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Aims and contributions
Texture segmentation constitutes a task of utmost importance in statistical image processing. Monofractal textures, characterized by piecewise constancy
of their scale-free parameters, were recently shown to be versatile enough for real-world texture modeling.

Contributions • enrolling jointly scale-free and local-variance descriptors into a convex, but nonsmooth, minimization strategy,
• designing an efficient implementation, able to deal with huge amounts of data/high resolution images.

Numerical assessment Performance of the proposed joint approach is compared against disjoint strategies working independently on
scale-free features and on local variance on synthetic piecewise monofractal textures.

Local regularity
Ô measures how regular the texture is.

[Jaffard1994]
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Fit local behavior with power law functions

|f(x)− f(y)| ≤ C|x− y|h(x)

Multiscale analysis
• Compute wavelet coefficients of the considered textured image X, at scale a and pixel n.
• Define leaders La,n as a local supremum within a spatial neighborhood and finer scales.
• In logarithmic coordinates leaders show linear behavior w.r.t. the scale.'
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[Wendt2009]
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Optimization scheme
Objectives: • match scale-free behavior (LR) characterizing monofractal textures,

• obtain a joint estimation of v and h directly from the leaders La,.,
• favor piecewise constancy of v and h without imposing same edges for v and h.

Minimization problem:
(
v̂, ĥ
)
∈ Argmin

v,h
DF(v, h ; L(X))
Monofractal texture

+ λvTV(v) + λhTV(h)
Piecewise constancy

Proposed data fidelity term: DF(v, h ; L) = 1
2

amax∑
amin

‖v + log(a)h− logLa,.‖2
2

DF is strongly convex:

a

a
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DF(v, h ; L) = 1
2‖A(v, h)− logL‖2

2

with A : (v, h) 7→ {v + log(a)h}a linear. Then

∇DF (v, h ; L) = A∗A(v, h)
linear

−A∗ logL
constant

.

DF(v, h ; L) is µ-strongly-convex,

with µ > 0 the smallest eigenvalue of A∗A

Acc. primal-dual alg.
[Chambolle2011]

Customized for our objective function
Primal var. vh ≡

def
(v, h), dual var. u` ≡

def
(u, `)

for k ∈ N∗ do
// Update of primal variable
vh[k+1] =

proxδkDF(.,L)

(
vh[k] − δkD∗u`[k]

)
// Update of dual variable
u`[k+1] = proxνkΛ‖·‖∗

2,1

(
u`[k] + νkDvh[k]

)
// Update of descent steps
ϑk = (1 + 2µδk)−1/2,
δk+1 = ϑkδk

smaller
, νk+1 = νk/ϑk

larger

// Update of auxiliary variable

u`
[k+1] = u`[k+1] + ϑk

(
u`[k+1] − u`[k]

)
end

Experiments on synthetic textures
Ground truth Lin. reg. Dis. TV Dis. re-est. Joint est. Joint re-est.

Loc.
var.

0.3

0.4

0.5

0.6

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

Loc.
reg.

0.1

0.2

0.3

0.4

0.5

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

Synth.
text.

-2

-1

0

1

2

SNR(v, v0) 2.7496 9.9722 8.0758 10.2854 8.0241
SNR(h, h0) -5.3411 -4.2591 0.14181 -4.1325 0.24025

Conclusion
Achieved:
3 joint estimation of v and h,
3 lead to reliable texture segmentation,
3 with efficient implementation provided.
Futur work:
Ù use DF into a Mumford-Shah functional,
Ù turn to multifractal texture models.
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