

Epidemic monitoring:

Estimation of the reproduction number of Covid19

DATASIM

January 25th 2023

Barbara Pascal

Plots of Section III are reproduced with courtesy of N. Pustelnik and J.-C. Pesquet.

Motivation and context: pandemic surveillance

Data: counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University \implies number of cases not informative enough: need to capture the **dynamics**

Motivation and context: pandemic surveillance

Data: counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University

 \Longrightarrow number of cases not informative enough: need to capture the <code>dynamics</code>

Goal: design adapted counter measures and evaluate their effectiveness

 $\begin{array}{ll} \rightarrow \mbox{ efficient monitoring tools} & epidemiological model, \\ \rightarrow \mbox{ robust to low quality of the data} & managing erroneous counts, \\ \rightarrow \mbox{ (bonus) accompanied by reliable confidence level} & credibility intervals. \end{array}$

Outline

I. Epidemic modeling (Cori et al., 2013, Am. Journal of Epidemiology)

- II. Reproduction number estimation (Pascal et al., 2022, Trans. Sig. Process.)
 - A) maximum likelihood principle
 - B) variational approaches

- III. Nonsmooth convex optimization (Boyd et al., 2004, Cambridge University Press)
 - A) basic tools and concepts
 - B) algorithms

IV. Conclusion & Perspectives

I. Epidemic modeling: SIR model

Susceptible-Infected-Recovered (SIR), among compartmental models

$$- \underline{ODE:} \quad \frac{\mathrm{d}\mathsf{S}_t}{\mathrm{d}t} = -\beta\mathsf{S}_t\mathsf{I}_t, \quad \frac{\mathrm{d}\mathsf{I}_t}{\mathrm{d}t} = \beta\mathsf{S}_t\mathsf{I}_t - \gamma\mathsf{I}_t, \quad \frac{\mathrm{d}\mathsf{R}_t}{\mathrm{d}t} = \gamma\mathsf{I}_t$$

- Stochastic model: likelihood maximization to infer β, γ

I. Epidemic modeling: SIR model

Susceptible-Infected-Recovered (SIR), among compartmental models

$$- \underbrace{ODE:}_{\beta} \underbrace{\frac{dS_t}{dt}}_{\gamma} = -\beta S_t I_t, \ \frac{dI_t}{dt} = \beta S_t I_t - \gamma I_t, \ \frac{dRe_t}{dt} = \gamma I_t$$

$$- \underbrace{Stochastic model}_{\gamma}: \text{ likelihood maximization to infer } \beta, \gamma$$

Limitations:

- refinement needed to get socially realistic model
- quadratic increase of the number of parameters
- Bayesian framework: heavy computational burden
- need consolidated and accurate datasets

X not adapted to real-time monitoring of Covid19 pandemic

I. Epidemic modeling: Cori's model

Definition. The reproduction number associated to an epidemic is

"the averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

I. Epidemic modeling: Cori's model

Definition. The reproduction number associated to an epidemic is

"the averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Interpretation. At day t

- $R_t > 1$ the virus propagates at exponential speed,
- $R_t < 1$ the epidemic shrinks with an exponential decay,
- $R_t = 1$ the epidemic is stable.

 \Longrightarrow one single indicator accounting for the overall pandemic mechanism

Principle: Z_t new infections at day t

$$\mathbb{E}\left[\mathsf{Z}_{t}\right] = \mathsf{R}_{t} \Phi_{t}, \quad \Phi_{t} = \sum_{u=1}^{\tau_{\Phi}} \phi_{u} \mathsf{Z}_{t-u}$$

with Φ_t global "infectiousness" in the population

 $\{\phi_u\}_{u=1}^{\tau_{\Phi}}$ distribution of delay between onset of symptoms in primary and secondary cases

Gamma distribution truncated at 25 days, of mean 6.6 days and standard deviation 3.5 days

Data: daily counts
$$\mathbf{Z} = (Z_1, \ldots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

Maximum Likelihood Principle: If one observes a given Z_t , how to infer R_t ?

Maximum Likelihood Principle: If one observes a given Z_t , how to infer R_t ?

Maximum Likelihood Estimator. $\widehat{\mathsf{R}}_{t}^{\mathsf{MLE}} := \underset{\mathsf{R}_{t}}{\operatorname{argmax}} \mathbb{P}(\mathsf{Z}_{t} | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_{t})$ $\ln \left(\mathbb{P}(\mathsf{Z}_{t} | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_{t})\right) = \mathsf{Z}_{t} \ln(\mathsf{R}_{t} \Phi_{t}) - \mathsf{R}_{t} \Phi_{t} - \ln(\mathsf{Z}_{t}!)$ $\underset{\mathsf{Z}_{t} \gg 1}{\simeq} \mathsf{Z}_{t} \ln(\mathsf{R}_{t} \Phi_{t}) - \mathsf{R}_{t} \Phi_{t} - \mathsf{Z}_{t} \ln(\mathsf{Z}_{t}) + \mathsf{Z}_{t}$ $\underset{(\mathsf{def.})}{=} -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_{t} | \mathsf{R}_{t} \Phi_{t})$

Maximum Likelihood Estimator. $\widehat{\mathsf{R}}_{t}^{\mathsf{MLE}} := \underset{\mathsf{R}_{t}}{\operatorname{argmax}} \mathbb{P}(\mathsf{Z}_{t} | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_{t})$ $\ln \left(\mathbb{P}(\mathsf{Z}_{t} | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_{t})\right) = \mathsf{Z}_{t} \ln(\mathsf{R}_{t} \Phi_{t}) - \mathsf{R}_{t} \Phi_{t} - \ln(\mathsf{Z}_{t}!)$ $\underset{\mathsf{Z}_{t} \gg 1}{\simeq} \mathsf{Z}_{t} \ln(\mathsf{R}_{t} \Phi_{t}) - \mathsf{R}_{t} \Phi_{t} - \mathsf{Z}_{t} \ln(\mathsf{Z}_{t}) + \mathsf{Z}_{t}$ $\underset{(\mathrm{def.})}{=} -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_{t} | \mathsf{R}_{t} \Phi_{t})$

Definition. (Kullback-Leibler divergence)

$$d_{\mathsf{KL}}(\mathsf{Z}|\mathsf{p}) = \left\{ \begin{array}{ll} \mathsf{Z} \ln(\mathsf{Z}/\mathsf{p}) + \mathsf{p} - \mathsf{Z} & \text{if } \mathsf{Z} > 0 \,\&\, \mathsf{p} > 0 \\ \mathsf{p} & \text{if } \mathsf{Z} = 0 \,\&\, \mathsf{p} \ge 0 \\ \infty & \text{otherwise.} \end{array} \right.$$

Maximum Likelihood Estimator. $\widehat{\mathsf{R}}_{t}^{\mathsf{MLE}} := \underset{\mathsf{R}_{t}}{\operatorname{argmax}} \mathbb{P}(\mathsf{Z}_{t} | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_{t})$ $\ln \left(\mathbb{P}(\mathsf{Z}_{t} | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_{t})\right) = \mathsf{Z}_{t} \ln(\mathsf{R}_{t} \Phi_{t}) - \mathsf{R}_{t} \Phi_{t} - \ln(\mathsf{Z}_{t}!)$ $\underset{\mathsf{Z}_{t} \gg 1}{\simeq} \mathsf{Z}_{t} \ln(\mathsf{R}_{t} \Phi_{t}) - \mathsf{R}_{t} \Phi_{t} - \mathsf{Z}_{t} \ln(\mathsf{Z}_{t}) + \mathsf{Z}_{t}$ $\underset{(\mathrm{def.})}{=} -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_{t} | \mathsf{R}_{t} \Phi_{t})$

Definition. (Kullback-Leibler divergence)

 $d_{\mathsf{KL}}(Z|p) = \left\{ \begin{array}{ll} Z\ln(Z/p) + p - Z & \text{if } Z > 0\,\&\,p > 0 \\ p & \text{if } Z = 0\,\&\,p \ge 0 \\ \infty & \text{otherwise.} \end{array} \right.$

$$\widehat{\mathsf{R}}_{t}^{\mathsf{MLE}} = \underset{\mathsf{R}_{t}}{\operatorname{argmin}} \ \mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_{t} | \mathsf{R}_{t} \Phi_{t}) = \mathsf{Z}_{t} / \Phi_{t} = \mathsf{Z}_{t} / \sum_{u=1}^{\tau_{\Phi}} \phi_{u} \mathsf{Z}_{t-u} \quad \text{ratio of moving averages}$$

II. Reproduction number estimation

maximum likelihood principle

$$\widehat{\mathsf{R}}_{t}^{\mathsf{MLE}} = \underset{\mathsf{R}_{t}}{\operatorname{argmin}} \ \mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_{t} | \mathsf{R}_{t} \Phi_{t}) = \mathsf{Z}_{t} / \Phi_{t} = \mathsf{Z}_{t} / \sum_{u=1}^{\tau_{\Phi}} \phi_{u} \mathsf{Z}_{t-u} \quad \text{ratio of moving averages}$$

Estimation.

- huge variability along time/ no local trend
- not robust to pseudo-periodicity/ misreported counts

II. Reproduction number estimation

maximum likelihood principle

$$\widehat{\mathsf{R}}_{t}^{\mathsf{MLE}} = \underset{\mathsf{R}_{t}}{\operatorname{argmin}} \ \mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_{t} | \mathsf{R}_{t} \Phi_{t}) = \mathsf{Z}_{t} / \Phi_{t} = \mathsf{Z}_{t} / \sum_{u=1}^{\tau_{\Phi}} \phi_{u} \mathsf{Z}_{t-u} \quad \text{ratio of moving averages}$$

Estimation.

Explanation.

- huge variability along time/ no local trend
- not robust to pseudo-periodicity/ misreported counts

New infection counts ${\boldsymbol{\mathsf{Z}}}$ are corrupted by

- missing samples,
- non meaningful negative counts,
- retrospected cumulated counts,
- pseudo-seasonality effects.

State-of-the-art in epidemiology. Smoothing over a temporal window

 $\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$, with s = 7 days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \implies not able to detect rapid surge, nor fast decrease following sanitary restrictions

State-of-the-art in epidemiology. Smoothing over a temporal window

 $\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$, with s=7 days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \Longrightarrow not able to detect rapid surge, nor fast decrease following sanitary restrictions

Penalized likelihood. Regularization through nonlinear filtering

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}^{\mathcal{T}}}{\operatorname{argmin}} \ \sum_{t=1}^{\cdot} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t} \left| \mathsf{R}_{t} \Phi_{t} \right. \right) + \lambda_{\mathsf{R}} \mathcal{P}(\mathbf{R}) \quad \text{(penalized Kullback-Leibler)}$$

with $\mathcal{P}(\mathbf{R})$ favoring some temporal regularity

(Abry et al., 2020, PlosOne)

State-of-the-art in epidemiology. Smoothing over a temporal window

 $\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$, with s = 7 days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \Longrightarrow not able to detect rapid surge, nor fast decrease following sanitary restrictions

Penalized likelihood. Regularization through nonlinear filtering

$$\widehat{\mathsf{R}}^{\mathsf{PKL}} = \underset{\mathsf{R} \in \mathbb{R}^{\mathcal{T}}}{\operatorname{argmin}} \ \sum_{t=1} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_t \left| \mathsf{R}_t \Phi_t \right. \right) + \lambda_{\mathsf{R}} \mathcal{P}(\mathsf{R}) \quad \text{(penalized Kullback-Leibler)}$$

with $\mathcal{P}(\mathbf{R})$ favoring some temporal regularity

(Abry et al., 2020, PlosOne)

Nov 03

2022

captures global trend, more regular than MLE, detect ruptures

Penalized likelihood.

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}^{T}}{\operatorname{argmin}} \ \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t} \left| \mathsf{R}_{t} \Phi_{t} \right. \right) + \lambda_{\mathsf{R}} \mathcal{P}(\mathbf{R}) \quad \text{(penalized Kullback-Leibler)}$$

Balance between data-fidelity and temporal regularity.

Data. Daily reported counts $\mathbf{Z} = (Z_1, \dots, Z_T)$ **Model.** Poisson distribution $\mathbb{P}(Z_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathbf{R}_t) = \frac{(\mathbf{R}_t \Phi_t)^{Z_t} e^{-(\mathbf{R}_t \Phi_t)}}{Z_t!}$

Data. Daily reported counts $\mathbf{Z} = (Z_1, \dots, Z_T)$ **Model.** Poisson distribution $\mathbb{P}(Z_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathbf{R}_t) = \frac{(\mathbf{R}_t \Phi_t)^{Z_t} e^{-(\mathbf{R}_t \Phi_t)}}{Z_t!}$

Data. Daily reported counts $Z = (Z_1, ..., Z_T)$ **Model.** Poisson distribution $\mathbb{P}(Z_t | Z_{t-\tau_{\Phi}:t-1}, R_t) = \frac{(R_t \Phi_t)^{Z_t} e^{-(R_t \Phi_t)}}{Z_t!}$

Penalized Kullback-Leibler divergence

 $\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}^{T}}{\operatorname{argmin}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t} \, | \, \mathsf{R}_{t} \Phi_{t} \right) + \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} \Longrightarrow \text{estimates } \underline{\mathsf{piecewise linear}} \, \mathsf{R}_{t}$

properties of the objective function:

- sum of convex functions composed with linear operators \Longrightarrow globally convex;
- feasible domain: {if $Z_t > 0$, $R_t \Phi_t > 0$, else $R_t \Phi_t \ge 0$ };
- $p_t \mapsto d_{KL}(Z_t | p_t)$ is strictly-convex.

Data. Daily reported counts $Z = (Z_1, ..., Z_T)$ **Model.** Poisson distribution $\mathbb{P}(Z_t | Z_{t-\tau_{\Phi}:t-1}, R_t) = \frac{(R_t \Phi_t)^{Z_t} e^{-(R_t \Phi_t)}}{Z_t!}$

Penalized Kullback-Leibler divergence

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}^{T}}{\operatorname{argmin}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t} \, | \, \mathsf{R}_{t} \Phi_{t} \right) + \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} \Longrightarrow \text{ estimates } \underline{\mathsf{piecewise linear}} \, \mathsf{R}_{t}$$

properties of the objective function:

- sum of convex functions composed with linear operators \Longrightarrow globally convex;
- feasible domain: {if $Z_t > 0$, $R_t \Phi_t > 0$, else $R_t \Phi_t \ge 0$ };
- $p_t \mapsto d_{KL}(Z_t | p_t)$ is strictly-convex.

Theorem (Pascal et al., 2022, Trans. Sig. Process.)

- + The minimization problem has at least one solution $\widehat{\mathbf{R}}^{\mathsf{PKL}}$.
- +~ The estimated time-varying Poisson intensity $\widehat{p}_t^{\mathsf{PKL}} = \widehat{\mathsf{R}}_t^{\mathsf{PKL}} \Phi_t$ is unique.

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, the <u>domain</u> of f is dom $f = \{x \in \mathbb{R}^T | f(x) < \infty\}$

If dom $f \neq \emptyset$, f is said to be proper.

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, the <u>domain</u> of f is dom $f = \{x \in \mathbb{R}^T | f(x) < \infty\}$

If dom $f \neq \emptyset$, f is said to be proper.

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$. If

$$\lim_{\|\boldsymbol{x}\|_2\to\infty}f(\boldsymbol{x})=\infty$$

then f is said to be <u>coercive</u>.

basic tools and concepts

Theorem. If $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ is proper, continuous on dom f, coercive then Argmin $f = \{x \in \text{dom } f \mid f(x) = \text{inf } f\}$

is nonempty. If f is convex, then Argmin f is convex.

Theorem. If $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ is proper, C^1 on dom f, coercive, and convex

 $\widehat{\mathbf{x}} \in \operatorname{Argmin} f \quad \Leftrightarrow \quad \nabla f(\widehat{\mathbf{x}}) = 0$

Gradient descent algorithm.

 $f : \mathbb{R}^{T} \to \mathbb{R}, \text{ continuously differentiable}$
for k = 1, 2... do
 $\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma \nabla f(\mathbf{x}^{[k]}) \end{bmatrix}$

Gradient descent algorithm.

 $f: \mathbb{R}^{T} \to \mathbb{R}, \text{ continuously differentiable}$
for k = 1, 2... do
 $\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma \nabla f(\mathbf{x}^{[k]})$

Definition. Let $f : \mathbb{R}^T \to \mathbb{R}$, continuously differentiable, and $\beta > 0$. If $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^T$, $\|\nabla f(\boldsymbol{u}) - \nabla f(\boldsymbol{v})\|_2 \le \beta \|\boldsymbol{u} - \boldsymbol{v}\|_2$

f is said to be β -smooth, i.e., f has a β -Lipschitz gradient.

Gradient descent algorithm.

 $f: \mathbb{R}^{T} \to \mathbb{R}, \text{ continuously differentiable}$ for k = 1, 2... do $\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma \nabla f(\mathbf{x}^{[k]})$

Definition. Let $f : \mathbb{R}^T \to \mathbb{R}$, continuously differentiable, and $\beta > 0$. If $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^T$, $\|\nabla f(\boldsymbol{u}) - \nabla f(\boldsymbol{v})\|_2 \le \beta \|\boldsymbol{u} - \boldsymbol{v}\|_2$

f is said to be β -smooth, i.e., f has a β -Lipschitz gradient.

Theorem. If $f : \mathbb{R}^T \to \mathbb{R}$ is convex, coercive, C^1 , and β -smooth, with $\beta > 0$, then $\exists \widehat{\mathbf{x}} \in \mathbb{R}^T$, $\lim_{k \to \infty} \mathbf{x}^{[k]} = \widehat{\mathbf{x}}$ with $\nabla f(\widehat{\mathbf{x}}) = 0$.

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, proper, the <u>subdifferential</u> of f at x is $\partial f(x) = \{ u \in \mathbb{R}^T \mid \forall y \in \mathbb{R}^T, \quad f(y) \ge f(x) + \langle y - x, u \rangle \}$ $u \in \partial f(x)$ is a <u>subgradient</u> of f at x.

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, proper, the <u>subdifferential</u> of f at x is $\partial f(x) = \{ u \in \mathbb{R}^T \mid \forall y \in \mathbb{R}^T, \quad f(y) \ge f(x) + \langle y - x, u \rangle \}$ $u \in \partial f(x)$ is a <u>subgradient</u> of f at x.

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, proper, the <u>subdifferential</u> of f at x is $\partial f(x) = \{ u \in \mathbb{R}^T \mid \forall y \in \mathbb{R}^T, \quad f(y) \ge f(x) + \langle y - x, u \rangle \}$ $u \in \partial f(x)$ is a <u>subgradient</u> of f at x.

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, proper, the <u>subdifferential</u> of f at x is $\partial f(x) = \{ u \in \mathbb{R}^T \mid \forall y \in \mathbb{R}^T, \quad f(y) \ge f(x) + \langle y - x, u \rangle \}$ $u \in \partial f(x)$ is a <u>subgradient</u> of f at x.

Theorem. (Fermat's rule) Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ a proper function

 $\widehat{\mathbf{x}} \in \operatorname{Argmin} f \quad \Leftrightarrow \quad 0 \in \partial f(\widehat{\mathbf{x}}).$

Subgradient descent algorithm.

 $f: \mathbb{R}^{T} \to \mathbb{R}, \text{ convex, continuous}$ for k = 1, 2... do $\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma_{k} \mathbf{u}^{[k]}, & \mathbf{u}^{[k]} \in \partial f(\mathbf{x}^{[k]}) \\ \\ \underline{\text{explicit scheme: } \mathbf{x}^{[k+1]} \text{ derived from } \mathbf{x}^{[k]}} \end{bmatrix}$

III. Nonsmooth convex optimization basic tools and concepts

Subgradient descent algorithm.

 $f: \mathbb{R}^{T} \to \mathbb{R}, \text{ convex, continuous}$ for k = 1, 2... do $\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma_{k} \mathbf{u}^{[k]}, & \mathbf{u}^{[k]} \in \partial f(\mathbf{x}^{[k]}) \\ \\ \underline{\text{explicit scheme: } \mathbf{x}^{[k+1]} \text{ derived from } \mathbf{x}^{[k]}} \end{bmatrix}$

Properties. For $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ to converge:

- need a vanishing sequence $(\gamma_k)_{k\in\mathbb{N}}$: $\gamma_k \xrightarrow[k \to \infty]{} 0$;
- large number of iterations due to slow dynamics.

Explanation. $\partial f : \mathbb{R}^T \to 2^{\mathbb{R}^T}$ <u>set-valued</u>

Numerically instability because of ambiguity in the choice of $u^{[k]} \in \partial f(\mathbf{x}^{[k]})$.

III. Nonsmooth convex optimization basic tools and concepts

Subgradient descent algorithm.

 $f: \mathbb{R}^{T} \to \mathbb{R}, \text{ convex, continuous}$ for k = 1, 2... do $\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma_{k} \mathbf{u}^{[k]}, & \mathbf{u}^{[k]} \in \partial f(\mathbf{x}^{[k]}) \\ \\ \underline{\text{explicit scheme: } \mathbf{x}^{[k+1]} \text{ derived from } \mathbf{x}^{[k]}} \end{bmatrix}$

Properties. For $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ to converge:

- need a vanishing sequence $(\gamma_k)_{k\in\mathbb{N}}$: $\gamma_k \xrightarrow[k \to \infty]{} 0$;
- large number of iterations due to slow dynamics.

Explanation. $\partial f : \mathbb{R}^T \to 2^{\mathbb{R}^T}$ <u>set-valued</u>

Numerically instability because of ambiguity in the choice of $u^{[k]} \in \partial f(x^{[k]})$.

Solution. Turn to an implicit scheme

$$\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma_k \mathbf{u}^{[k]}, \quad \mathbf{u}^{[k]} \in \partial f(\mathbf{x}^{[k+1]}) \Rightarrow \text{ how to compute } \mathbf{x}^{[k+1]}?$$

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, proper, convex, continuous, $\gamma > 0$

$$\operatorname{prox}_{\gamma f}(\boldsymbol{x}) := \operatorname*{argmin}_{\boldsymbol{y} \in \mathbb{R}^T} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \gamma f(\boldsymbol{y})$$

is the proximity operator of γf at point \mathbf{x} .

basic tools and concepts

Definition. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, proper, convex, continuous, $\gamma > 0$

$$\mathsf{prox}_{\gamma f}(\boldsymbol{x}) := \operatorname*{argmin}_{\boldsymbol{y} \in \mathbb{R}^T} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \gamma f(\boldsymbol{y})$$

is the proximity operator of γf at point \mathbf{x} .

Theorem. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ a proper, convex, continuous function

$$\boldsymbol{p} = \operatorname{prox}_{\gamma f}(\boldsymbol{x}) \quad \Leftrightarrow \quad \boldsymbol{x} \in \boldsymbol{p} + \partial f(\boldsymbol{p})$$

Implicit scheme.

$$\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma_k \mathbf{u}^{[k]}, \quad \mathbf{u}^{[k]} \in \partial f(\mathbf{x}^{[k+1]}) \Rightarrow \text{ how to compute } \mathbf{x}^{[k+1]}?$$

Theorem. Let $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ a proper, convex, continuous function

$$\boldsymbol{p} = \operatorname{prox}_f(\boldsymbol{x}) \quad \Leftrightarrow \quad \boldsymbol{x} \in \boldsymbol{p} + \partial f(\boldsymbol{p})$$

Solution. Apply the theorem in the \Leftarrow sense with $\mathbf{x} = \mathbf{x}^{[k]}$ and $\mathbf{p} = \mathbf{x}^{[k+1]}$ $\mathbf{x}^{[k]} = \mathbf{x}^{[k+1]} + \gamma_k \mathbf{u}^{[k]}, \quad \mathbf{u}^{[k]} \in \partial f(\mathbf{x}^{[k+1]})$

Proximal point algorithm. $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$, proper, convex, continuous for k = 1, 2... do

$$oldsymbol{x}^{[k+1]} = \operatorname{prox}_{\gamma f}(oldsymbol{x}^{[k]})$$

Theorem. For any $\gamma > 0$, $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges toward some $\hat{\mathbf{x}} \in \operatorname{Argmin} f$.

Power q function with $q \ge 1$. Let $\eta > 0$, $q \in [1, +\infty[$ $f : \mathbb{R} \to \mathbb{R} \cup \{\infty\}, x \mapsto \eta |x|^q$

many more explicit proximal operators at http://proximity-operator.net/

Property. If $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ is separable, i.e.,

$$\forall \mathbf{x} \in \mathbf{R}^{T}, \quad f(\mathbf{x}) = \sum_{t=1}^{T} f_t(x_t), \quad \text{with } f_t \text{ proper, convex, continuous}$$

then the proximal operator can be computed component-wise and

$$\boldsymbol{p} = \operatorname{prox}_{\gamma f}(\boldsymbol{x}) \quad \Leftrightarrow \quad \forall t = 1, \dots, T, \quad p_t = \operatorname{prox}_{\gamma f_t}(x_t).$$

Property. If $f : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ is separable, i.e.,

$$\forall x \in \mathbf{R}^{T}, \quad f(x) = \sum_{t=1}^{T} f_t(x_t), \quad \text{with } f_t \text{ proper, convex, continuous}$$

then the proximal operator can be computed component-wise and

$$\boldsymbol{p} = \operatorname{prox}_{\gamma f}(\boldsymbol{x}) \quad \Leftrightarrow \quad \forall t = 1, \dots, T, \quad \boldsymbol{p}_t = \operatorname{prox}_{\gamma f_t}(\boldsymbol{x}_t).$$

Problematic. $f, g : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ convex, proper, continuous

 $\underset{\boldsymbol{x}\in\mathbb{R}^{T}}{\text{minimize }} f(\boldsymbol{x}) + g(\boldsymbol{x}).$

 \Rightarrow compute prox_{f+g}: in general intractable!

Problematic. $f, g : \mathbb{R}^T \to \mathbb{R} \cup \{\infty\}$ convex, proper, continuous minimize f(x) + g(x)

Hypotheses. f is continuously differentiable and β -smooth, with $\beta > 0$. g is proximable, i.e., prox_{γg} has an explicit formula.

Forward-backward algorithm. or "Proximal-gradient" for k = 1, 2... do $\mathbf{x}^{[k+1]} = \operatorname{prox}_{\gamma g}(\mathbf{x}^{[k]} - \gamma \nabla f(\mathbf{x}^{[k]}))$

explicit-implicit scheme: $\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma \nabla f(\mathbf{x}^{[k]}) - \gamma \mathbf{u}^{[k]}, \ \mathbf{u}^{[k]} \in \partial g(\mathbf{x}^{[k+1]})$

Theorem. If $\gamma \in]0, 2/\beta[$, $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges toward some $\hat{\mathbf{x}} \in \operatorname{Argmin} f + g$.

algorithms

$$\underset{\mathsf{R} \in \mathbb{R}^{\mathcal{T}}}{\text{minimize}} \ \sum_{t=1}^{\mathcal{T}} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_t \, | \, \mathsf{R}_t \Phi_t \, \right) + \lambda_{\mathsf{R}} \| \mathbf{D}_2 \mathbf{R} \|_1$$

- each term of the functional is convex;
- ℓ_1 -norm and indicative functions \Longrightarrow nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- linear operator $\mathbf{D}_2 \Longrightarrow$ no explicit form for $\operatorname{prox}_{\|\mathbf{D}_2\cdot\|_1}$

✗ gradient descent
 ✗ forward-backward
 ✤ need splitting

algorithms

$$\underset{\mathsf{R} \in \mathbb{R}^{\mathcal{T}}}{\text{minimize}} \ \sum_{t=1}^{\mathcal{T}} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_t \, | \, \mathsf{R}_t \Phi_t \, \right) + \lambda_{\mathsf{R}} \| \mathbf{D}_2 \mathbf{R} \|_1$$

- each term of the functional is convex;
- ℓ_1 -norm and indicative functions \implies nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- linear operator $\mathbf{D}_2 \Longrightarrow$ no explicit form for $\operatorname{prox}_{\|\mathbf{D}_2\cdot\|_1}$

X gradient descent
 X forward-backward
 A need splitting

 $\iff \underset{\mathbf{R} \in \mathbb{R}^{T}}{\text{minimize}} \quad f(\mathbf{R}|\mathbf{Z}) + h(\mathbf{D}_{2}\mathbf{R}), \quad \mathbf{D}_{2} \text{ linear; } f, h \text{ proximable}$

algorithms

$$\underset{\textbf{R} \in \mathbb{R}^{\mathcal{T}}}{\text{minimize}} \quad \sum_{t=1}^{\mathcal{T}} d_{\text{KL}} \left(\mathsf{Z}_t \, | \, \mathsf{R}_t \Phi_t \right) + \lambda_{\mathsf{R}} \| \textbf{D}_2 \textbf{R} \|_1$$

- each term of the functional is convex;
- ℓ_1 -norm and indicative functions \implies nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- linear operator $\mathbf{D}_2 \Longrightarrow$ no explicit form for $\text{prox}_{\|\mathbf{D}_2\cdot\|_1}$

X gradient descent
 X forward-backward

 need splitting

 $\iff \underset{\mathbf{R} \in \mathbb{R}^{T}}{\text{minimize}} \quad f(\mathbf{R}|\mathbf{Z}) + h(\mathbf{D}_{2}\mathbf{R}), \quad \mathbf{D}_{2} \text{ linear; } f, h \text{ proximable}$

Primal-dual algorithm

(Chambolle et al., 2011, Int. Conf. Comput. Vis.)

for
$$k = 1, 2...$$
 do

$$\mathbf{Q}^{[k+1]} = \mathbf{Q}^{[k]} + \sigma \mathbf{D}_2 \overline{\mathbf{R}}^{[k]} - \sigma \operatorname{prox}_{\sigma^{-1}h} (\sigma^{-1} \mathbf{Q}^{[k]} + \mathbf{D}_2 \overline{\mathbf{R}}^{[k]}) \qquad \text{dual}$$

$$\mathbf{R}^{[k+1]} = \operatorname{prox}_{\tau f(\cdot|\mathbf{Z})} (\mathbf{R}^{[k+1]} - \tau \mathbf{D}_2^* \mathbf{Q}^{[k+1]}) \qquad \text{primal}$$

$$\overline{\mathbf{R}}^{[k+1]} = 2\mathbf{R}^{[k+1]} - \mathbf{R}^{[k]} \qquad \text{auxiliary}$$

Theorem. If $\tau \sigma \|\mathbf{D}_2\|_{op}^2 < 1$, $\left(\mathbf{R}^{[k]}\right)_{k \in \mathbb{N}}$ converges toward $\widehat{\mathbf{R}}^{\text{PKL}}$

New infection counts per county: $\mathbf{Z} = \left\{ \mathsf{Z}_t^{(d)}, \ d \in [1, D], \ t \in [1, T] \right\}$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_t^{(d)}$

New infection counts per county:
$$\mathbf{Z} = \left\{ \mathsf{Z}_t^{(d)}, \ d \in [1, D], \ t \in [1, T] \right\}$$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_t^{(d)}$

Multivariate extended penalized Kullback-Leibler

$$\widehat{\mathbf{R}} = \underset{\mathbf{R} \in \mathbb{R}^{D \times T}}{\operatorname{argmin}} \sum_{d=1}^{D} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t}^{(d)} \left| \mathsf{R}_{t}^{(d)} \Phi_{t}^{(d)} \right. \right) + \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \lambda_{\operatorname{space}} \| \mathbf{G} \mathbf{R} \|_{1} \\ \implies \| \mathbf{G} \mathbf{R} \|_{1} \text{ favors piecewise constancy in space}$$

New infection counts per county:
$$\mathbf{Z} = \left\{ \mathsf{Z}_t^{(d)}, \ d \in [1,D], \ t \in [1,\mathcal{T}]
ight\}$$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_{t}^{(d)}$

Multivariate extended penalized Kullback-Leibler

$$\begin{split} \widehat{\mathbf{R}} &= \underset{\mathbf{R} \in \mathbb{R}^{D \times T}}{\operatorname{argmin}} \sum_{d=1}^{D} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t}^{(d)} \left| \mathsf{R}_{t}^{(d)} \Phi_{t}^{(d)} \right. \right) + \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \lambda_{\operatorname{space}} \| \mathbf{G} \mathbf{R} \|_{1} \\ &\implies \| \mathbf{G} \mathbf{R} \|_{1} \text{ favors piecewise constancy in space} \end{split}$$

France (Hospital based data) - R - 15-Nov-2022

$$\|\mathbf{GR}\|_1 = \sum_{t=1}^{T} \sum_{d_1 \sim d_2} \left| \mathsf{R}_t^{(d_1)} - \mathsf{R}_t^{(d_2)} \right|$$

sum over neighboring counties

here: $d_1 \sim d_2 \Leftrightarrow$ share terrestrial border

Worldwide Covid19 monitoring

Why not United Kingdom?

Why not United Kingdom?

rate of erroneous counts: 6/7!

Why not United Kingdom?

And Italy?

rate of erroneous counts: 6/7!

seems to adopt the same reporting rate ...

 \implies call for new tools, robust to very scarce data

<u>Pointwise estimate</u> of parameter $\theta = \mathbf{R}$ from observations **Z**

 $\underset{\mathbf{R} \in \mathbb{R}^{T}}{\text{minimize}} \quad f(\theta | \mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

<u>Pointwise estimate</u> of parameter $\theta = \mathbf{R}$ from observations **Z**

 $\underset{\mathbf{R}\in\mathbb{R}^{T}}{\text{minimize}} \quad f(\theta|\mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

Q: what is the value of R today? **R**: solve the minimization problem and output \widehat{R}_{T} .

<u>Pointwise estimate</u> of parameter $\theta = \mathbf{R}$ from observations **Z**

 $\underset{\mathbf{R} \in \mathbb{R}^{T}}{\text{minimize}} \quad f(\theta | \mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

Q: what is the value of R today? **R:** solve the minimization problem and output \widehat{R}_{T} .

 $\widehat{\mathsf{R}}_{\mathcal{T}} = 1.2955$

<u>Pointwise estimate</u> of parameter $\theta = \mathbf{R}$ from observations **Z**

 $\underset{\mathbf{R}\in\mathbb{R}^{T}}{\text{minimize}} \quad f(\theta|\mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

Bayesian reformulation: interpret $\widehat{\mathbf{R}}^{\mathsf{PL}}$ as the Maximum A Posteriori of $\pi(\theta) \propto \exp(-f(\theta|\mathbf{Z}) - h(\mathbf{A}\theta))$

- $\exp(-f(\theta|\mathbf{Z})) \sim \text{likelihood of the observation}$
- $\exp(-h(\mathbf{A}\theta)) \sim$ prior on the parameter of interest

<u>Pointwise estimate</u> of parameter $\theta = \mathbf{R}$ from observations **Z**

 $\underset{\mathbf{R} \in \mathbb{R}^{T}}{\text{minimize}} \quad f(\theta | \mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

Bayesian reformulation: interpret $\widehat{\mathbf{R}}^{\mathsf{PL}}$ as the Maximum A Posteriori of $\pi(\theta) \propto \exp(-f(\theta|\mathbf{Z}) - h(\mathbf{A}\theta))$

- exp(−f(θ|Z)) ~ likelihood of the observation
- $\exp(-h(\mathbf{A}\theta)) \sim$ prior on the parameter of interest

⇒ instead of focusing on \widehat{R}_t , the **pointwise** MAP, probe π to get $R_t \in [\underline{R}_t, \overline{R}_t]$ with 95% probability, i.e., credibility interval estimates

Purpose: sampling the random variable $\theta = \mathbf{R} \in \mathbb{R}^T$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_D(\theta)$

 $^{^\}dagger~\pi$ is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = \mathbf{R} \in \mathbb{R}^T$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_D(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n o \infty$, $heta^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = \mathbf{R} \in \mathbb{R}^T$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_D(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n o \infty$, $heta^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

State-of-the-art: Hastings-Metropolis random walk

(i) propose a random move according to

$$oldsymbol{ heta}^{n+rac{1}{2}} = oldsymbol{ heta}^n + \sqrt{2\gamma} {\sf \Gamma} \xi^{n+1}, \hspace{1em} \xi^{n+1} \sim \mathcal{N}_{T}(\mathsf{0},\mathsf{I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{T \times T}$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = \mathbf{R} \in \mathbb{R}^T$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_D(\theta)$

Principle: 1) generate a random sequence $\{ \boldsymbol{\theta}^n, n \in \mathbb{N} \}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n o \infty$, ${m heta}^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

State-of-the-art: Hastings-Metropolis random walk

(i) propose a random move according to

$$oldsymbol{ heta}^{n+rac{1}{2}} = oldsymbol{ heta}^n + \sqrt{2\gamma} \Gamma \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_T(0, \mathsf{I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{T \times T}$

(ii) accept:
$$\theta^{n+1} = \theta^{n+\frac{1}{2}}$$
, with probability $1 \wedge \frac{\pi(\theta^{n+\frac{1}{2}})}{\pi(\theta^n)}$, or reject: $\theta^{n+1} = \theta^n$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, *Adv Appl Probab*) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, *Adv Appl Probab*) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

<u>Case 1:</u> g = 0 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, Bernoulli) $\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$

 \implies move towards areas of higher probability

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, Adv Appl Probab) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

<u>Case 1:</u> g = 0 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, Bernoulli) $\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$ \implies move towards areas of higher probability

<u>Case 2:</u> $-\ln \pi = f + g$ is nonsmooth

$$\mu(\boldsymbol{\theta}) = \operatorname{prox}_{\gamma g}^{\Gamma\Gamma^{\top}}(\boldsymbol{\theta} - \gamma \Gamma\Gamma^{\top} \nabla f(\boldsymbol{\theta}))$$

combining Langevin and proximal[†] approaches

[†] prox_{$$\gamma g$$} ^{$\Gamma \Gamma^{\top}$} $(y) = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \left(\frac{1}{2} \|x - y\|_{\Gamma \Gamma^{\top}}^2 + \gamma g(x) \right)$: preconditioned proximity operator of g
30/33

Proximal-Gradient dual sampler PGdual

Posterior density of $\theta = \mathbf{R}$: $\pi(\theta) \propto \exp\left(-f(\theta) - g(\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

• smooth negative log-likelihood

if
$$\theta \in \mathcal{D}$$
, $f(\theta) = -\sum_{t=1}^{T} (Z_t \ln p_t(\theta) - p_t(\theta))$, $p_t(\theta) = R_t(\Phi Z)_t$

• nonsmooth convex lower-semicontinuous negative a priori log-distribution

$$g(\theta) = \lambda_{\mathsf{R}} \| \mathsf{D}_2 \mathsf{R} \|_1 = h(\mathsf{A}\theta)$$

 $\mathbf{A}: \boldsymbol{\theta} \mapsto \mathbf{D}_2 \mathbf{R}$ linear operator, $h(\cdot) = \lambda_{\mathbf{R}} \| \cdot \|_1$

Proximal-Gradient dual sampler PGdual

Posterior density of $\theta = \mathbf{R}$: $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$ smooth negative log-likelihood if $\theta \in \mathcal{D}$, $f(\theta) = -\sum_{t=1}^{T} (\mathsf{Z}_t \ln \mathsf{p}_t(\theta) - \mathsf{p}_t(\theta)), \ \mathsf{p}_t(\theta) = \mathsf{R}_t(\Phi \mathsf{Z})_t$ nonsmooth convex lower-semicontinuous negative a priori log-distribution $g(\theta) = \lambda_{\mathsf{R}} \| \mathsf{D}_2 \mathsf{R} \|_1 = h(\mathsf{A}\theta)$ $\mathbf{A}: \boldsymbol{\theta} \mapsto \mathbf{D}_2 \mathbf{R}$ linear operator, $h(\cdot) = \lambda_{\mathbf{R}} \|\cdot\|_1$

<u>Case 3:</u> $-\ln \pi = f + h(\mathbf{A} \cdot)$ (Fort et al., 2022, *preprint*)

closed-form expression of $prox_{\gamma h}$ but not of $prox_{\gamma h(\mathbf{A})}$

1) extend **A** into **invertible** $\overline{\mathbf{A}}$, and *h* in \overline{h} such that $\overline{h}(\overline{\mathbf{A}}\theta) = h(\mathbf{A}\theta)$ 2) reason on the **dual** variable $\tilde{\theta} = \overline{\mathbf{A}}\theta$

$$\text{Proximal-gradient drift. } \mu(\theta) = \overline{\mathbf{A}}^{-1} \text{prox}_{\gamma \overline{h}} \left(\overline{\mathbf{A}} \theta - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\theta) \right)$$

Data:
$$\overline{\mathbf{D}} = \overline{\mathbf{D}}_2$$
 (Invert) or $\overline{\mathbf{D}} = \overline{\mathbf{D}}_o$ (Ortho)
 $\gamma_{\mathrm{R}} > 0, N_{\mathrm{max}} \in \mathbb{N}_{\star}, \theta^0 = \mathbf{R}^0 \in \mathcal{D}$
Result: A \mathcal{D} -valued sequence $\{\theta^n = \mathbf{R}^n, n \in 0, \dots, N_{\mathrm{max}}\}$
for $n = 0, \dots, N_{\mathrm{max}} - 1$ do
Sample $\xi_{\mathrm{R}}^{n+1} \sim \mathcal{N}_T(0, \mathbf{I})$;
Set $\mathbf{R}^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma_{\mathrm{R}}}\overline{\mathbf{D}}^{-1}\overline{\mathbf{D}}^{-\top} \xi_{\mathrm{R}}^{n+1}$;
 $\theta^{n+\frac{1}{2}} = \mathbf{R}^{n+\frac{1}{2}}$;
Set $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability
 $1 \wedge \frac{\pi(\theta^{n+\frac{1}{2}})}{\pi(\theta^n)} \frac{q_{\mathrm{R}}(\theta^{n+\frac{1}{2}}, \theta^n)}{q_{\mathrm{R}}(\theta^n, \theta^{n+\frac{1}{2}})}$,
 q_{R} : Gaussian kernel stemming from nonsymmetric proposal
and $\theta^{n+1} = \theta^n$ otherwise.
Algorithm 1: Proximal-Gradient dual: PGdual Invert and PGdual Ortho

- Daily estimation of the reproduction number of Covid19 https: //perso.ens-lyon.fr/patrice.abry/Covid_France_trendOutlier.png
- Estimation of R_t with credibility intervals https://perso.math.univ-toulouse.fr/gfort/project/opsimore-2/
- A broad audience article The Conversation France