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But first ... music!

• Born in Leeds, in 1946
• Education in music

– Oxford (BA, ’68)
– Nottingham (MA, ’69)

= death of his father (factory worker) ’69

Abandoned conventional composing
I collected sounds of machinery, foundries and power stations
I thesis on sonic art at York (PhD, ’73)
I interaction of human voice and electronic systems

http://www.trevorwishart.co.uk/

Vox 5, ’86-’87
Transformation and interpolation with natural sounds of humain voice

Institut de Recherche et Coordination Acoustique/Musique-Centre Pompidou
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Elementary transforms used in time-frequency analysis

Action in the time domain s ∈ L2(R)
• translation by x : [T (x)s] (t) = s(t − x)
• modulation by ω: [M(ω)s] (t) = s(t)e2iπωt

• dilation by τ : [D(τ)s] (t) = τ−1/2s(τ−1t)

Lemma [Unitarity] For any x ∈ R, ω ∈ R, τ ∈ R \ {0},

T (x), M(ω) and D(τ) are unitary operators of L2(R)

F : L2(R)→ L2(R) the Fourier transform

Action in the frequency domain
• FT (x)F∗ =M(−x)
• FM(ω)F∗ = T (ω)
• FD(τ)F∗ = D(τ−1)
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Short-Time Fourier and Continuous Wavelet Transforms

STFT

fa,b = T (a)M(b)f

f ∈ L2(R) window localized in
time and frequency about 0

Fixed length of support
Varying nb. of oscillations

The larger the frequency, the more
oscillations.

CWT

fa,b = T (a)D(b−1)f

f mother wavelet localized in time
about 0, in frequency about 1∫
ω|f̂ (ω)|2 dω <∞ (admissibility)

Varying length of support
Fixed nb. of oscillations

The larger the frequency, the
shorter the time support.
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Localizing Time-Frequency Transform (LTFT)

Heuristic
I Short-Time Fourier atoms at low and high frequencies (STFT)
I Continuous Wavelet atoms for middle frequencies (CWT)
I Third parameter: number of oscillations in the mother wavelet.

Definition [LTFT continuous frame] fa,b,c = π(a, b, c)f with

π(a, b, c) =


T (a)M

(
ξ
γ

cb0 + b
)
D
(
γ
b0

)
b < b0

T (a)M
(
( ξ
γ

c + 1)b
)
D
(
γ
b

)
b0 ≤ b ≤ b1

T (a)M
(
ξ
γ

cb1 + b
)
D
(
γ
b1

)
b > b1

– “father” atom: f ∈ L2(R) support. in [−1/2, 1/2] localized at 0 in T & F
– phase space: G = R2 × [0, 1] (time, frequency, nb. of oscillations)
– STFT-CWT transition frequencies: 0 < b0 < b1

– minimal nb. of oscillations: γ
– oscillation range: ξ
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Theory of frames

– S: Hilbert space of signals
e.g.: finite energy signals L2(R)

– G : locally compact Borel space with measure µ
e.g.: time-frequency plane R2 with Lebesgue measure λ

Definition [Continuous frame]

Frame f :
{

G → S
g 7→ fg

weakly-measurable mapping

Vf [s] :
{

G → C
g 7→ 〈s, fg 〉S

the coefficient function of signal s ∈ S.

Continuous ∀s ∈ S, Vf [s] ∈ L2(G) and ∃A,B, 0 < A ≤ B <∞, s.t.

A‖s‖2
S ≤ ‖Vf [s]‖2

L2(G) ≤ B‖s‖2
S .

Vf analysis operator, V ∗f synthesis operator
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Signal processing in phase space

General procedure
(i) compute Vf [s](g) for every point of phase space g ∈ G
(ii) apply a nonlinearity κ (Vf [s](g), g)
(iii) map each g ∈ G onto ρ(g)
(iv) synthesize the output signal

sout =
∫

G
κ (Vf [s](g), g) fρ(g) dµ(g)

Examples
– multipliers: κ(c, g) = cr(g), ρ(g) = g
– signal denoising: κ(c, g) = κ(c), ρ(g) = g
– time stretching vocoder: Vf Short-Time Fourier Transform

“slow down a signal without dilating its frequency content”
g = (t, ω), ρ(g) = (Dt, ω) for some D ∈ N, κ(c, g) = κ(c) and

∀a, θ ∈ R+, κ(eiθa) = eiDθa
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Contributions of the paper

Notations M: resolution of the signal space,
N: number of samples in phase space
d : dimension of phase space.

• O
(

M
N (log2 N)d−1

)
error rate of proposed quasi-Monte Carlo LTFT

compared to O
(√

M
N

)
for standard Monte Carlo

• implementation of a time dilation phase vocoder based on LTFT
• general theory for quasi-Monte Carlo sampling of phase spaces

STFT, CWT, LTFT, Shearlet or Curvelet transforms
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Quasi-Monte Carlo

Let f : Id = [0, 1]d → C, QMC is a cubature method to compute∫
Id

f (t) dt ' 1
N

N∑
n=1

f (xn)

from samples points Pn = {x1, . . . , xN}

Star discrepancy D∗(PN) = sup
B∈Rec∗

∣∣∣∣#(B ∩ PN)
N − λ(B)

∣∣∣∣
how well the volume is covered
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Quasi-Monte Carlo

Multi-index α = (α1, . . . , αd ), αj ∈ {0, 1} and g : Id → C∫
Id |α

g(a1, . . . , ad ) daα

I integration w.r.t. aj if αj = 1
I replace aj by 1 if αj = 0

Ex.
∫

I3|(1,0,1
g(a1, a2a3) da(1,0,1) =

∫
[0,1]2

g(a1, 1, a3) da1da3

Hardy-Krause variation V (f ) =
∑
α

∫
Id |α
|∂αf (a1, . . . , ad )|daα

Theorem [Koksma-Hlawka inequality]∣∣∣∣∣
∫

Id
f (x) dx − 1

N

N∑
n=1

f (xn)
∣∣∣∣∣ ≤ V (f )D∗N(PN)
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Linear volume discretizable frames

Let f a frame on the signal space S with phase space G

Discretization of the frame:
I discrete signals {VM ⊂ S, dim(VM) = M ∈ N}
I compact phase space GM ⊂ G rectangle of volume O(M)

Sampling discretization of phase space: PN = (g1, . . . , gN)
ideally low discrepancy, i.e. D∗N(PN) “small”

Phase space signal processing via Quasi-Monte Carlo discretization

sN
out = µ(GM)

N

N∑
n=1

κ (Vf [s](gn), gn) fρ(gn)

sout =
∫

G
κ (Vf [s](g), g) fρ(g) dµ(g)
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Sampling the phase space

Monte Carlo sampling
– well spread samples
– required nb. of samples ind. of d

no curse of dimensionality

– suitable for TF feature extraction

Quasi-Monte Carlo
– midway between grid and MC
– optimally spread
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How to design a sampling strategy?

Reminder: purpose is to describe signals with a family of atoms

{fgn , n = 1, . . . ,N}

Requirements:
(i) well-spread samples

analysis extracts properly the local frequencies
(ii) allow reconstruction up to some small error

small information loss
(iii) sampling set small enough

computational efficiency

Standard discrete time-frequency transforms:
(ii) and (iii) satisfied 3

(i) not satisfied 7
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Quasi-Monte Carlo Phase Vocoder

Computational complexity
N: number of time-frequency samples

[Total number of pixels of all LTFT atoms] C = O(γN + γ)

Error bound
M: resolution of the input discrete signal

Theorem [Approximation error of QMC LTFT]

O

(
M log2(N)

N

)

15



Approximation error of general QMC
M: resolution of the input discrete signal
d : dimension of phase space
N: number of time-frequency samples

QMC sample set PN = {(an,bn), n = 1, . . . ,N} of compact phase space

with asymptotically low discrepancy D∗N(PN) ≤ C (log N)d−1M
N

Theorem [Reconstruction error] For S : GM′ → C coefficients of a

generalized TF transform, let V M,N
f (S) = M ′

N

N∑
n=1

S(an,bn) T (a)fb︸ ︷︷ ︸
atoms

.

Then, for any discrete signal sM of resolution M∥∥∥V M∗
f V M

f (sM)− V M,N∗
f V M

f (sM)
∥∥∥
∞
≤ ‖sM‖∞C (log N)d−1M

N D

I uniform pointwise bound on the QMC synthesis error.
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Play your own music!

https://github.com/RonLevie/LTFT-Phase-Vocoder
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