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Aims and cont

rm

T'exture segmentation constitutes a task of utmost importance in statistical image processing. Monofractal textures, characterized by piecewise constancy
of their scale-free parameters, were recently shown to be versatile enough for real-world texture modeling.

Contributions e enrolling jointly scale-free and local-variance descriptors into a convex, but nonsmooth, minimization strategy,
o designing an efficient implementation, able to deal with huge amounts of data/high resolution images.

Numerical assessment Performance of the proposed joint approach is compared against disjoint strategies working independently on
scale-free features and on local variance on synthetic piecewise monofractal textures.

cal regularity (UMMM Multiscale analysis

=> measures how regular the texture is. « Compute wavelet coefficients of the considered textured image X, at scale a and pixel n.

o Define leaders L, ,, as a local supremum within a spatial neighborhood and finer scales.
e In logarithmic coordinates leaders show linear behavior w.r.t. the scale.
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cale 108 (La,n) ~ v(n) + h(n) log(a)  (LR)
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Optimization scheme R /.. primal-dual S

Objectives: ¢ match scale-free behavior (LR) characterizing monofractal textures, 'Chambolle2011]
e obtain a joint estimation of v and h directly from the leaders L, ., CUStomlzed for our objective function
e favor piecewise constancy of v and h without imposing same edges for v and h. Primal var ok = (v, ), dual var. e = {1, £)
for £ € N* do
Minimization problem: (6, ﬁ) S Argmin DF(U, h; »C(X)) + >\’UTV(/U) + AhTV(h) // Update of primal variable
v, Monofractal texture Piecewise constancy vhlk+1l —

Proposed data fidelity term: DF (v, h; L) Z |v + log(a)h — log ,Ca,,H; // Update of dual variable

Qrin wflk+1] — prox (ué[k] + I/vah[k])

Al 113,

// Update of descent steps

1 _
DF is strongly convex: DF(v,h; £) = =||A(v,h) —log L||5 I = (1+2p8) 12,
2 Ok+1 = UKk, Viy1 = vi/Uk
. smaller larger
; Strong-convexity constant with A : (v, h) — {v +log(a)h}, linear. Then
e =1 | | // Update of auxiliary variable
5 | am=2 VDF (v, h; £) = A*A(v,h) — A*log L. A R IR CWILE R WAL}
3 — Quadratic linear constant end
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Largest scale log(apmay) with p > 0 the smallest eigenvalue of A" A Achieved:
v/ joint estimation of v and A,
v’ lead to reliable texture segmentation,
Experlm v/ with efficient implementation provided.
Ground truth Lin. reg. Dis. TV Dis. re-est.  Joint est. Joint re-est. Futur work:
—> use DF into a Mumford-Shah functional,
. | | | = turn to multifractal texture models.
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