

Processing nonstationary data: representations, theory, algorithms and applications.

Barbara Pascal

December 16th 2021

Laboratoire Grenoble Images Parole Signal Automatique (GIPSA-lab)

Pôle Géométries, Apprentissage, Information et Algorithmes (GAIA)

Part I: Texture segmentation based on fractal attributes

Crucial to describe real-world images

Textured image segmentation

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega = \Omega_1 \bigsqcup \ldots \bigsqcup \Omega_K$

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega = \Omega_1 \bigsqcup \ldots \bigsqcup \Omega_K$

Fractals attributes

• variance σ^2 amplitude of variations

Fractals attributes

- н.
- local regularity h scale invariance

variance σ^2 amplitude of variations

Fractals attributes

н.

variance σ^2 amplitude of variations

local regularity h

scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Fractals attributes

- variance σ^2 amplitude of variations le est us mulante de scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Fractals attributes

- variance σ^2 amplitude of variations local regularity h scale invariance

$$|f(x) - f(y)| < \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

 $\triangleright \sigma^2$ and *h* piecewise constant

$$(\sigma_1^2, h_1)$$

Fractals attributes

н.

• variance σ^2 amplitude of variations local regularity *h* scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

- $\triangleright \sigma^2$ and *h* piecewise constant
- ▶ region Ω_k characterized by (σ_k^2, h_k)

$$(\sigma_1^2, h_1)$$

Textured image

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

 $a = 2^5$

scale \boldsymbol{a}

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008)

$$\log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\boldsymbol{h} \\ \text{regularity}}} + \underbrace{\boldsymbol{v}}_{\substack{\propto \log(\sigma^2) \\ (\text{variance})}}$$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008) $\log (\mathcal{L}_{a,.}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underset{\substack{\mathsf{v} \\ \propto \log(\sigma^2) \\ (\text{variance})}}{v}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008) $\log (\mathcal{L}_{a,.}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underset{\substack{\mathsf{v} \\ \text{clog}(\sigma^2) \\ (\text{variance})}}{v}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008) $\log (\mathcal{L}_{a,\cdot}) \simeq_{a \to 0} \log(a) \frac{h}{\text{regularity}} + \frac{v}{\propto \log(\sigma^2)} (\text{variance})$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008) $\log (\mathcal{L}_{a,\cdot}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underset{\substack{ \propto \log(\sigma^2) \\ (\text{variance})}}{\nu}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008) $\log (\mathcal{L}_{a,.}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underset{\substack{ \propto \log(\sigma^2) \\ (\text{variance})}}{v}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008) $\log (\mathcal{L}_{a,.}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underset{\substack{ \propto \log(\sigma^{2}) \\ (\text{variance})}}{v}$

$$\log(\mathcal{L}_{a,\cdot})$$

Linear regression

$$\log\left(\mathcal{L}_{a,\cdot}
ight)\simeq \log(a) rac{m{h}}{r_{ ext{regularity}}}+rac{m{
u}}{\propto \log(\sigma^2)}$$

Textured image

Textured image

 \longrightarrow large estimation variance

A posteriori regularization

Filter smoothing (linear)

$$\left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \widehat{\boldsymbol{h}}^{\mathrm{LR}}$$

Linear regression $\widehat{\pmb{h}}^{\mathrm{LR}}$

Lissage

A posteriori regularization

 \longrightarrow cumulative estimation variance and regularization bias

$$\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^{2}}{\text{Least-Squares}} \rightarrow \text{fidelity to the log-linear model}$$

$$\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^{2}}{\underset{\rightarrow \text{ fidelity to the log-linear model}}{\text{Least-Squares}}} + \underbrace{\lambda \underbrace{\mathcal{Q}(Dh, D\mathbf{v}; \alpha)}_{\text{Total Variation}}}_{\Rightarrow \text{ favors piecewise constancy}}$$

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - v\|^2}{\operatorname{Least-Squares}} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}_{\mathsf{Total Variation}} \\ \to & \mathsf{fidelity to the log-linear model} \end{array} \xrightarrow{\mathsf{hog}(\mathcal{L}_{a,.})} & \to & \mathsf{favors piecewise constancy} \end{array}$$

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - v\|^2}{\operatorname{Least-Squares}} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}_{\mathsf{Total Variation}} \\ & \rightarrow \operatorname{fidelity to the log-linear model} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}_{\mathsf{Total Variation}} \\ & \rightarrow \operatorname{favors piecewise constancy} \\ & & \downarrow \\ & & \downarrow_{\operatorname{log}(a)} \end{array}$$

Finite differences $D_1 x$ (horizontal), $D_2 x$ (vertical) in each pixel
Functionals with either free or co-localized contours

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}_{\mathsf{Total Variation}} \\ \to & \mathsf{fidelity to the log-linear model} \end{array} \begin{array}{ll} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}_{\mathsf{Total Variation}} \\ \to & \mathsf{favors piecewise constancy} \end{array}$$

Finite differences $\mathbf{D}\mathbf{x} = [\mathbf{D}_1\mathbf{x}, \mathbf{D}_2\mathbf{x}]$

<u>Free:</u> h, v are independently piecewise constant $Q_F(\mathbf{D}h, \mathbf{D}v; \alpha) = \alpha \|\mathbf{D}h\|_{2,1} + \|\mathbf{D}v\|_{2,1}$ Functionals with either free or co-localized contours

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}_{\mathsf{Total Variation}} \\ \to & \mathsf{fidelity to the log-linear model} \end{array} \begin{array}{l} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}_{\mathsf{Total Variation}} \\ \to & \mathsf{favors piecewise constancy} \end{array}$$

Finite differences $\mathbf{D}\mathbf{x} = [\mathbf{D}_1\mathbf{x}, \mathbf{D}_2\mathbf{x}]$

<u>Free:</u> h, v are independently piecewise constant $Q_F(Dh, Dv; \alpha) = \alpha \|Dh\|_{2,1} + \|Dv\|_{2,1}$

<u>Co-localized:</u> h, v are concomitantly piecewise constant $Q_{C}(Dh, Dv; \alpha) = \|[\alpha Dh, Dv]\|_{2,1}$

• gradient descent $\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$

• gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$

implicit subgradient descent: proximal point algorithm

$$\mathbf{x}^{n+1} = \mathbf{x}^n - au \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

• gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$

122.22

implicit subgradient descent: proximal point algorithm $\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$

• splitting proximal algorithm

$$\mathbf{y}^{n+1} = \operatorname{prox}_{\sigma(\lambda Q)^*} (\mathbf{y}^n + \sigma \mathbf{D} \bar{\mathbf{x}}^n)$$

 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau \parallel \mathcal{L} - \mathbf{\Phi} \cdot \parallel_2^2} (\mathbf{x}^n - \tau \mathbf{D}^\top \mathbf{y}^{n+1}), \quad \mathbf{\Phi} : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(\mathbf{a})\mathbf{h} + \mathbf{v}\}_{\mathbf{a}}$
 $\bar{\mathbf{x}}^{n+1} = 2\mathbf{x}^{n+1} - \mathbf{x}^n$

• gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$

► implicit subgradient descent: proximal point algorithm $\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \Leftrightarrow \mathbf{x}^{n+1} = \operatorname{prox}_{\tau\varphi}(\mathbf{x}^n)$

► splitting proximal algorithm $prox_{\tau\varphi}(\mathbf{x}) = \underset{u}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|^2 + \tau\varphi(\mathbf{u})$ $\mathbf{y}^{n+1} = prox_{\sigma(\lambda Q)^*} (\mathbf{y}^n + \sigma \mathbf{D}\bar{\mathbf{x}}^n)$ $\mathbf{x}^{n+1} = prox_{\tau \| \mathcal{L} - \Phi \cdot \|_2^2} \left(\mathbf{x}^n - \tau \mathbf{D}^\top \mathbf{y}^{n+1} \right), \quad \Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{ \log(a)\mathbf{h} + \mathbf{v} \}_a$ $\bar{\mathbf{x}}^{n+1} = 2\mathbf{x}^{n+1} - \mathbf{x}^n$

Ex. Mixed norm: for $\boldsymbol{z} = [\boldsymbol{z}_1; \ldots, ; \boldsymbol{z}_l]$

$$\mathcal{Q}(\boldsymbol{z}) = \|\boldsymbol{z}\|_{2,1} = \sum_{\underline{n} \in \Omega} \sqrt{\sum_{i=1}^{l} z_i^2(\underline{n})} = \sum_{\underline{n} \in \Omega} \|\boldsymbol{z}(\underline{n})\|_2$$

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} & + & \lambda \frac{\mathcal{Q}(\mathsf{D}h, \mathsf{D}\mathbf{v}; \alpha)}{\operatorname{Total Variation}} \\ & &$$

Ex. Mixed norm: for $\boldsymbol{z} = [\boldsymbol{z}_1; \ldots, ; \boldsymbol{z}_l]$

$$\mathcal{Q}(\boldsymbol{z}) = \|\boldsymbol{z}\|_{2,1} = \sum_{\underline{n}\in\Omega} \sqrt{\sum_{i=1}^{l} z_i^2(\underline{n})} = \sum_{\underline{n}\in\Omega} \|\boldsymbol{z}(\underline{n})\|_2$$

$$\boldsymbol{p} = \operatorname{prox}_{\lambda \| \cdot \|_{2,1}}(\boldsymbol{z}) \quad \Leftrightarrow \quad p_i(\underline{n}) = \max\left(0, 1 - \frac{\lambda}{\|\boldsymbol{z}(\underline{n})\|_2}\right) z_i(\underline{n})$$

 $\textbf{Least-Squares:} \ \|\log \mathcal{L} - \Phi(\boldsymbol{h}, \boldsymbol{v})\|^2, \quad \Phi: (\boldsymbol{h}, \boldsymbol{v}) \mapsto \{\log(a)\boldsymbol{h} + \boldsymbol{v}\}_a$

Least-Squares: $\|\log \mathcal{L} - \Phi(h, \mathbf{v})\|^2$, $\Phi : (h, \mathbf{v}) \mapsto \{\log(a)h + \mathbf{v}\}_a$

Proposition (Pascal, 2019)

$$(\widetilde{\boldsymbol{h}},\widetilde{\boldsymbol{v}}) = \operatorname{prox}_{\tau \parallel \mathcal{L} - \Phi \cdot \parallel^2}(\boldsymbol{h}, \boldsymbol{v}) \iff (\widetilde{\boldsymbol{h}},\widetilde{\boldsymbol{v}}) = (\mathbf{I} + \tau \Phi^\top \Phi)^{-1} ((\boldsymbol{h}, \boldsymbol{v}) + \tau \Phi^\top \log \mathcal{L})$$

Least-Squares: $\|\log \mathcal{L} - \Phi(h, \mathbf{v})\|^2$, $\Phi : (h, \mathbf{v}) \mapsto \{\log(a)h + \mathbf{v}\}_a$

Proposition (Pascal, 2019)

Let
$$S_m = \sum_a \log^m(a)$$
, $\mathcal{D} = (1 + \tau S_2)(1 + \tau S_0) - \tau^2 S_1^2$,
 $\mathcal{T} = \sum_a \log \mathcal{L}_a$ and $\mathcal{G} = \sum_a \log(a) \log \mathcal{L}_a$, alors
 $(\tilde{h}, \tilde{v}) = \operatorname{prox}_{\tau \parallel \mathcal{L} - \Phi \cdot \parallel^2}(h, v) \iff (\tilde{h}, \tilde{v}) = (\mathbf{I} + \tau \Phi^\top \Phi)^{-1} ((h, v) + \tau \Phi^\top \log \mathcal{L})$
 $\iff \begin{cases} \tilde{h} = \mathcal{D}^{-1} ((1 + \tau S_0)(\tau \mathcal{G} + h) - \tau S_1(\tau \mathcal{T} + v)) \\ \tilde{v} = \mathcal{D}^{-1} ((1 + \tau S_2)(\tau \mathcal{T} + v) - \tau S_1(\tau \mathcal{G} + h)) \end{cases}$

Accelerated algorithm based on strong-convexity

Accelerated algorithm based on strong-convexity

Strong-convexity

• $\varphi \mu$ -strongly convex iff $\varphi - \frac{\mu}{2} \|\cdot\|^2$ convex

Strong-convexity

- $\varphi \mu$ -strongly convex iff $\varphi \frac{\mu}{2} \| \cdot \|^2$ convex
- $\varphi \ C^2$ with Hessian matrix $H\varphi \succeq 0 \implies \mu = \min \operatorname{Sp}(H\varphi)$

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} & + & \lambda \frac{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}{\operatorname{Total Variation}} \\ & & \mu \text{-strongly convex} & \operatorname{nonsmooth} \end{array}$$

Strong-convexity

- $\varphi \mu$ -strongly convex iff $\varphi \frac{\mu}{2} \|\cdot\|^2$ convex
- $\varphi \ C^2$ with Hessian matrix $H \varphi \succeq 0 \implies \mu = \min \operatorname{Sp}(H \varphi)$

Proposition (Pascal, 2019)

$$\sum_{a} \|\log \mathcal{L} - \log(a)h - \mathbf{v}\|^2 \text{ est } \mu \text{-strongly convex.}$$

$$\boxed{\frac{a_{\min} = 2^1, \quad a_{\max} \quad 2^2 \quad 2^3 \quad 2^4 \quad 2^5 \quad 2^6}{\mu = \min \operatorname{Sp}\left(2\Phi^{\top}\Phi\right) \quad 0.29 \quad \mathbf{0.72} \quad 1.20 \quad 1.69 \quad 2.20}}$$

Accelerated algorithm based on strong-convexity

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} & + & \lambda \frac{\mathcal{Q}(\mathsf{D}h, \mathsf{D}\mathbf{v}; \alpha)}{\operatorname{Total Variation}} \\ & & \mu \text{-strongly convex} & \operatorname{nonsmooth} \end{array}$$

Accelerated Primal-dual algorithm (Chambolle, 2011)

for
$$n = 0, 1, ...$$

 $\mathbf{y}^{n+1} = \operatorname{prox}_{\sigma_n(\lambda Q)^*} (\mathbf{y}^n + \sigma_n \mathbf{D} \bar{\mathbf{x}}^n)$
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau_n \parallel \mathcal{L} - \mathbf{\Phi} \cdot \parallel_2^2} (\mathbf{x}^n - \tau_n \mathbf{D}^\top \mathbf{y}^{n+1})$
 $\theta_n = \sqrt{1 + 2\mu\tau_n}, \quad \tau_{n+1} = \tau_n/\theta_n, \quad \sigma_{n+1} = \theta_n \sigma_n$
 $\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta_n^{-1} (\mathbf{x}^{n+1} - \mathbf{x}^n)$

Algorithme accéléré par forte-convexité

Segmentation via iterated thresholding

$$\underset{\boldsymbol{h}, \boldsymbol{v}}{\text{minimize}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2}{\text{Least-Squares}} + \lambda \frac{\mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)}{\text{Total Variation}}$$

Textured image Lin. reg. $\widehat{\pmb{h}}^{\mathrm{LR}}$

Segmentation via iterated thresholding

$$\begin{array}{c} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^{2}}{\operatorname{Least-Squares}} + \lambda \frac{\mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)}{\operatorname{Total Variation}} \\ \end{array}$$

$$\begin{array}{c} \mathsf{Textured image} & \mathsf{Lin. reg. } \hat{h}^{\mathsf{LR}} & \overset{\mathsf{Co-localized}}{\operatorname{contours } \hat{h}^{\mathsf{C}}} & \overset{\mathsf{Threshold}}{\operatorname{estimate}^{\dagger} T \hat{h}^{\mathsf{C}}} \\ \end{array}$$

$$\begin{array}{c} \overbrace{\mathsf{Image}} & \overbrace{\mathsf{Im$$

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Solid foam

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Low activity: $Q_{\rm G}=300 {\rm mL}/{\rm min}$ - $Q_{\rm L}=300 {\rm mL}/{\rm min}$

Low activity: $Q_{ m G}=300 { m mL}/{ m min}$ - $Q_{ m L}=300 { m mL}/{ m min}$

Liquid: $h_{\rm L} = 0.4$

Gas: $h_{\rm G} = 0.9$

Transition: $Q_{\rm G} = 400 \text{mL}/\text{min}$ - $Q_{\rm L} = 700 \text{mL}/\text{min}$

High activity: $Q_{ m G}=1200 { m mL}/{ m min}$ - $Q_{ m L}=300 { m mL}/{ m min}$

High activity: $Q_{ m G}=1200 { m mL}/{ m min}$ - $Q_{ m L}=300 { m mL}/{ m min}$

Computational load

1s

2100s

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \boldsymbol{\alpha})$$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \boldsymbol{\lambda} \mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \boldsymbol{\alpha})$$

Lin. reg. $\widehat{\pmb{h}}^{\mathrm{LR}}$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \boldsymbol{\alpha})$$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \boldsymbol{\lambda} \mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \boldsymbol{\alpha})$$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \boldsymbol{\lambda} \mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \boldsymbol{\alpha})$$

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant}, \ \boldsymbol{v}: \ \text{auxiliary}$$

$$\begin{pmatrix} \hat{\mathbf{h}}, \hat{\mathbf{v}} \end{pmatrix} (\mathbf{\mathcal{L}}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{\mathbf{a}} \|\log \mathbf{\mathcal{L}}_{\mathbf{a}, \cdot} - \log(\mathbf{a})\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

$$\mathbf{h}: \text{ discriminant, } \mathbf{v}: \text{ auxiliary}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^2$$

$$\begin{pmatrix} \hat{\mathbf{h}}, \hat{\mathbf{v}} \end{pmatrix} (\mathbf{\mathcal{L}}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{\mathbf{a}} \|\log \mathbf{\mathcal{L}}_{\mathbf{a}, \cdot} - \log(\mathbf{a})\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

$$\mathbf{h}: \text{ discriminant, } \mathbf{v}: \text{ auxiliary}$$

$$\mathcal{R}(\lambda,\alpha) = \left\| \widehat{\boldsymbol{h}}(\boldsymbol{\mathcal{L}};\lambda,\alpha) - \overline{\boldsymbol{h}} \right\|^2$$

$$\begin{pmatrix} \hat{\mathbf{h}}, \hat{\mathbf{v}} \end{pmatrix} (\mathbf{\mathcal{L}}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{\mathbf{a}} \|\log \mathbf{\mathcal{L}}_{\mathbf{a}, \cdot} - \log(\mathbf{a})\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

$$\mathbf{h}: \text{ discriminant, } \mathbf{v}: \text{ auxiliary}$$

$$\mathcal{R}(\lambda,\alpha) = \left\| \widehat{\boldsymbol{h}}(\boldsymbol{\mathcal{L}};\lambda,\alpha) - \overline{\boldsymbol{h}} \right\|^2$$

$$\begin{pmatrix} \hat{\mathbf{h}}, \hat{\mathbf{v}} \end{pmatrix} (\mathbf{\mathcal{L}}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{\mathbf{a}} \|\log \mathbf{\mathcal{L}}_{\mathbf{a}, \cdot} - \log(\mathbf{a})\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

$$\mathbf{h}: \ \text{discriminant}, \ \mathbf{v}: \ \text{auxiliary}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^2$$

$$\begin{pmatrix} \hat{\mathbf{h}}, \hat{\mathbf{v}} \end{pmatrix} (\mathbf{\mathcal{L}}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{\mathbf{a}} \|\log \mathbf{\mathcal{L}}_{\mathbf{a}, \cdot} - \log(\mathbf{a})\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha) \\ \mathbf{h}: \text{ discriminant, } \mathbf{v}: \text{ auxiliary}$$

h: *true* regularity

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^2$$

Stein Unbiased Risk Estimate (SURE)

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(\mathbf{0}, \rho^{2}\mathbf{I})$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & (\text{linear}) \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & (\text{nonlinear}) \end{cases}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & (\text{linear}) \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & (\text{nonlinear}) \end{cases}$$

Quadratic error $R(\lambda) \triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \overline{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\boldsymbol{\zeta}} \widehat{R}(\boldsymbol{y}; \lambda)$ $\overline{\boldsymbol{x}}$ unknown

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & (\text{linear}) \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & (\text{nonlinear}) \end{cases}$$

Quadratic error
$$R(\lambda) \triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\boldsymbol{\zeta}} \widehat{R}(\boldsymbol{y}; \lambda) \qquad \bar{\boldsymbol{x}} \text{ unknown}$$

Theorem (Stein, 1981)

Let $(\boldsymbol{y};\lambda)\mapsto \widehat{\boldsymbol{x}}(\boldsymbol{y};\lambda)$ an estimator of $ar{\boldsymbol{x}}$

weakly differentiable w.r.t. y,

• such that
$$\boldsymbol{\zeta} \mapsto \langle \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{\zeta} \rangle$$
 is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \rho^2 \boldsymbol{I})$.
 $\widehat{R}(\boldsymbol{y}; \lambda) \triangleq \|\widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y}\|^2 + 2\rho^2 \mathrm{tr} \left(\partial_{\boldsymbol{y}} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda)\right) - \rho^2 P$
 $\Longrightarrow R(\lambda) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\boldsymbol{y}; \lambda)].$

Generalized Stein Unbiased Risk Estimate

Observations $y = \Phi \bar{x} + \zeta \in \mathbb{R}^{P}$, $\bar{x} \in \mathbb{R}^{N}$, $\Phi : \mathbb{R}^{P \times N}$ and $\zeta \sim \mathcal{N}(\mathbf{0}, S)$

E.g. the estimators $\hat{h}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours $\log \mathcal{L} = \Phi(\bar{h}, \bar{v}) + \zeta$ $\zeta \sim \mathcal{N}(\mathbf{0}, \mathcal{S})$ $\mathcal{R} = \|\hat{h} - \bar{h}\|^2$ $\Phi: (h, v) \mapsto \{\log(a)h + v\}_a$ $\overline{\vdots \vdots \vdots \vdots \vdots \vdots \vdots}$ $\Pi: (h, v) \mapsto (h, 0)$

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Generalized Stein Unbiased Risk Estimate

Observations $y = \Phi \bar{x} + \zeta \in \mathbb{R}^{P}$, $\bar{x} \in \mathbb{R}^{N}$, $\Phi : \mathbb{R}^{P \times N}$ and $\zeta \sim \mathcal{N}(\mathbf{0}, S)$

E.g. the estimators $\hat{h}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours $\log \mathcal{L} = \Phi(\bar{h}, \bar{v}) + \zeta$ $\zeta \sim \mathcal{N}(\mathbf{0}, \mathcal{S})$ $\mathcal{R} = \|\hat{h} - \bar{h}\|^2$

 $\Phi: (h, \mathbf{v}) \mapsto \{\log(a)h + \mathbf{v}\}_a \quad \overrightarrow{\mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}} \quad \mathbf{\Pi}: (h, \mathbf{v}) \mapsto (h, \mathbf{0})$

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Theorem (Pascal, 2020)

Let
$$(oldsymbol{y};oldsymbol{\Lambda})\mapsto \widehat{oldsymbol{x}}(oldsymbol{y};oldsymbol{\Lambda})$$
 an estimator of $ar{oldsymbol{x}}$

- weakly differentiable w.r.t. y,
- such that $\boldsymbol{\zeta} \mapsto \langle \Pi \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{A} \boldsymbol{\zeta} \rangle$ is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathcal{S}})$.

$$\begin{split} \widehat{R}(\boldsymbol{\Lambda}) &\triangleq \|\boldsymbol{\mathsf{A}}(\boldsymbol{\Phi}\widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y})\|^2 + 2\mathrm{tr}\left(\boldsymbol{\mathcal{S}}\boldsymbol{\mathsf{A}}^\top\boldsymbol{\Pi}\partial_{\boldsymbol{y}}\widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda})\right) - \mathrm{tr}\left(\boldsymbol{\mathsf{A}}\boldsymbol{\mathcal{S}}\boldsymbol{\mathsf{A}}^\top\right) \\ &\Longrightarrow R_{\boldsymbol{\Pi}}(\boldsymbol{\Lambda}) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\boldsymbol{\Lambda})]. \end{split}$$

$$(\widehat{h}, \widehat{v}) (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(Dh, Dv; \alpha)$$

$$\overline{h}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha| S)$$

$$\widehat{h}: \text{ unknown!}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha| S)$$

$$\widehat{\left(\hat{h}, \widehat{v}\right)} (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} \|\log \mathcal{L}_{a, \cdot} - \log(a)h - v\|^{2} + \lambda \mathcal{Q}(Dh, Dv; \alpha)$$

$$\overline{h}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\left[\hat{h}, \widehat{v}, \widehat{\alpha}^{\dagger}, \widehat{$$

Parameter tuning (Automatic selection)

$$(\widehat{\mathbf{h}}, \widehat{\mathbf{v}}) (\mathcal{L}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{\mathbf{a}} ||\log \mathcal{L}_{\mathbf{a}, \ldots} - \log(\mathbf{a})\mathbf{h} - \mathbf{v}||^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

$$\overline{\mathbf{h}}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\mathbf{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\mathbf{h}} \right\|^2$$

$$\widehat{\mathbf{h}}: \underset{\mathbf{k}, \mathbf{v} \in (\mathcal{L}; \lambda, \alpha| \mathcal{S})}{\left\| \widehat{\mathbf{h}}_{\mathbf{v}, \mathbf{v}}(\mathcal{L}; \lambda, \alpha| \mathcal{S}) - \widehat{\mathbf{h}}_{\mathbf{v}, \mathbf{v}}(\mathcal{L}; \lambda, \alpha| \mathcal{S}) \right\|^2$$

$$\widehat{\mathbf{h}}: \underset{\mathbf{k}, \mathbf{v} \in (\mathcal{L}; \lambda, \alpha| \mathcal{S})}{\left\| \widehat{\mathbf{h}}_{\mathbf{v}, \mathbf{v}}(\mathbf{h}, \alpha^{\dagger}) - \widehat{\mathbf{h}}_{\mathbf{v}, \mathbf{v}}(\mathbf{h}, \alpha^{\dagger}) - \widehat{\mathbf{h}}_{\mathbf{v}, \mathbf{v}}(\mathbf{h}, \alpha^{\dagger}) - \widehat{\mathbf{h}}_{\mathbf{v}, \mathbf{v}}(\mathbf{h}, \alpha^{\dagger}) \right\|^2$$

Automated selection of regularization parameters

calls of the estimator v.s. 225 over a grid

Part I: Fractal texture segmentation

Take home messages

▶ Fractal texture model based on local *regularity* and *variance*

- * appropriate for real-world texture characterization
- * complementary attributes able to finely discriminate

Part I: Fractal texture segmentation

Take home messages

> Fractal texture model based on local *regularity* and *variance*

- * appropriate for real-world texture characterization
- * complementary attributes able to finely discriminate

Simultaneous estimation and regularization

- * significant decrease of the estimation error
- * accurate and regular contours thanks to co-localized penalization

Part I: Fractal texture segmentation

Take home messages

> Fractal texture model based on local *regularity* and *variance*

- * appropriate for real-world texture characterization
- * complementary attributes able to finely discriminate

Simultaneous estimation and regularization

- * significant decrease of the estimation error
- * accurate and regular contours thanks to co-localized penalization

▶ Fast algorithms for automated tuning of hyperparameters

- * possibility to manage huge amount of data
- * amenable to process data corrupted by correlated Gaussian noise
- * ensured objectivity and reproducibility

Part II: Point processes in time-frequency analysis

Harmonic analysis of temporal signals

Standard modeling of a "signal": $y : \mathbb{R} \to \mathbb{C}$ function of time *t*.

- electrical cardiac activity,
- audio recording,
- seismic activity,
- light intensity on a photosensor

Information of interest:

- time events, e.g., an earthquake and its replica
- frequency content, e.g., monitoring of the heart beating rate

. . .

time

ever-changing world marker of events and evolutions

frequency

waves, oscillations, rhythms intrinsic mechanisms

Harmonic analysis of temporal signals

Noisy chirp: transient waveform modulated in amplitude and frequency

$$y(t) = e_{\nu}(t)\sin\left(2\pi\left(f_1 + (f_2 - f_1)\frac{t + \nu}{2\nu}\right)t\right) + \sigma n(t)$$

In the Fourier representation, the temporal information is lost.

Time-frequency analysis

Time and frequencyShort-Time Fourier Transform with window h: $V_h y(t, \omega) \triangleq \int_{-\infty}^{\infty} \overline{y(u)} h(u-t) \exp(-i\omega u) du$

Energy density interpretation $S_h y(t,\omega) = |V_h y(t,\omega)|^2$ the spectrogram $\int \int_{-\infty}^{+\infty} S_h y(t,\omega) dt \frac{d\omega}{2\pi} = \int_{-\infty}^{+\infty} |x(t)|^2 dt \quad \text{if} \quad ||h||_2^2 = 1$

Signal, i.e., information of interest: regions of maximal energy.

Standard: denoising based on the spectrogram maxima

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u,\omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

Standard: denoising based on the spectrogram maxima

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u, \omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

Standard: denoising based on the spectrogram maxima

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u,\omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

Ó.

t

Unorthodox: focus on the spectrogram zeros

Restriction to the *circular Gaussian window*: $g(t) = \pi^{-1/4} e^{-t^2/2}$

Look for the (t_i, ω_i) such that $S_g(t_i, \omega_i) = 0$. [Flandrin, 2015]

Observations:

- zeros are "repelled" by the signal,
- in the "noise" region, zeros are evenly spread,
- short-range repulsion between zeros.

Unorthodox: theoretical study of the spectrogram zeros

Idea assimilate the time-frequency plane with \mathbb{C} through $z = \omega + it$

Unorthodox: theoretical study of the spectrogram zeros

Idea assimilate the time-frequency plane with $\mathbb C$ through $z = \omega + \mathrm{i} t$

$$V_g y(t,\omega) = \mathrm{e}^{-|z|^2/4} \mathrm{e}^{-\mathrm{i}\omega t/2} \mathcal{B} y(z/\sqrt{2})$$

where the Bargmann transform of the signal y, defined as

$$\mathcal{B}y(z) \triangleq \pi^{-1/4} \mathrm{e}^{-z^2/2} \int_{\mathbb{R}} \overline{y(u)} \exp\left(\sqrt{2}uz - u^2/2\right) \,\mathrm{d}u,$$

is an entire function, almost characterized by its infinitely many zeros:

$$\mathcal{B}y(z) = z^m \mathrm{e}^{C_0 + C_1 z + C_2 z^2} \prod_{n \in \mathbb{N}} \left(1 - \frac{z}{z_n} \right) \exp\left(\frac{z}{z_n} + \frac{1}{2} \left(\frac{z}{z_n} \right)^2 \right).$$

Unorthodox: theoretical study of the spectrogram zeros

Idea assimilate the time-frequency plane with $\mathbb C$ through $z = \omega + \mathrm{i} t$

Bargmann factorization

$$V_g y(t,\omega) = e^{-|z|^2/4} e^{-i\omega t/2} \mathcal{B} y(z/\sqrt{2})$$

Theorem The zeros of the Gaussian spectrogram $V_g y(t, \omega)$

- coincide with the zeros of $By(\sqrt{2})$, which is an **entire** function
- hence are isolated and constitute a random point process,
- which almost completely characterizes the spectrogram.

[Flandrin, 2015]

Unorthodox: the point pattern of the spectrogram zeros

Advantages of working with the zeros

- easy to find compared to relative maxima,
- require little memory space for storage,
- use of the tools of **stochastic geometry**.

Unorthodox: the point pattern of the spectrogram zeros

Advantages of working with the zeros

- easy to find compared to relative maxima,
- require little memory space for storage,
- use of the tools of stochastic geometry.

Application: hypothesis testing for signal detection

- H_0 white noisy only, i.e., y(t) = n(t)
- H_1 presence of a signal i.e., $y(t) = x(t) + \sigma n(t)$

Unorthodox path: signal detection from the zeros

Noisy chirp H_1

White noise only H_0

Unorthodox path: zeros of the spectrogram of white noise

$$egin{aligned} & ext{Complex white noise} & \xi(t) = \sum_{k=0}^\infty \xi_k h_k(t), \; \xi_k \sim \mathcal{N}_\mathbb{C}(0,1) \ & \{h_k, k=0,1,\ldots\} \; ext{the Hermite functions, Hilbertian basis of } L^2(\mathbb{R}) \end{aligned}$$

Theorem
$$V_g\xi(t,\omega) = e^{-|z|^2/4}e^{-i\omega t/2}\sum_{k=0}^{\infty}\xi_k \frac{1}{\sqrt{k!}} \left(\frac{z}{\sqrt{2}}\right)^k$$

[Bardenet & Hardy, 2021]

Zeros of the Planar Gaussian Analytic Function (GAF)

$$\mathcal{Z}(\mathrm{GAF}_{\mathbb{C}}) \stackrel{(\mathsf{def.})}{=} \{z_i, \, \mathsf{s.t.} \, \mathrm{GAF}_{\mathbb{C}}(z_i) = 0\}$$

Spatial statistics of the point process $\mathcal{Z}(GAF_{\mathbb{C}})$ known explicitly.

$$V_g \xi(t,\omega) \propto \mathrm{GAF}_{\mathbb{C}}(z/\sqrt{2})$$

 $z = \omega + \mathrm{i}t$

Properties of the point process $\mathcal{Z}(GAF_{\mathbb{C}})$:

- invariant under the isometries of \mathbb{C} , i.e., stationary,
- has a uniform density $ho^{(1)}(z)=
 ho^{(1)}=1/\pi$,
- explicit pair correlation function $\rho^{(2)}(z,z') = g_0(|z-z'|)$,
- scaling of the hole probability: $r^{-4}\log p_r \to -3\mathrm{e}^2/4$, as $r \to \infty$

 $p_r = \mathbb{P}$ (no point in the disk of center 0 and radius r)

The point process of the zeros of the spectrogram is not determinantal.

Signal detection based on spatial statistics:

• the K-function

$$K(r) = 2\pi \int_0^r sg_0(s) ds$$
: # pairs at distance less than r

• the F-function

$$F(r) = \mathbb{P}\left(\inf_{z_i \in \mathcal{Z}} \mathrm{d}(z_0, z_i) < r\right)$$
: empty space function

Unorthodox: other GAF, other transforms

Spherical Gaussian Analytic Function

$$\operatorname{GAF}_{\mathbb{S}}(z) = \sum_{k=0}^{N} \xi_k \sqrt{\binom{N}{k}} z^k, \quad \xi_k \sim \mathcal{N}_{\mathbb{C}}(0,1)$$

" Kravchuk transform" of a discrete signal $y = \{y_k, k = 0, 1, ..., N\}$

$$K_{y}(\vartheta,\varphi) = \sum_{n=0}^{N} Ty_{n} \sqrt{\binom{N}{n}} \left(\cos\frac{\vartheta}{2}\right)^{n} \left(\sin\frac{\vartheta}{2}\right)^{N-n} e^{i\varphi n}, \ z = \cot\vartheta/2e^{i\varphi}$$

with $Ty_n = \langle y, k_n \rangle$, $\{k_n, n = 0, 1, ..., N\}$ the Kravchuk functions.

