum: D(q, a) = aILrBL I(niaa)

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]

The Autofit Methodology: imposing log, amax — log, amin > 1 explore

a a

min 0.0,0.1,...,2.1,, log, /= =2.0,2.1,...,4.1, with o, = 7 pixels
o

Ow w

log,

and select [amin, amax] if and only if
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For each patch of 360 x 360 pixels, i.e., 15.5 x 15.5 mm

h D
roughness: h(q) = JH{)L (IZ:)); singularity spectrum: D(q, a) = aILrBL I(niaa)

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]

The Autofit Methodology: imposing log, amax — log, amin > 1 explore

a a

min 0.0,0.1,...,2.1,, log, /= =2.0,2.1,...,4.1, with o, = 7 pixels
o

Ow w

log,

and select [amin, amax] if and only if

® linear regression on h(g = 0, a) from amin to amax Yyields
—02<h(g=0)=H<1

— H < —0.2: high roughness = abnormally high noise

— H > 1: low roughness, differentiable field = artificially smooth
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Patch-wise fractal analysis of mammographic breast tissue

For each patch of 360 x 360 pixels, i.e., 15.5 x 15.5 mm

h D
roughness: h(q) = JH{)L (IZ:)); singularity spectrum: D(q, a) = aILrBL I(niaa)

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]

The Autofit Methodology: imposing log, amax — log, amin > 1 explore

a a

min 0.0,0.1,...,2.1,, log, /= =2.0,2.1,...,4.1, with o, = 7 pixels
o

Ow w

log,

and select [amin, amax] if and only if

® linear regression on D(q = 0, a) from amin t0 amax yields
1.7 < D(h(g = 0)) < 2.5
for a monofractal field of Hurst exponent H, expected to be D(H) = 2

but finite size effect affect the maxima lines as a — 0™
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Patch-wise fractal analysis of mammographic breast tissue

For each patch of 360 x 360 pixels, i.e., 15.5 x 15.5 mm

h D
roughness: h(q) = JH{)L (IZ:)); singularity spectrum: D(q, a) = aILrBL I(niaa)

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]

The Autofit Methodology: imposing log, amax — log, amin > 1 explore

dmin _ 0.0,0.1,...,2.1, , log,
(X

w

dmax _20,2.1,...,4.1, with o, =7 pixels
ag

w

log,

and select [amin, amax] if and only if

® coefficient of determination of linear regression on h(q = 0, a) from amin t0 amax
R*> > 0.96

sufficiently linear to extract the Hurst exponent H
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Patch-wise fractal analysis of mammographic breast tissue

For each patch of 360 x 360 pixels, i.e., 15.5 x 15.5 mm

h D
roughness: h(q) = JH{)L (IZ:)); singularity spectrum: D(q, a) = aILrB]+ I(niaa)

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]

The Autofit Methodology: imposing log, amax — log, amin > 1 explore

dmin _ 0.0,0.1,...,2.1, , log,
(X

w

dmax _20,2.1,...,4.1, with o, =7 pixels
ag

w

log,
and select [amin, amax] if and only if

® weighted standard deviation across g of the ﬁ(q) estimated from amin tO amax

sdy < 0.06

—> excludes multifractal scaling

q -2 -15 -1 -05 -03 -02 -01 O 01 02 03 05 1 15 2 25 3
w 01 05 1 3 5 7 9 10 9 8 7 5 3 2 1 05 02
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Patch-wise fractal analysis of mammographic breast tissue

For each patch of 360 x 360 pixels, i.e., 15.5 x 15.5 mm

h D
roughness: h(q) = JH{)L (IZ:)); singularity spectrum: D(q, a) = aILrBL I(niaa)

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]

The Autofit Methodology: imposing log, amax — log, amin > 1 explore

dmin _ 0.0,0.1,...,2.1, , log,
(X

w

dmax _20,2.1,...,4.1, with o, =7 pixels
ag

w

log,
and select [amin, amax] if and only if

® weighted average of goodness of fit of E(q) estimated from amin tO amax

(R2) > 0.96

—> ensures self-similarity

q -2 -15 -1 -05 -03 -02 -01 O 01 02 03 05 1 15 2 25 3
w 01 05 1 3 5 7 9 10 9 8 7 5 3 2 1 05 02
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Patch-wise fractal analysis of mammographic breast tissue

For each patch of 360 x 360 pixels:

= linear regressions h(q, a) vs. log,(a) and D(q, a) vs. log,(a) across [amin, amax]

The Autofit Methodology: imposing 10g, amax — l0g, amin > 1 explore 418 couples

log, 2™ = 0.0,0.1,...,2.1,, log, 2™ =2.0,2.1,...,4.1, with o, =7 pixels
g (X

w w

and select [amin, amax] if and only if

® —0.2 < h(g=0) < 1: expected roughness
® 1.7<D<25: expect 2

® R? > 0.96: accurate estimation of H

® sd, < 0.06: monofractal scaling

® (R2) > 0.96: h(q, a) sufficiently linear

= If no scale range [amin, amax] for which all conditions are satisfied: no scaling.
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Patch-wise fractal analysis of mammographic breast tissue

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)
® H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
® > 1/2 monofractal long-range correlated: dense tissues (healthy)

L monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine fixed scales

[amin, amax] = [23» 25]
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Patch-wise fractal analysis of mammographic breast tissue

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)
® H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
® H > 1/2 monofractal long-range correlated: dense tissues (healthy)

L monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine fixed scales adaptive scales

[amin, amax] = [237 25] [amin, @max] C [227 28]
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Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography
43 normal vs. 49 cancer, 35 benign

— digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0, 4095])

Tumorous breasts have more disrupted tissues compared to normal breasts:

normal vs. cancer: P ~ 0.0023, normal vs. benign: P ~ 0.0049.
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Mammogram datasets

Gerasimova-Chechkina et al., 2021, Front. Physiol. => shared with us, with analyses

Russian: Perm Regional Oncological Dispensary
81 cancer vs. 23 benign

— digitally acquired mammograms: uncompressed 8-bit BMP images ([0, 255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: P ~ 0.003

Patch-wise analysis with wavelet leaders
® Daubechies wavelets with ny = 2 vanishing moments

® ~ scales selected by the CompuMaine autofit method, up to rounding errors

cancer vs. benign: P ~ 0.074
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Conclusions

Patch-wise fractal analysis of mammograms with WT modulus maxima method
® disrupted tissues, characterized by , indicate loss of homeostasis

® quantity of disrupted tissues discriminates between
(Marin et al., 2017) tumorous vs. normal P ~ 0.0006
(Gerasimova-Chechkina et al., 2021) cancer vs. benign P ~ 0.0030

= exploration of 418 couples of (amin, amax) for each patch and strict conditions
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Conclusions

Patch-wise fractal analysis of mammograms with WT modulus maxima method
® disrupted tissues, characterized by , indicate loss of homeostasis

® quantity of disrupted tissues discriminates between
(Marin et al., 2017) tumorous vs. normal P ~ 0.0006
(Gerasimova-Chechkina et al., 2021) cancer vs. benign P ~ 0.0030

= exploration of 418 couples of (amin, amax) for each patch and strict conditions

Reproduction with wavelet leaders formalism on Russian dataset

® range of scales for each patch extracted from CompuMaine analyses,

® remains less informative: P ~ 0.0740
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Perspectives

From patch-wise to pixel-wise fractal analysis
® using wavelet leaders framework,
® combined with variational methods,
® with PyTorch implementation to benefit from fast GPU computing,

® reduced number of hyperparameters & fine-tuned automatically

—> increase the sensibility in the measurement of the quantity of disrupted tissues
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Perspectives

From patch-wise to pixel-wise fractal analysis
® using wavelet leaders framework,
® combined with variational methods,
® with PyTorch implementation to benefit from fast GPU computing,

® reduced number of hyperparameters & fine-tuned automatically

—> increase the sensibility in the measurement of the quantity of disrupted tissues

Anisotropic Gaussian fields for mammogram modeling
® observed in Richard & Biermé, 2010, J. Math. Imaging Vis.,
® many tools that have never been applied to mammograms yet:
Biermé, Carré, Lacaux, & Launay, 2024, hal-04659825

® other mammograms datasets: VinDr-Mammo.
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