

The Kravchuk transform:

A novel covariant representation for discrete signals amenable to zero-based detection tests

June 8th 2023

Barbara Pascal, Rémi Bardenet

Probabilities and Statistics Seminar, Institut Élie Cartan de Lorraine, Nancy Signal processing aims to extract information from data.

Data of very diverse types:

- measurements of a physical quantity,
- biological or epidemiological indicators,
- data produced by human activities.

<u>physics</u>: modeling of phenomena <u>mathematics</u>: formalization & evaluation computer science: efficient implementation

Outline of the presentation

- Signal detection: the role of representations
- Time-frequency analysis: the Short-Time Fourier Transform
- Signal detection based on the spectrogram zeros I
- Covariance principle and stationary point processes
- The Kravchuk transform and its zeros
- Numerical implementation of the Kravchuk transform
- Signal detection based on the spectrogram zeros II

Time and frequency: two dual descriptions of temporal signals

A continuous finite energy **signal** is a function of time y(t) with $y \in L^2_{\mathbb{C}}(\mathbb{R})$.

- electrical cardiac activity,
- audio recording,
- seismic activity,
- light intensity on a photosensor
- ...

Information of interest:

- time events, e.g., an earthquake and its replica
- frequency content, e.g., monitoring of the heart beating rate

time

ever-changing world marker of events and evolutions

frequency

waves, oscillations, rhythms intrinsic mechanisms

Signal-plus-noise observation model

A chirp is a transient waveform modulated in amplitude and frequency:

$$x(t) = A_{\nu}(t) \sin\left(2\pi \left(f_1 + (f_2 - f_1)\frac{t + \nu}{2\nu}\right)t\right)$$

White noise is a random variable $\xi(t)$ such that

 $\mathbb{E}[\xi(t)] = 0$ and $\mathbb{E}[\overline{\xi(t)}\xi(t')] = \delta(t - t')$

P. Flandrin: 'A signal is characterized by a structured organization.'

Signal-plus-noise observation model

Noisy observations $y(t) = \operatorname{snr} \times x(t) + \xi(t)$

Signal processing task:

Given an observation y(t)

detection decides whether there is an underlying signal or only noise.

Direct observation

Direct observation

Time-frequency representation

Outline of the presentation

- Signal detection: the role of representations
- Time-frequency analysis: the Short-Time Fourier Transform
- Signal detection based on the spectrogram zeros I
- Covariance principle and stationary point processes
- The Kravchuk transform and its zeros
- Numerical implementation of the Kravchuk transform
- Signal detection based on the spectrogram zeros II

Time-frequency analysis

<u>Time and frequency</u> Short-Time Fourier Transform with window *h*: $V_h y(t, \omega) \triangleq \int_{-\infty}^{\infty} \overline{y(u)} h(u-t) \exp(-i\omega u) du$

Energy density interpretation $S_h y(t, \omega) = |V_h y(t, \omega)|^2$ the spectrogram $\int \int_{-\infty}^{+\infty} S_h y(t, \omega) dt \frac{d\omega}{2\pi} = \int_{-\infty}^{+\infty} |x(t)|^2 dt \quad \text{if} \quad ||h||_2^2 = 1$

Signal, i.e., information of interest: regions of maximal energy.

Denoising in the time-frequency plane: $y = \operatorname{snr} \times x + \xi$, $\operatorname{snr} = 2$

Denoising in the time-frequency plane: $y = \operatorname{snr} \times x + \xi$, $\operatorname{snr} = 2$

only maxima

Denoising in the time-frequency plane: $y = \operatorname{snr} \times x + \xi$, $\operatorname{snr} = 2$

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u,\omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

only maxima

Denoising in the time-frequency plane: $y = \operatorname{snr} \times x + \xi$, $\operatorname{snr} = 0.5$

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u,\omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

only maxima

Denoising in the time-frequency plane: $y = \operatorname{snr} \times x + \xi$, $\operatorname{snr} = 0.5$

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u,\omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

Maxima extraction: reassignment, synchrosqueezing, ridge extraction (Meignen et al., 2017)

Outline of the presentation

- Signal detection: the role of representations
- Time-frequency analysis: the Short-Time Fourier Transform
- Signal detection based on the spectrogram zeros I
- Covariance principle and stationary point processes
- The Kravchuk transform and its zeros
- Numerical implementation of the Kravchuk transform
- Signal detection based on the spectrogram zeros II

 $\operatorname{snr} = 2$

Restriction to the **circular Gaussian window**: $g(t) = \pi^{-1/4} e^{-t^2/2}$

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

 $\operatorname{snr} = 2$

Restriction to the **circular Gaussian window**: $g(t) = \pi^{-1/4} e^{-t^2/2}$

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

 $\operatorname{snr} = 2$

Restriction to the **circular Gaussian window**: $g(t) = \pi^{-1/4} e^{-t^2/2}$

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Gardner & Magnasco, 2006), (Flandrin, 2015)

- Zeros are repelled by the signal.
- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.

Restriction to the **circular Gaussian window**: $g(t) = \pi^{-1/4} e^{-t^2/2}$

Look for the **zeros**, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Gardner & Magnasco, 2006), (Flandrin, 2015)

- Zeros are repelled by the signal.
- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.

Restriction to the **circular Gaussian window**: $g(t) = \pi^{-1/4} e^{-t^2/2}$

Look for the **zeros**, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Gardner & Magnasco, 2006), (Flandrin, 2015)

- Zeros are repelled by the signal.
- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.

Restriction to the **circular Gaussian window**: $g(t) = \pi^{-1/4} e^{-t^2/2}$

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Gardner & Magnasco, 2006), (Flandrin, 2015)

- Zeros are repelled by the signal.
- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.

What can be said theoretically about the zeros of the spectrogram?

Idea assimilate the time-frequency plane with $\mathbb C$ through $z = (\omega + it)/\sqrt{2}$

Idea assimilate the time-frequency plane with $\mathbb C$ through $z = (\omega + it)/\sqrt{2}$

Bargmann factorization

$$V_g y(t,\omega) = \mathrm{e}^{-|z|^2/2} \mathrm{e}^{-\mathrm{i}\omega t/2} B y(z)$$

g the circular Gaussian window

Bargmann transform of the signal y

$$By(z) \triangleq \pi^{-1/4} \mathrm{e}^{-z^2/2} \int_{\mathbb{R}} \overline{y(u)} \exp\left(\sqrt{2}uz - u^2/2\right) \,\mathrm{d}u,$$

By is an **entire** function, almost characterized by its infinitely many zeros:

$$By(z) = z^m e^{C_0 + C_1 z + C_2 z^2} \prod_{n \in \mathbb{N}} \left(1 - \frac{z}{z_n} \right) \exp\left(\frac{z}{z_n} + \frac{1}{2} \left(\frac{z}{z_n}\right)^2\right).$$

Idea assimilate the time-frequency plane with $\mathbb C$ through $z = (\omega + \mathrm{i}t)/\sqrt{2}$

Bargmann factorization

$$V_g y(t,\omega) = \mathrm{e}^{-|z|^2/2} \mathrm{e}^{-\mathrm{i}\omega t/2} B y(z)$$

 \boldsymbol{g} the circular Gaussian window

Theorem The zeros of the Gaussian spectrogram $V_g y(t, \omega)$

- coincide with the zeros of the **entire** function *By*,
- hence are isolated and constitute a Point Process,
- which almost completely characterizes the spectrogram.

(Flandrin, 2015)

Advantages of working with the zeros

- Easy to find compared to relative maxima.
- Form a robust pattern in the time-frequency plane.
- Require little memory space for storage.
- Efficient tools were recently developed in stochastic geometry.

Signal detection based on the spectrogram zeros

(Bardenet, Flamant & Chainais, 2020)

- \mathbf{H}_0 white noisy only, i.e., $y(t) = \xi(t)$
- H_1 presence of a signal, i.e., $y(t) = \operatorname{snr} \times x(t) + \xi(t)$, $\operatorname{snr} > 0$

null hypothesis

alternative hypothesis

Signal detection based on the spectrogram zeros

(Bardenet, Flamant & Chainais, 2020)

• \mathbf{H}_0 white noisy only, i.e., $y(t) = \xi(t)$

10

 $\dot{20}$

• H_1 presence of a signal, i.e., $y(t) = \operatorname{snr} \times x(t) + \xi(t)$, $\operatorname{snr} > 0$

null hypothesis

-20

-10

alternative hypothesis

The zeros of the spectrogram of white noise

Continuous complex white Gaussian noise

(Bardenet et al., 2020), (Bardenet & Hardy, 2020)

 $\xi(t) = \sum_{n=0}^{\infty} \xi[n] h_n(t), \ \xi[n] \sim \mathcal{N}_{\mathbb{C}}(0,1), \quad \{h_n, k = 0, 1, \ldots\} \text{ Hermite functions}$

The zeros of the spectrogram of white noise

Continuous complex white Gaussian noise

(Bardenet et al., 2020), (Bardenet & Hardy, 2020)

 $\xi(t) = \sum_{n=0}^{\infty} \xi[n] h_n(t), \ \xi[n] \sim \mathcal{N}_{\mathbb{C}}(0,1), \quad \{h_n, k = 0, 1, \ldots\}$ Hermite functions

Theorem
$$V_g\xi(t,\omega) = e^{-|z|^2/4}e^{-i\omega t/2} \operatorname{GAF}_{\mathbb{C}}(z)$$
 (Bardenet & Hardy, 2021)
 $\operatorname{GAF}_{\mathbb{C}}(z) = \sum_{n=0}^{\infty} \xi[n] \frac{z^n}{\sqrt{n!}}$ the planar Gaussian Analytic Function and $z = \frac{\omega + it}{\sqrt{2}}$.

The zeros of the planar Gaussian Analytic Function

$$V_g \xi(t,\omega) \stackrel{ ext{non-vanishing}}{\propto} ext{GAF}_{\mathbb{C}}(z)$$
 $z = (\omega + \mathrm{i} t)/\sqrt{2}$

Zeros of $GAF_{\mathbb{C}}$: random set of points forming a **Point Process** characterized by a probability distribution on point configurations

Properties of the Point Process of the zeros of $GAF_{\mathbb{C}}$:

- \bullet invariant under the isometries of $\mathbb C,$ i.e., stationary,
- has a uniform density $ho^{(1)}(z) =
 ho^{(1)} = 1/\pi$,
- explicit two-point correlation function $\rho^{(2)}(z,z') = \rho^{(2)}(|z-z'|)$,
- scaling of the hole probability: $r^{-4}\log p_r
 ightarrow -3\mathrm{e}^2/4$, as $r
 ightarrow\infty$

 $p_r = \mathbb{P}$ (no point in the disk of center 0 and radius r)

The zeros of the planar Gaussian Analytic Function

$$V_g \xi(t,\omega) \stackrel{ ext{non-vanishing}}{\propto} ext{GAF}_{\mathbb{C}}(z)$$
 $z = (\omega + \mathrm{i} t)/\sqrt{2}$

Zeros of $GAF_{\mathbb{C}}$: random set of points forming a **Point Process** characterized by a probability distribution on point configurations

The point process of the zeros of the spectrogram is not **determinantal**.

Monte Carlo envelope test

'Large value of s(y) is a strong indication that there is a signal.'

Tools from stochastic geometry to capture spatial statistics of the zeros.

Unorthodox path: zeros of Gaussian Analytic Functions

The signal creates holes in the zeros pattern: sedond order statistics.

Unorthodox path: zeros of Gaussian Analytic Functions

The signal creates holes in the zeros pattern: sedond order statistics.

A functional statistic: the empty space function

Z a stationary point process, z_0 any reference point

$$F(r) = \mathbb{P}\left(\inf_{z_i \in Z} \mathrm{d}(z_0, z_i) < r\right)$$

 \rightarrow probability to find a zero at distance less than r from z_0

Signal detection based on the spectrogram zeros

Estimation of the *F*-function of a **stationary** Point Process

(Møller, 2007)

$$F(r) = \mathbb{P}\left(\inf_{z_i \in Z} \mathrm{d}(z_0, z_i) < r\right)$$
: empty space function

Estimation of the *F*-function of a **stationary** Point Process

(Møller, 2007)

$$F(r) = \mathbb{P}\left(\inf_{z_i \in Z} d(z_0, z_i) < r\right)$$
: empty space function

$$\widehat{F}(r) = \frac{1}{N_{\#}} \sum_{j=1}^{N_{\#}} \mathbf{1} \left(\inf_{z \in \operatorname{Zeros}} \operatorname{d} \left(z_j, z \right) < r \right)$$

Estimation of the F-function of a stationary Point Process

(Møller, 2007)

$$F(r) = \mathbb{P}\left(\inf_{z_i \in Z} \mathrm{d}(z_0, z_i) < r\right)$$
: empty space function

23/42

Monte Carlo envelope test

$$s(\mathbf{y}) = \sqrt{\int_0^{r_{\max}} \left|\widehat{F}_{\mathbf{y}}(r) - F_0(r)\right|^2 \mathrm{d}r}$$

Test settings: α level of significance, *m* number of samples under \mathbf{H}_0

Index k, chosen so that $\alpha = k/(m+1)$

(i) generate *m* independent samples of complex white Gaussian noise;

(ii) compute their summary statistics $s_1 \ge s_2 \ge \ldots \ge s_m$;

(iii) compute the summary statistic of the observation **y** under concern;

(iv) if $s(y) \ge s_k$, then reject the null hypothesis with confidence $1 - \alpha$.

 $\operatorname{snr} = 1.5$

Detection of a noisy chirp of duration $2\nu = 30$ s

 $\operatorname{snr} = 1.5$

Detection of a noisy chirp of duration $2\nu = 30$ s

Performance: power of the test computed over 200 samples

 $\operatorname{snr} = 1.5$

Detection of a noisy chirp of duration $2\nu = 30$ s

Performance: power of the test computed over 200 samples

- ✓ Fast Fourier Transform ;
- X Low detection power ;
- X Requires large number of samples

 $\operatorname{snr} = 1.5$

Detection of a noisy chirp of duration $2\nu = 30$ s

Performance: power of the test computed over 200 samples

- ✓ Fast Fourier Transform ;
- X Low detection power ;
- X Requires large number of samples

Limitations:

- Necessary discretization of the STFT: arbitrary resolution ;
- Observe only a bounded window: edge corrections to compute $\widehat{F}(r)$.

Other Gaussian Analytic Functions, other transforms?

Short-Time Fourier Transform

$$V_g \xi(t,\omega) \propto \mathsf{GAF}_{\mathbb{C}}(z) = \sum_{n=0}^{\infty} \xi[n] rac{z^n}{\sqrt{n!}}$$

Unbounded phase space $\mathbb C$

 \rightarrow edge corrections

Other Gaussian Analytic Functions, other transforms?

Short-Time Fourier Transform

$$V_g\xi(t,\omega) \propto \mathsf{GAF}_{\mathbb{C}}(z) = \sum_{n=0}^{\infty} \xi[n] \frac{z^n}{\sqrt{n!}}$$

Unbounded phase space $\mathbb C$

ightarrow edge corrections

Compact phase space S^2 ?

 \rightarrow no border!

New transform?

?
$$\propto \text{GAF}_{\mathbb{S}}(z) = \sum_{n=0}^{N} \boldsymbol{\xi}[n] \sqrt{\binom{N}{n}} z^{n}$$

stereographic projection $z=\cot(artheta/2){
m e}^{{
m i}arphi}$

ightarrow spherical coordinates $(artheta, arphi) \in \mathcal{S}^2$

Outline of the presentation

- Signal detection: the role of representations
- Time-frequency analysis: the Short-Time Fourier Transform
- Signal detection based on the spectrogram zeros I
- Covariance principle and stationary point processes
- The Kravchuk transform and its zeros
- Numerical implementation of the Kravchuk transform
- Signal detection based on the spectrogram zeros II

Time and frequency shifts

$$W_{(t,\omega)}y(u) = e^{-i\omega u}y(u-t)$$

Time and frequency shifts

$$W_{(t,\omega)}y(u) = e^{-\mathrm{i}\omega u}y(u-t)$$

$$V_h[\boldsymbol{W}_{(t,\omega)}y](t',\omega') \stackrel{(\text{covariance})}{=} e^{-i(\omega'-\omega)t} V_h y(t'-t,\omega'-\omega),$$

Time and frequency shifts $W_{(t,\omega)}y(u) = e^{-i\omega u}y(u-t)$ $|V_h[W_{(t,\omega)}y](t',\omega')|^2 \stackrel{(\text{covariance})}{=} |V_hy(t'-t,\omega'-\omega)|^2,$

Complex white Gaussian noise

$$\widetilde{\xi} = \mathbf{W}_{(t,\omega)}\xi$$

•
$$\mathbb{E}[\widetilde{\xi}(u)] = e^{-i\omega u} \mathbb{E}[\xi(u-t)] = 0$$

Time and frequency shifts $W_{(t,\omega)}y(u) = e^{-i\omega u}y(u-t)$ $|V_h[W_{(t,\omega)}y](t',\omega')|^2 \stackrel{(\text{covariance})}{=} |V_hy(t'-t,\omega'-\omega)|^2,$

Complex white Gaussian noise

$$\widetilde{\xi} = \boldsymbol{W}_{(t,\omega)}\xi$$

• $\mathbb{E}[\widetilde{\xi}(u)] = e^{-i\omega u} \mathbb{E}[\xi(u-t)] = 0$

•
$$\mathbb{E}[\widetilde{\xi}(u)\widetilde{\xi}(u')] = e^{i\omega(u-u')}\mathbb{E}[\overline{\xi}(u)\overline{\xi}(u')] = \delta(u-u')$$

Time and frequency shifts $W_{(t,\omega)}y(u) = e^{-i\omega u}y(u-t)$ $|V_h[W_{(t,\omega)}y](t',\omega')|^2 \stackrel{(\text{covariance})}{=} |V_hy(t'-t,\omega'-\omega)|^2,$

Complex white Gaussian noise

•
$$\mathbb{E}[\widetilde{\xi}(u)] = e^{-i\omega u} \mathbb{E}[\xi(u-t)] = 0$$

•
$$\mathbb{E}[\overline{\widetilde{\xi}(u)}\widetilde{\xi}(u')] = e^{i\omega(u-u')}\mathbb{E}[\overline{\xi(u)}\xi(u')] = \delta(u-u')$$

Invariance under time-frequency shifts:

$$\widetilde{\xi} = \mathbf{W}_{(t,\omega)} \xi \stackrel{(\mathsf{law})}{=} \xi$$

 $\widetilde{\xi} = \boldsymbol{W}_{(t,\omega)}\xi$

Time and frequency shifts $|V_{h}[W_{(t,\omega)}y](t',\omega')|^{2} \stackrel{(\text{covariance})}{=} |V_{h}y(t'-t,\omega'-\omega)|^{2},$

Complex white Gaussian noise

• $\mathbb{E}[\widetilde{\xi}(u)] = e^{-i\omega u} \mathbb{E}[\xi(u-t)] = 0$

•
$$\mathbb{E}[\overline{\widetilde{\xi}(u)}\widetilde{\xi}(u')] = e^{i\omega(u-u')}\mathbb{E}[\overline{\xi(u)}\xi(u')] = \delta(u-u')$$

Invariance under time-frequency shifts:

$$\widetilde{\xi} = \mathbf{W}_{(t,\omega)} \xi \stackrel{(\mathsf{law})}{=} \xi$$

 $\widetilde{\xi} = \boldsymbol{W}_{(t,\omega)}\xi$

Covariance is the key to get stationarity: how to get covariant transforms?

Time and frequency shifts $W_{(t,\omega)}y(u) = e^{-i\omega u}y(u-t)$ $|V_h[W_{(t,\omega)}y](t',\omega')|^2 \stackrel{(\text{covariance})}{=} |V_hy(t'-t,\omega'-\omega)|^2,$

Time and frequency shifts $W_{(t,\omega)}y(u) = e^{-i\omega u}y(u-t)$ $\left|V_{h}[\boldsymbol{W}_{(t,\omega)}y](t',\omega')\right|^{2} \stackrel{(\text{covariance})}{=} \left|V_{h}y(t'-t,\omega'-\omega)\right|^{2}.$ Weyl-Heisenberg group $\{e^{i\gamma} W_{(t,\omega)}, (\gamma, t, \omega) \in [0, 2\pi] \times \mathbb{R}^2\}$ $\boldsymbol{W}_{(t',\omega')}\boldsymbol{W}_{(t,\omega)} = e^{i\omega t'} \boldsymbol{W}_{(t+t',\omega+\omega')}.$ Coherent state interpretation $\{ \boldsymbol{W}_{(t,\omega)}h, t, \omega \in \mathbb{R} \}$ covariant family $V_{h}y(t,\omega) = \int_{-\infty}^{\infty} \overline{y(u)}h(u-t)\exp(-\mathrm{i}\omega u)\,\mathrm{d}u = \langle y, \boldsymbol{W}_{(t,\omega)}h\rangle$

 $g(t) = \pi^{-1/4} \exp(-t^2/2)$ $\mathbf{T}_{u}g(t) = g(t-u)$ $\mathbf{M}_{\omega}g(t) = g(t) \exp(-i\omega t)$ 30/42

Outline of the presentation

- Signal detection: the role of representations
- Time-frequency analysis: the Short-Time Fourier Transform
- Signal detection based on the spectrogram zeros I
- Covariance principle and stationary point processes
- The Kravchuk transform and its zeros
- Numerical implementation of the Kravchuk transform
- Signal detection based on the spectrogram zeros II

Coherent state interpretation $\mathbf{y} \in \mathbb{C}^{N+1}$

$$T\boldsymbol{y}(\vartheta,\varphi) = \langle \boldsymbol{y}, \boldsymbol{\Psi}_{(\vartheta,\varphi)} \rangle$$

 $\vartheta \in [0,\pi], \varphi \in [0,2\pi]$

Coherent state interpretation $\mathbf{y} \in \mathbb{C}^{N+1}$

$$T \boldsymbol{y}(\vartheta, \varphi) = \langle \boldsymbol{y}, \boldsymbol{\Psi}_{(\vartheta, \varphi)} \rangle$$

 $\vartheta \in [0,\pi], \varphi \in [0,2\pi]$

SO(3) coherent states (Gazeau, 2009)

$$\Psi_{\vartheta,\varphi} = \sum_{n=0}^{N} \sqrt{\binom{N}{n}} \left(\cos\frac{\vartheta}{2}\right)^n \left(\sin\frac{\vartheta}{2}\right)^{N-n} e^{in\varphi} \boldsymbol{q}_n = \boldsymbol{R}_{\boldsymbol{u}(\vartheta,\varphi)} \Psi_{(0,0)},$$

 $oldsymbol{y} \in \mathbb{C}^{N+1}$ *Coherent state* interpretation

$$T \boldsymbol{y}(\vartheta, \varphi) = \langle \boldsymbol{y}, \boldsymbol{\Psi}_{(\vartheta, \varphi)} \rangle$$

 $\vartheta \in [0,\pi], \varphi \in [0,2\pi]$

SO(3) coherent states (Gazeau, 2009)

$$\Psi_{\vartheta,\varphi} = \sum_{n=0}^{N} \sqrt{\binom{N}{n}} \left(\cos\frac{\vartheta}{2}\right)^n \left(\sin\frac{\vartheta}{2}\right)^{N-n} e^{in\varphi} \boldsymbol{q}_n = \boldsymbol{R}_{\boldsymbol{u}(\vartheta,\varphi)} \Psi_{(0,0)},$$

Kravchuk transform $\{\boldsymbol{q}_n, n = 0, 1, ..., N\}$ the Kravchuk functions

$$T \boldsymbol{y}(z) = rac{1}{\sqrt{(1+|z|^2)^N}} \sum_{n=0}^N \langle \boldsymbol{y}, \boldsymbol{q}_n
angle \sqrt{\binom{N}{n}} z^n, \quad z = \operatorname{cot}(\vartheta/2) \mathrm{e}^{\mathrm{i} arphi}$$

Theorem
$$T\xi(\vartheta,\varphi) = \sqrt{(1+|z|^2)}^{-N} \operatorname{GAF}_{\mathbb{S}}(z), \qquad z = \cot(\vartheta/2) e^{i\varphi}$$

 $\operatorname{GAF}_{\mathbb{S}}(z) = \sum_{n=0}^{N} \xi[n] \sqrt{\binom{N}{n}} z^n$ the spherical Gaussian Analytic Function
(Pascal & Bardenet, 2022)

Outline of the presentation

- Signal detection: the role of representations
- Time-frequency analysis: the Short-Time Fourier Transform
- Signal detection based on the spectrogram zeros I
- Covariance principle and stationary point processes
- The Kravchuk transform and its zeros
- Numerical implementation of the Kravchuk transform
- Signal detection based on the spectrogram zeros II

Practical computation of the Kravchuk transform

Kravchuk transform $\{q_n, n = 0, 1, ..., N\}$ the Kravchuk basis $T\mathbf{y}(z) = \frac{1}{\sqrt{(1+|z|^2)^N}} \sum_{n=0}^N \langle \mathbf{y}, \mathbf{q}_n \rangle \sqrt{\binom{N}{n}} z^n, \quad z = \cot(\vartheta/2) e^{i\varphi}$ \rightarrow first: basis change, i.e., computation of $\langle \mathbf{y}, \mathbf{q}_n \rangle = \sum_{\ell=0}^N \overline{\mathbf{y}[\ell]} q_n(\ell; N)$

Practical computation of the Kravchuk transform

Kravchuk transform $\{\boldsymbol{q}_n, n = 0, 1, ..., N\}$ the Kravchuk basis $T \boldsymbol{y}(z) = \frac{1}{\sqrt{(1+|z|^2)^N}} \sum_{n=0}^N \langle \boldsymbol{y}, \boldsymbol{q}_n \rangle \sqrt{\binom{N}{n}} z^n, \quad z = \cot(\vartheta/2) e^{i\varphi}$

 \rightarrow first: basis change, i.e., computation of $\langle \boldsymbol{y}, \boldsymbol{q}_n \rangle = \sum_{\ell=0}^{N} \overline{\boldsymbol{y}[\ell]} q_n(\ell; N)$

Evaluation of Kravchuk functions
$$q_n(\ell; N) = \frac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell; N) \sqrt{\binom{N}{\ell}}$$

 $(N-n)Q_{n+1}(t; N) = (N-2t)Q_n(t; N) - nQ_{n-1}(t; N),$

 $\{Q_n(t; N), n = 0, 1, ..., N\} \text{ orthogonal family of Kravchuk polynomials}$ $\sum_{\ell=0}^{N} {N \choose \ell} Q_n(\ell; N) Q_{n'}(\ell; N) = 2^N {N \choose n}^{-1} \delta_{n,n'}$

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N - n)Q_{n+1}(t; N) = (N - 2t)Q_n(t; N) - nQ_{n-1}(t; N),$$

$$q_n(\ell;N) = \frac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell;N) \sqrt{\binom{N}{\ell}}$$

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N-n)Q_{n+1}(t;N) = (N-2t)Q_n(t;N) - nQ_{n-1}(t;N),$$

$$q_n(\ell; N) = rac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell; N) \sqrt{\binom{N}{\ell}}$$

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N-n)Q_{n+1}(t;N) = (N-2t)Q_n(t;N) - nQ_{n-1}(t;N),$$

$$q_n(\ell; N) = rac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell; N) \sqrt{\binom{N}{\ell}}$$

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N-n)Q_{n+1}(t;N) = (N-2t)Q_n(t;N) - nQ_{n-1}(t;N),$$

$$q_n(\ell; N) = rac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell; N) \sqrt{\binom{N}{\ell}}$$

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N-n)Q_{n+1}(t;N) = (N-2t)Q_n(t;N) - nQ_{n-1}(t;N),$$

$$q_n(\ell; N) = rac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell; N) \sqrt{\binom{N}{\ell}}$$

Instability of the computation of Kravchuk polynomials

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N-n)Q_{n+1}(t;N) = (N-2t)Q_n(t;N) - nQ_{n-1}(t;N),$$

(ii) multiplication by the binomial coefficients

$$q_n(\ell; N) = rac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell; N) \sqrt{\binom{N}{\ell}}$$

Instability of the computation of Kravchuk polynomials

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N-n)Q_{n+1}(t;N) = (N-2t)Q_n(t;N) - nQ_{n-1}(t;N),$$

(ii) multiplication by the binomial coefficients

$$q_n(\ell; N) = rac{1}{\sqrt{2^N}} \sqrt{inom{N}{n}} Q_n(\ell; N) \sqrt{inom{N}{\ell}}$$

Instability of the computation of Kravchuk polynomials

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials

$$(N-n)Q_{n+1}(t;N) = (N-2t)Q_n(t;N) - nQ_{n-1}(t;N),$$

(ii) multiplication by the binomial coefficients

$$q_n(\ell; N) = rac{1}{\sqrt{2^N}} \sqrt{\binom{N}{n}} Q_n(\ell; N) \sqrt{\binom{N}{\ell}}$$

 \rightarrow estimated basis is **not orthogonal**! Not possible to compute $\langle y, q_n \rangle$.

Kravchuk transform $\{\boldsymbol{q}_n, n = 0, 1, ..., N\}$ the Kravchuk basis $T\boldsymbol{y}(z) = \frac{1}{\sqrt{(1+|z|^2)^N}} \sum_{n=0}^N \left(\sum_{\ell=0}^N \overline{\boldsymbol{y}[\ell]} q_n(\ell; N)\right) \sqrt{\binom{N}{n}} z^n \rightarrow \text{intractable}$

A generative function for Kravchuk polynomials

$$\sum_{n=0}^{N} {\binom{N}{n}} Q_{n}(\ell; N) z^{n} = (1-z)^{\ell} (1+z)^{N-\ell}$$

$$\implies \sum_{n=0}^{N} \sqrt{\binom{N}{n}} q_{n}(\ell; N) z^{n} = \sqrt{\binom{N}{\ell}} \frac{(1-z)^{\ell} (1+z)^{N-\ell}}{\sqrt{2^{N}}}$$

$$T \mathbf{y}(z) = \frac{1}{\sqrt{(1+|z^{2}|)^{N}}} \sum_{\ell=0}^{N} \sqrt{\binom{N}{\ell}} \overline{\mathbf{y}[\ell]} \frac{(1-z)^{\ell} (1+z)^{N-\ell}}{\sqrt{2^{N}}}$$

u no more Fast Fourier Transform algorithm using $z^n = \cot(artheta/2)^n \mathrm{e}^{\mathrm{i} n arphi}$

Detection of the zeros of the Kravchuk spectrogram $|Ty(z_i)|^2 = 0$

Advantage compared to Fourier: can tune the resolution of phase space.

Detection of the zeros of the Kravchuk spectrogram $|T \mathbf{y}(z_i)|^2 = 0$

Advantage compared to Fourier: can tune the resolution of phase space.

Minimal Grid Neighbors

Detection of the zeros of the Kravchuk spectrogram $|Ty(z_i)|^2 = 0$

Advantage compared to Fourier: can tune the resolution of phase space.

Proposition: all local minima of $|Ty(z)|^2$ are zeros.

38/42

Outline of the presentation

- Signal detection: the role of representations
- Time-frequency analysis: the Short-Time Fourier Transform
- Signal detection based on the spectrogram zeros I
- Covariance principle and stationary point processes
- The Kravchuk transform and its zeros
- Numerical implementation of the Kravchuk transform
- Signal detection based on the spectrogram zeros II

Performance: power of the test computed over 200 samples

Performance: power of the test computed over 200 samples

- \checkmark higher detection power
- ✓ more robust to small N
- 🗡 no fast algorithm yet

Performance: power of the test computed over 200 samples

- ✓ higher detection power
- \checkmark more robust to small N
- 🗡 no fast algorithm yet

Advantages of using Kravchuk vs. Fourier spectrogram

- intrinsically encoded resolution: no need for prior knowledge
- compact phase space: no edge correction

Point Processes in time-frequency analysis

Take home messages

- Novel covariant discrete Kravchuk transform $T \mathbf{y}(\vartheta, \varphi)$
 - * Interpreted as a coherent state decomposition,
 - * Representation on a compact phase space,
 - * Zeros of the Kravchuk spectrogram of white noise fully characterized.
- Signal detection based on spectrogram zeros
 - * Preliminary work using the zeros of the Fourier spectrogram,
 - * Significant improvement using the Kravchuk spectrogram.

Pascal & Bardenet, 2022: arxiv:2202.03835 GitHub: bpascal-fr/kravchuk-transform-and-its-zeros

Work in progress and perspectives

- Interpretation of the action of $\mathrm{SO}(3)$ on \mathbb{C}^{N+1} ;
- Implementation of the inversion formula: denoising based on zeros ;
- Design of a Kravchuk FFT counterpart ;
- Convergence of Kravchuk toward the Fourier spectrogram as $N \to \infty$.

Opening: can the Kravchuk spectrogram have multiple zeros?

Spherical Gaussian Analytic Function

$$\mathsf{GAF}_{\mathbb{S}}(z) = \sum_{n=0}^{N} \boldsymbol{\xi}[n] \sqrt{\binom{N}{n}} z^{n}$$

with $\boldsymbol{\xi}[n] \sim \mathcal{N}_{\mathbb{C}}(0,1)$ i.i.d.

 \rightarrow only simple zeros

General case
$$T \mathbf{y}(z) = \sqrt{(1+|z|^2)}^{-N} \sum_{n=0}^{N} \sqrt{\binom{N}{n}} (\mathbf{Q} \mathbf{y}) [n] z^n$$

If **y** deterministic, such that $(\mathbf{Q}\mathbf{y})[n] = \sqrt{\binom{N}{n}} a^{N-n} b^n, a \in \mathbb{C}, b \in \mathbb{C}^*,$

$$\sqrt{(1+|z|^2)}^{-N}\sum_{n=0}^N\sqrt{\binom{N}{n}}\left(\mathbf{Q}\mathbf{y}\right)[n]z^n=(a+bz)^N$$

ightarrow -a/b multiple root of order of degeneracy N

Unorthodox path: zeros of Gaussian Analytic Functions

The signal creates holes in the zeros pattern: sedond order statistics.

Functional statistics:

- the empty space function $F(r) = \mathbb{P}\left(\inf_{z_i \in Z} d(z_0, z_i) < r\right) : \text{ probability to find a zero at less than } r$
- Ripley's *K*-function $K(r) = 2\pi \int_0^r sg_0(s) ds$: expected **#** of pairs at distance less than *r*

Detection test: choice of the functional statistic

Detection test: choice of the functional statistic

Ripley's K functional vs. empty space functional F

44/42

Detection test: snr and relative duration of the signal

Fixed observation window of 40 s

short time event

Detection test: snr and relative duration of the signal

Fixed observation window of 40 s

Robustness to small number of samples and short duration.

medium noise level

Detection test: snr and relative duration of the signal

Fixed observation window of 40 s

Robustness to small number of samples and short duration.

high noise level

