

Analyse de données non stationnaires : représentations, théorie, algorithmes et applications.

Barbara Pascal

March 7th 2022

Laboratoire Mathématiques Appliquées À Paris 5 (MAP5)

Groupe de travail Images

Part I: Texture segmentation based on fractal attributes

Textured image segmentation

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega=\Omega_1\bigsqcup\ldots\bigsqcup\Omega_K$

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega=\Omega_1\bigsqcup\ldots\bigsqcup\Omega_K$

Fractals attributes

• variance σ^2 amplitude of variations

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

 $\blacktriangleright \sigma^2$ and *h* piecewise constant

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

- $\blacktriangleright \sigma^2$ and *h* piecewise constant
- region Ω_k characterized by (σ_k^2, h_k)

$$(h_2, \sigma_2^2)$$

$$(h_1, \sigma_1^2)$$

$$(h_1, \sigma_1^2)$$

$$(h_1, \sigma_1^2)$$

Textured image

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Proposition (Jaffard, 2004), (Wendt, 2008)

Scale

$$\log (\mathcal{L}_{a,\cdot}) \underset{a \to 0}{\simeq} \log(a)_{\text{regularity}} + \underset{\substack{\boldsymbol{v} \\ \propto \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}}{\boldsymbol{v}}$$

Textured image Scale

5/48

Textured image $a = 2^1$ $a = 2^2$ Scale $a = 2^5$. . .

Proposition (Jaffard, 2004), (Wendt, 2008)

$$\log (\mathcal{L}_{a,\cdot}) \simeq_{a \to 0} \log(a) \frac{h}{regularity} + \frac{v}{\underset{(variance)}{\sim} \log(\sigma^{2})}$$

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

 $\log(a)$

Textured image Scale $a = 2^1$ $a = 2^2$ $a = 2^5$. . .

Proposition (Jaffard, 2004), (Wendt, 2008) $\log\left(\boldsymbol{\mathcal{L}}_{\boldsymbol{a},\cdot}\right) \underset{\boldsymbol{a} \to 0}{\simeq} \log(\boldsymbol{a}) \frac{\boldsymbol{h}}{\boldsymbol{\mathsf{regularity}}} + \frac{\boldsymbol{v}}{\boldsymbol{\mathsf{v}}\log(\sigma^2)}$ (variance)

$$\log(\mathcal{L}_{a,\cdot})$$

Local maximum of wavelet coefficients: \mathcal{L}_{a} .

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

$$\log \left(\mathcal{L}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\text{regularity}} + \underset{\substack{ \propto \log(\sigma^2) \\ (\text{variance})}}{\mathsf{v}}$$

Textured imageLocal maximum of wavelet coefficients: $\mathcal{L}_{a,.}$ Scale $a = 2^1$ $a = 2^2$ $a = 2^5$ Image: Image conduction of the second se

Proposition (Jaffard, 2004), (Wendt, 2008)
$$\log (\mathcal{L}_{a,\cdot}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underbrace{\mathbf{v}}_{\substack{\propto \log(\sigma^2) \\ (\text{variance})}}$$

$$\log(\mathcal{L}_{a,\cdot})$$

5/48

Textured image $a = 2^1$ Scale $a = 2^2$ $a = 2^5$. . .

Proposition (Jaffard, 2004), (Wendt, 2008)
$$\log (\mathcal{L}_{a,\cdot}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underbrace{\mathbf{v}}_{\substack{ \propto \log(\sigma^2) \\ (\text{variance})}}$$

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

$$\begin{split} \textbf{Linear regression} \quad & \log{(\mathcal{L}_{a,\cdot})} \simeq \log(a) \frac{h}{regularity} + \frac{v}{\propto \log(\sigma^2)} \\ & \left(\widehat{\boldsymbol{h}}^{\text{LR}}, \widehat{\boldsymbol{v}}^{\text{LR}}\right) = \operatorname*{argmin}_{h, \boldsymbol{v}} \sum_{a=a_{\min}}^{a_{\max}} \left\|\log{(\mathcal{L}_{a,\cdot})} - \log(a)\boldsymbol{h} - \boldsymbol{v}\right\|^2 \end{split}$$

Textured image

 \longrightarrow large estimation variance

A posteriori regularization

Filter smoothing (linear)

$$\left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \widehat{\boldsymbol{h}}^{\mathrm{LR}}$$

Linear regression $\widehat{\pmb{h}}^{\mathrm{LR}}$

Lissage

A posteriori regularization

ightarrow cumulative estimation variance and regularization bias

 $\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \boldsymbol{h} - \boldsymbol{v}\|^2}{\underset{\rightarrow \text{ fidelity to the log-linear model}}{\text{Least-Squares}}}$ $\log (\mathcal{L}_{a,\cdot})$ $\log(a)$

Finite differences $D_1 x$ (horizontal), $D_2 x$ (vertical) in each pixel

Finite differences $\mathbf{D}\mathbf{x} = [\mathbf{D}_1\mathbf{x}, \mathbf{D}_2\mathbf{x}]$

<u>Free:</u> \boldsymbol{h} , \boldsymbol{v} are **independently** piecewise constant $\mathcal{Q}_{\mathsf{F}}(\mathsf{D}\boldsymbol{h},\mathsf{D}\boldsymbol{v};\alpha) = \alpha \|\mathsf{D}\boldsymbol{h}\|_{2,1} + \|\mathsf{D}\boldsymbol{v}\|_{2,1}$

Finite differences $\mathbf{D}\mathbf{x} = [\mathbf{D}_1\mathbf{x}, \mathbf{D}_2\mathbf{x}]$

<u>Free:</u> \boldsymbol{h} , \boldsymbol{v} are independently piecewise constant $\mathcal{Q}_{\mathsf{F}}(\mathsf{D}\boldsymbol{h},\mathsf{D}\boldsymbol{v};\alpha) = \alpha \|\mathsf{D}\boldsymbol{h}\|_{2,1} + \|\mathsf{D}\boldsymbol{v}\|_{2,1}$

<u>Co-localized:</u> h, v are concomitantly piecewise constant $Q_{C}(Dh, Dv; \alpha) = \|[\alpha Dh, Dv]\|_{2,1}$

• gradient descent $\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$

• gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$

▶ implicit subgradient descent: proximal point algorithm

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

• gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$

implicit subgradient descent: proximal point algorithm

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

splitting proximal algorithm

$$\begin{aligned} \mathbf{y}^{n+1} &= \operatorname{prox}_{\sigma(\lambda \mathcal{Q})^*} \left(\mathbf{y}^n + \sigma \mathbf{D} \bar{\mathbf{x}}^n \right) \\ \mathbf{x}^{n+1} &= \operatorname{prox}_{\tau \parallel \mathcal{L} - \mathbf{\Phi} \cdot \parallel_2^2} \left(\mathbf{x}^n - \tau \mathbf{D}^\top \mathbf{y}^{n+1} \right), \quad \mathbf{\Phi} : (\mathbf{h}, \mathbf{v}) \mapsto \{ \log(\mathbf{a})\mathbf{h} + \mathbf{v} \}_{\mathbf{a}} \\ \bar{\mathbf{x}}^{n+1} &= 2\mathbf{x}^{n+1} - \mathbf{x}^n \end{aligned}$$

• gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$

implicit subgradient descent: proximal point algorithm

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

splitting proximal algorithm

$$\begin{aligned} \mathbf{y}^{n+1} &= \operatorname{prox}_{\sigma(\lambda \mathcal{Q})^*} \left(\mathbf{y}^n + \sigma \mathbf{D} \bar{\mathbf{x}}^n \right) \\ \mathbf{x}^{n+1} &= \operatorname{prox}_{\tau \parallel \mathcal{L} - \Phi \cdot \parallel_2^2} \left(\mathbf{x}^n - \tau \mathbf{D}^\top \mathbf{y}^{n+1} \right), \quad \Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{ \log(\mathbf{a})\mathbf{h} + \mathbf{v} \}_{\mathbf{a}} \\ \bar{\mathbf{x}}^{n+1} &= 2\mathbf{x}^{n+1} - \mathbf{x}^n \end{aligned}$$

Accelerated algorithm based on strong-convexity

Accelerated algorithm based on strong-convexity

Convexity properties

Convexity properties

• $\varphi \mu$ -strongly convex iff $\varphi - \frac{\mu}{2} \|\cdot\|^2$ convex

Convexity properties

Strong-convexity

- $\varphi \mu$ -strongly convex iff $\varphi \frac{\mu}{2} \| \cdot \|^2$ convex
- $\varphi \ C^2$ with Hessian matrix $\pmb{H} \varphi \succeq \pmb{0} \implies \mu = \min \operatorname{Sp}(\pmb{H} \varphi)$

Strong-convexity

- $\varphi \mu$ -strongly convex iff $\varphi \frac{\mu}{2} \|\cdot\|^2$ convex
- $\varphi \ C^2$ with Hessian matrix $H\varphi \succ 0 \implies \mu = \min \operatorname{Sp}(H\varphi)$

Proposition (Pascal, 2019)

$$\sum_{a} \|\log \mathcal{L} - \log(a)h - \mathbf{v}\|^2 \text{ is } \mu \text{-strongly convex.}$$

$$\boxed{\begin{array}{c|c} a_{\min} = 2^1, & a_{\max} & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 \\ \hline \mu = \min \operatorname{Sp}\left(2\Phi^{\top}\Phi\right) & 0.29 & \mathbf{0.72} & 1.20 & 1.69 & 2.20 \end{array}}$$

Accelerated algorithm based on strong-convexity

Accelerated Primal-dual algorithm (Chambolle, 2011)

for
$$n = 0, 1, ...$$

 $\mathbf{y}^{n+1} = \operatorname{prox}_{\sigma_n(\lambda Q)^*} (\mathbf{y}^n + \sigma_n \mathbf{D} \bar{\mathbf{x}}^n)$
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau_n \parallel \mathcal{L} - \mathbf{\Phi} \cdot \parallel_2^2} (\mathbf{x}^n - \tau_n \mathbf{D}^\top \mathbf{y}^{n+1})$
 $\theta_n = \sqrt{1 + 2\mu\tau_n}, \quad \tau_{n+1} = \tau_n/\theta_n, \quad \sigma_{n+1} = \theta_n \sigma_n$
 $\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta_n^{-1} (\mathbf{x}^{n+1} - \mathbf{x}^n)$

Accelerated algorithm based on strong-convexity

$$\underset{h, \mathbf{v}}{\text{minimize}} \quad \sum_{a} \frac{\|\log \mathcal{L}_{a, .} - \log(a)h - \mathbf{v}\|^2}{\text{Least-Squares}} \quad + \quad \lambda \frac{\mathcal{Q}(\mathsf{D}h, \mathsf{D}\mathbf{v}; \alpha)}{\text{Total Variation}}$$

Textured image Lin. reg. $\widehat{\pmb{h}}^{\mathrm{LR}}$

$$\begin{array}{l} \underset{h,\mathbf{v}}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} + \lambda \frac{\mathcal{Q}(\mathsf{D}h,\mathsf{D}\mathbf{v};\alpha)}{\operatorname{Total Variation}} \\ \end{array}$$

$$\begin{array}{l} \text{Textured image} & \operatorname{Lin. reg.} \ \widehat{h}^{\mathrm{LR}} & \underset{\operatorname{contours}}{\operatorname{formula}} & \underset{h}{\operatorname{formula}} & \underset{\operatorname{estimate}}{\operatorname{Threshold}} \\ \end{array}$$

$$\begin{array}{l} \text{Image} & \underset{\operatorname{estimate}}{\operatorname{Threshold}} & \underset{\operatorname{estimate}}{\operatorname{Threshold}} & \underset{\operatorname{estimate}}{\operatorname{Threshold}} \\ \end{array}$$

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Solid foam

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

- $ightarrow\,$ 1600 imes 1100 pixels
- ightarrow video: \sim 1000 images
- ightarrow phase diagram: ightarrow 10 flow rates

Low activity: $Q_{\rm G}=300 {\rm mL}/{\rm min}$ - $Q_{\rm L}=300 {\rm mL}/{\rm min}$

Low activity: $Q_{\rm G}=300 {\rm mL}/{\rm min}$ - $Q_{\rm L}=300 {\rm mL}/{\rm min}$

Liquid: $h_{\rm L} = 0.4$ $\sigma_{\rm hard}^2 = 10^{-2}$

Gas: $h_{\rm G} = 0.9$

Transition: $Q_{\rm G} = 400 \text{mL}/\text{min}$ - $Q_{\rm L} = 700 \text{mL}/\text{min}$

High activity: $Q_{\rm G} = 1200 {
m mL}/{
m min}$ - $Q_{\rm L} = 300 {
m mL}/{
m min}$

High activity: $Q_{
m G} = 1200 {
m mL}/{
m min}$ - $Q_{
m L} = 300 {
m mL}/{
m min}$

$$(\widehat{h}, \widehat{v})(\mathcal{L}; \lambda, \alpha) = \operatorname*{argmin}_{h, v} \sum_{a} \|\log \mathcal{L}_{a, .} - \log(a)h - v\|^2 + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$(\hat{\boldsymbol{h}}, \hat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} ||\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}||^2 + \boldsymbol{\lambda} \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \boldsymbol{\alpha})$$
Lin. reg. $\hat{\boldsymbol{h}}^{LR}$
($\boldsymbol{\lambda}, \boldsymbol{\alpha}) = (0, 0)$

too small

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \text{ discriminant, } \boldsymbol{v}: \text{ auxiliary}$$

$$(\widehat{\mathbf{h}}, \widehat{\mathbf{v}}) (\mathbf{\mathcal{L}}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{a} \|\log \mathbf{\mathcal{L}}_{a,.} - \log(a)\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

h: discriminant, **v**: auxiliary

 $ar{m{h}}$: true regularity $\mathcal{R}(\lambda, \alpha) = \left\| \widehat{m{h}}(\mathcal{L}; \lambda, \alpha) - \overline{m{h}} \right\|^2$

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

$$\widehat{(\boldsymbol{h}, \boldsymbol{\hat{v}})} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

h: *true* regularity $\mathcal{R}(\lambda,\alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L};\lambda,\alpha) - \overline{\boldsymbol{h}} \right\|^2$ $\mathbf{2}$ 15000 1 $\log_{10}(\lambda)$ 10000 5000 -1 -2 -2 0 $\mathbf{2}$ $\log_{10}(\alpha)$

h: unknown!

$$\widehat{(\boldsymbol{h}, \boldsymbol{\hat{v}})} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

h: *true* regularity $\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^2$ 15000 1 $\log_{10}(\lambda)$ 10000 5000 -1 -2 -2 0 $\mathbf{2}$ $\log_{10}(\alpha)$

Stein Unbiased Risk Estimate (SURE)

Stein Unbiased Risk Estimate (Principe)

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linear)} \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(nonlinear)} \end{cases}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linear)} \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(nonlinear)} \end{cases}$$

Quadratic error $R(\lambda) \triangleq \mathbb{E}_{\zeta} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\zeta} \widehat{R}(\boldsymbol{y}; \lambda)$ $\bar{\boldsymbol{x}}$ unknown

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linear)} \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(nonlinear)} \end{cases}$$

Quadratic error $R(\lambda) \triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\boldsymbol{\zeta}} \widehat{R}(\boldsymbol{y}; \lambda)$

 $ar{m{x}}$ unknown

Theorem (Stein, 1981)

Let $(\boldsymbol{y};\lambda)\mapsto \widehat{\boldsymbol{x}}(\boldsymbol{y};\lambda)$ an estimator of $\bar{\boldsymbol{x}}$

weakly differentiable w.r.t. y,

• such that
$$\boldsymbol{\zeta} \mapsto \langle \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{\zeta} \rangle$$
 is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \rho^2 \mathbf{I})$.
 $\widehat{R}(\boldsymbol{y}; \lambda) \triangleq \|\widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y}\|^2 + 2\rho^2 \operatorname{tr} (\partial_{\boldsymbol{y}} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda)) - \rho^2 P$
 $\Longrightarrow R(\lambda) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\boldsymbol{y}; \lambda)].$
Generalized Stein Unbiased Risk Estimate

Observations $\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^{P}$, $\bar{\mathbf{x}} \in \mathbb{R}^{N}$, $\mathbf{\Phi} : \mathbb{R}^{P \times N}$ and $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ **E.g.** the estimators $\hat{\mathbf{h}}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours $\log \mathcal{L} = \mathbf{\Phi}(\bar{\mathbf{h}}, \bar{\mathbf{v}}) + \boldsymbol{\zeta}$ $\boldsymbol{\Phi} : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_{a}$ $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ $\mathcal{R} = \|\hat{\mathbf{h}} - \bar{\mathbf{h}}\|^{2}$ $\mathbf{\Pi} : (\mathbf{h}, \mathbf{v}) \mapsto (\mathbf{h}, \mathbf{0})$

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Observations $\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^{P}$, $\bar{\mathbf{x}} \in \mathbb{R}^{N}$, $\mathbf{\Phi} : \mathbb{R}^{P \times N}$ and $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ **E.g.** the estimators $\hat{\mathbf{h}}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours $\log \mathcal{L} = \mathbf{\Phi}(\bar{\mathbf{h}}, \bar{\mathbf{v}}) + \boldsymbol{\zeta}$ $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ $\mathcal{R} = \|\hat{\mathbf{h}} - \bar{\mathbf{h}}\|^{2}$ $\mathbf{\Phi} : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_{a}$ $\overleftarrow{\mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v}}$ $\mathbf{\Pi} : (\mathbf{h}, \mathbf{v}) \mapsto (\mathbf{h}, \mathbf{0})$

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Theorem (Pascal, 2020)

Let $(oldsymbol{y};oldsymbol{\Lambda})\mapsto \widehat{oldsymbol{x}}(oldsymbol{y};oldsymbol{\Lambda})$ an estimator of $ar{oldsymbol{x}}$

- weakly differentiable w.r.t. y,
- such that $\boldsymbol{\zeta} \mapsto \langle \Pi \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{A} \boldsymbol{\zeta} \rangle$ is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathcal{S}})$.

$$\widehat{R}(\mathbf{\Lambda}) \triangleq \|\mathbf{A}(\mathbf{\Phi}\widehat{\mathbf{x}}(\mathbf{y};\mathbf{\Lambda}) - \mathbf{y})\|^2 + 2\mathrm{tr}\left(\mathbf{S}\mathbf{A}^{\top}\mathbf{\Pi}\partial_{\mathbf{y}}\widehat{\mathbf{x}}(\mathbf{y};\mathbf{\Lambda})\right) - \mathrm{tr}\left(\mathbf{A}\mathbf{S}\mathbf{A}^{\top}\right)$$

 $\Longrightarrow R_{\mathbf{\Pi}}(\mathbf{\Lambda}) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\mathbf{\Lambda})].$

$$\widehat{(\boldsymbol{h}, \hat{\boldsymbol{v}})} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} ||\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}||^{2} + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\overline{\boldsymbol{h}}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\boldsymbol{\mathcal{L}}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^{2}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\boldsymbol{\mathcal{L}}; \lambda, \alpha | \boldsymbol{\mathcal{S}})$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\boldsymbol{\mathcal{L}}; \lambda, \alpha | \boldsymbol{\mathcal{S}})$$

$$\widehat{(\hat{h}, \hat{v})} (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$\overline{h}: true regularity$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$(\hat{\boldsymbol{h}}, \hat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^{2} + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\bar{\boldsymbol{h}}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \hat{\boldsymbol{h}}(\boldsymbol{\mathcal{L}}; \lambda, \alpha) - \bar{\boldsymbol{h}} \right\|^{2}$$

$$\widehat{\boldsymbol{\mathcal{L}}}_{2}^{2} \underbrace{\int_{0}^{1} \int_{0}^{1} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{1} \underbrace{\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{10000} \int_{0}^{1} \int$$

$$\widehat{(\hat{h}, \hat{v})} (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$\overline{h}: true regularity$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

Parameter tuning (Automatic selection)

$$\widehat{(\hat{h}, \hat{v})} (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$\overline{h}: true regularity$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\lambda, \alpha) - \widehat{h}(\lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\lambda, \alpha) - \widehat{h}(\lambda,$$

Automated selection of regularization parameters

$$(\hat{h}, \hat{v}) (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(Dh, Dv; \alpha)$$

$$Example \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \lambda^{\dagger}, \alpha^{\dagger}) \\ (grid) \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \hat{\lambda}^{\dagger}, \hat{\alpha}^{\dagger}) \\ (grid) \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \hat{\lambda}^{\dagger}, \hat{\alpha}^{\dagger}) \\ (quasi-Newton) \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \hat{\lambda}^{\mathsf{qN}}, \hat{\alpha}^{\mathsf{qN}}) \\ (quasi-Newton) \qquad \qquad \hat{h}^{\mathsf{P}}(\mathcal{L}; \hat{\lambda}^$$

225 calls of the estimator over the grid v.s. 40 for quasi-Newton

26/48

Take home messages

- > Fractal texture model based on local regularity and variance
 - * appropriate for real-world texture characterization
 - * complementary attributes able to finely discriminate

Take home messages

- > Fractal texture model based on local regularity and variance
 - * appropriate for real-world texture characterization
 - * complementary attributes able to finely discriminate
- Simultaneous estimation and regularization
 - * significant decrease of the estimation error
 - * accurate and regular contours thanks to co-localized penalization

Take home messages

- Fractal texture model based on local regularity and variance
 - * appropriate for real-world texture characterization
 - * complementary attributes able to finely discriminate
- Simultaneous estimation and regularization
 - * significant decrease of the estimation error
 - * accurate and regular contours thanks to co-localized penalization

Fast algorithms for automated tuning of hyperparameters

- * possibility to manage huge amount of data
- * amenable to process data corrupted by correlated Gaussian noise
- * ensured objectivity and reproducibility

Part II: Point processes in time-frequency analysis

Time-frequency analysis of nonstationary signals

 $y:\mathbb{R} \to \mathbb{C}$ function of time.

• electrical cardiac activity,

- audio recording,
- seismic activity,
- light intensity on a photosensor
- . . .

Information of interest:

- time events
- frequency content

e.g., an earthquake and its replica e.g., monitoring of the heart beating rate

time

ever-changing world marker of events and evolutions

frequency

waves, oscillations, rhythms intrinsic mechanisms

Time-frequency analysis of nonstationary signals

Short-Time Fourier Transform with window *h*: $V_h y(t, \omega) \triangleq \int_{-\infty}^{\infty} \overline{y(u)} h(u-t) \exp(-i\omega u) du$

Energy density interpretation

$$\int \int_{-\infty}^{+\infty} |V_h y(t,\omega)|^2 \, \mathrm{d}t \frac{\mathrm{d}\omega}{2\pi} = \int_{-\infty}^{+\infty} |x(t)|^2 \, \mathrm{d}t \quad \text{if} \quad \|h\|_2^2 = 1$$

Signal, i.e., information of interest: regions of maximal energy.

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u,\omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

only maxima

 $\operatorname{snr} = 2$

Inversion formula
$$y(t) = \int \int_{-\infty}^{+\infty} \overline{V_h y(u,\omega)} h(t-u) \exp(i\omega u) du \frac{d\omega}{2\pi}$$

Maxima detection: reassignment, synchrosqueezing, ridge extraction

32/48

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Flandrin, 2015)

- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.
- Zeros are repelled by the signal.

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Flandrin, 2015)

- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.
- Zeros are repelled by the signal.

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Flandrin, 2015)

- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.
- Zeros are repelled by the signal.

Look for the zeros, i.e., the points (t_i, ω_i) such that $|V_g y(t_i, \omega_i)|^2 = 0$.

Observations: (Flandrin, 2015)

- In the noise region zeros are evenly spread.
- There exists a short-range repulsion between zeros.
- Zeros are repelled by the signal.

What can be said theoretically about the zeros of the spectrogram?

Unorthodox time-frequency analysis: spectrogram zeros

Idea assimilate the time-frequency plane with $\mathbb C$ through $z = (\omega + it)/\sqrt{2}$

Unorthodox time-frequency analysis: spectrogram zeros

Idea assimilate the time-frequency plane with \mathbb{C} through $z = (\omega + it)/\sqrt{2}$

Bargmann factorization

$$V_g y(t,\omega) = \mathrm{e}^{-|z|^2/2} \mathrm{e}^{-\mathrm{i}\omega t/2} B y(z)$$

Bargmann transform of the signal y

$$By(z) \triangleq \pi^{-1/4} \mathrm{e}^{-z^2/2} \int_{\mathbb{R}} \overline{y(u)} \exp\left(\sqrt{2}uz - u^2/2\right) \,\mathrm{d}u,$$

By is an **entire** function, almost characterized by its infinitely many zeros:

$$By(z) = z^m e^{C_0 + C_1 z + C_2 z^2} \prod_{n \in \mathbb{N}} \left(1 - \frac{z}{z_n} \right) \exp\left(\frac{z}{z_n} + \frac{1}{2} \left(\frac{z}{z_n}\right)^2\right).$$

36/48

Unorthodox time-frequency analysis: spectrogram zeros

Idea assimilate the time-frequency plane with $\mathbb C$ through $z = (\omega + \mathrm{i} t)/\sqrt{2}$

Bargmann factorization

$$V_g y(t,\omega) = \mathrm{e}^{-|z|^2/2} \mathrm{e}^{-\mathrm{i}\omega t/2} B y(z)$$

Theorem The zeros of the Gaussian spectrogram $V_g y(t, \omega)$

- coincide with the zeros of the **entire** function *By*,
- hence are isolated and constitute a Point Process,
- which almost completely characterizes the spectrogram.

(Flandrin, 2015)

Advantages of working with the zeros

- Easy to find compared to relative maxima.
- Form a robust pattern in the time-frequency plane.
- Require little memory space for storage.
- Efficient tools were recently developed in stochastic geometry.

Need for a rigorous characterization of the distribution of the zeros.

The zeros of the spectrogram of white noise

Continuous complex white Gaussian noise

$$\xi(t) = \sum_{n=0}^{\infty} \xi[n] h_n(t), \ \xi[n] \sim \mathcal{N}_{\mathbb{C}}(0,1), \quad \{h_n, k = 0, 1, \ldots\}$$
 Hermite functions

The zeros of the spectrogram of white noise

Continuous complex white Gaussian noise

$$\xi(t) = \sum_{n=0}^{\infty} \xi[n]h_n(t), \ \xi[n] \sim \mathcal{N}_{\mathbb{C}}(0,1), \quad \{h_n, k = 0, 1, \ldots\}$$
 Hermite functions

Theorem
$$V_g\xi(t,\omega) = e^{-|z|^2/4}e^{-i\omega t/2} \operatorname{GAF}_{\mathbb{C}}(z)$$
 (Bardenet & Hardy, 2021)
 $\operatorname{GAF}_{\mathbb{C}}(z) = \sum_{n=0}^{\infty} \xi[n] \frac{z^n}{\sqrt{n!}}$ is the planar Gaussian Analytic Function.

The zeros of the planar Gaussian Analytic Function

$$V_g \xi(t,\omega) \stackrel{ ext{non-vanishing}}{\propto} ext{GAF}_{\mathbb{C}}(z)$$
 $z = (\omega + \mathrm{i}t)/\sqrt{2}$

Zeros of $GAF_{\mathbb{C}}$: random set of points, i.e., a **Point Process** characterized by a probability distribution on point configurations

Properties of the Point Process of the zeros of $GAF_{\mathbb{C}}$:

- invariant under the isometries of \mathbb{C} , i.e., stationary,
- has a uniform density $ho^{(1)}(z) =
 ho^{(1)} = 1/\pi$,
- explicit pair correlation function $\rho^{(2)}(z, z') = g_0(|z z'|)$,
- scaling of the *hole probability*: $r^{-4}\log p_r
 ightarrow -3\mathrm{e}^2/4$, as $r
 ightarrow\infty$

 $p_r = \mathbb{P}$ (no point in the disk of center 0 and radius r)

The zeros of the planar Gaussian Analytic Function

$$V_g \xi(t,\omega) \stackrel{ ext{non-vanishing}}{\propto} ext{GAF}_{\mathbb{C}}(z)$$
 $z = (\omega + \mathrm{i} t)/\sqrt{2}$

Zeros of $GAF_{\mathbb{C}}$: random set of points, i.e., a **Point Process** characterized by a probability distribution on point configurations

The point process of the zeros of the spectrogram is not determinantal.

- \mathbf{H}_0 white noisy only, i.e., $y(t) = \xi(t)$
- H_1 presence of a signal i.e., $y(t) = \operatorname{snr} \times x(t) + \xi(t)$, $\operatorname{snr} > 0$

alternative hypothesis

40/48

- **H**₀ white noisy only, i.e., $y(t) = \xi(t)$
- **H**₁ presence of a signal i.e., $y(t) = \operatorname{snr} \times x(t) + \xi(t)$, snr > 0

alternative hypothesis

40/48

A functional statistic: the F-function

$$F(r) = \mathbb{P}\left(\inf_{z_i \in \mathcal{Z}} \mathrm{d}(z_0, z_i) < r\right)$$
: empty space function

A functional statistic: the F-function

$$F(r) = \mathbb{P}\left(\inf_{z_i \in \mathcal{Z}} \mathrm{d}(z_0, z_i) < r\right)$$
: empty space function

0.15

$$\widehat{F}(r) = \frac{1}{N_{\#}} \sum_{j=1}^{N_{\#}} \mathbf{1}\left(\inf_{z \in \mathbb{Z} \text{eros}} d(z_j, z) < r\right)$$

A functional statistic: the F-function

$$F(r) = \mathbb{P}\left(\inf_{z_i \in \mathcal{Z}} \mathrm{d}(z_0, z_i) < r\right)$$
: empty space function

► Monte Carlo envelope test based on the discrepancy between \hat{F} and F_0 41/48

Performance: power of the test computed over 200 samples

X low detection power

X requires large number of samples

Limitations:

- necessary discretization of the STFT: arbitrary resolution
- observe only a bounded window: edge correction to compute $\widehat{F}(r)$

Other Gaussian Analytic Functions, other transforms?

Short-Time Fourier Transform

$$V_g\xi(t,\omega) \propto \mathsf{GAF}_{\mathbb{C}}(z) = \sum_{n=0}^{\infty} \xi[n] \frac{z^n}{\sqrt{n!}}$$

New transform?

?
$$\propto \text{GAF}_{\mathbb{S}}(z) = \sum_{n=0}^{N} \xi[n] \sqrt{\binom{N}{n}} z^{n}$$

Algebraic interpreteation: covariance under a symmetry group

Time and frequency shifts $V_{h}[W_{(t,\omega)}y](t',\omega') \stackrel{\text{covariance}}{=} e^{-i(\omega'-\omega)t}V_{h}y(t'-t,\omega'-\omega),$

Coherent state interpretation

$$V_h y(t,\omega) = \langle y, W_{(t,\omega)} h \rangle$$

 $\{ \textit{\textbf{W}}_{(t,\omega)}h, \, t,\omega \in \mathbb{R} \}$ covariant family

Weyl-Heisenberg group $\{e^{i\gamma} W_{(t,\omega)}, (\gamma, t, \omega) \in [0, 2\pi] \times \mathbb{R}^2\}$ $W_{(t',\omega')} W_{(t,\omega)} = e^{i\omega t'} W_{(t+t',\omega+\omega')}.$

Coherent state interpretation $\mathbf{y} \in \mathbb{C}^{N+1}$

$$T \boldsymbol{y}(\vartheta, \varphi) = \langle \boldsymbol{y}, \boldsymbol{\Psi}_{(\vartheta, \varphi)} \rangle$$

 $\vartheta \in [0,\pi], \varphi \in [0,2\pi]$

Coherent state interpretation $\mathbf{y} \in \mathbb{C}^{N+1}$

$$T \mathbf{y}(\vartheta, \varphi) = \langle \mathbf{y}, \mathbf{\Psi}_{(\vartheta, \varphi)} \rangle$$

 $\vartheta \in [0,\pi], \varphi \in [0,2\pi]$

SO(3) coherent states (Gazeau, 2009)

$$\Psi_{\vartheta,\varphi} = \sum_{n=0}^{N} \sqrt{\binom{N}{n}} \left(\cos\frac{\vartheta}{2}\right)^n \left(\sin\frac{\vartheta}{2}\right)^{N-n} e^{in\varphi} \boldsymbol{q}_n = \boldsymbol{R}_{\boldsymbol{u}(\vartheta,\varphi)} \Psi_{(0,0)},$$

Coherent state interpretation $\mathbf{y} \in \mathbb{C}^{N+1}$

$$T \mathbf{y}(\vartheta, \varphi) = \langle \mathbf{y}, \mathbf{\Psi}_{(\vartheta, \varphi)} \rangle$$

 $\vartheta \in [0,\pi], \varphi \in [0,2\pi]$

$$\Psi_{\vartheta,\varphi} = \sum_{n=0}^{N} \sqrt{\binom{N}{n}} \left(\cos\frac{\vartheta}{2}\right)^n \left(\sin\frac{\vartheta}{2}\right)^{N-n} e^{in\varphi} \boldsymbol{q}_n = \boldsymbol{R}_{\boldsymbol{u}(\vartheta,\varphi)} \Psi_{(0,0)},$$

Kravchuk transform $\{q_n, n = 0, 1, ..., N\}$ the *Kravchuk functions*

$$T \boldsymbol{y}(z) = rac{1}{\sqrt{(1+|z|^2)^N}} \sum_{n=0}^N \langle \boldsymbol{y}, \boldsymbol{q}_n
angle \sqrt{\binom{N}{n}} z^n, \quad z = \operatorname{cot}(\vartheta/2) \mathrm{e}^{\mathrm{i}\varphi}$$

Contributions

- rigorous link: $T\xi(z) \stackrel{(law)}{=} \sqrt{(1+|z|^2)}^{-N} \mathsf{GAF}_{\mathbb{S}}(z)$
- design of a robust implementation avoiding to compute $\langle \boldsymbol{y}, \boldsymbol{q}_n \rangle$
- spatial statistics on the sphere using the chordal distance: $\widehat{F}(r)$

Signal detection based on the spectrogram zeros

Performance: power of the test computed over 200 samples

- / higher detection power
- $\checkmark\,$ robust to small number of samples

- intrinsically encoded resolution: no need for prior knowledge
- compact phase space: no edge correction

Take home messages

- > a novel covariant discrete transform
 - * interpreted as a coherent state decomposition
 - * zeros of the Kravchuk spectrogram of white noise fully characterized
- signal processing based on spectrogram zeros
 - * preliminary work using the zeros of the Fourier spectrogram
 - * significant improvement using the Kravchuk spectrogram

Work in progress and perspectives

- ▶ convergence of the Kravchuk spectrogram toward the Fourier spectrogram
- ▶ interpretation of the action of SO(3) on \mathbb{C}^{N+1}
- design of a FFT counterpart to compute the Kravchuk transform

Detection of the zeros of the Kravchuk spectrogram

Minimal Grid Neighbors

Purpose: summary statistic s, such that $\mathbb{E}[s(y)|\mathbf{H}_0] = 0$, $\mathbb{E}[s(y)|\mathbf{H}_1] > 0$

Test settings

- Level of significance α
- Number of samples under the null hypothesis *m*
- Index k, chosen so that $\alpha = k/(m+1)$

Monte Carlo strategy

(i) generate m independent samples of complex white Gaussian noise;

- (ii) compute their summary statistics $s_1 \ge s_2 \ge \ldots \ge s_m$;
- (iii) compute the summary statistics of the observations ${m y}$ under concern;
- (*iv*) if $s(\mathbf{y}) \ge s_k$, then reject the null hypothesis with confidence 1α .