

Texture segmentation based on fractal attributes using convex functional minimization with generalized Stein formalism for automated regularization parameter selection

Barbara Pascal

Joint work with Patrice Abry, Nelly Pustelnik, Valérie Vidal (*LP ENSL*) and Samuel Vaiter (*Laboratoire J.A. Dieudonné*)

September 13th 2022

1st French-Italian workshop on the Mathematics of Imaging, Vision and their Applications (MIA-MIVA)

Laboratoire I3S, Sophia-Antipolis, France

Crucial to describe real-world images

Textured image segmentation

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega=\Omega_1\bigsqcup\ldots\bigsqcup\Omega_K$

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega=\Omega_1\bigsqcup\ldots\bigsqcup\Omega_K$

Fractals attributes

• variance σ^2 amplitude of variations

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Fractals attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

 $\blacktriangleright \sigma^2$ and *h* piecewise constant

Fractals attributes

- <u>variance</u> σ^2 amplitude of variations
- local regularity h scale invariance

coolo inveriones

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

- ▶ σ^2 and *h* piecewise constant
- region Ω_k characterized by (σ_k^2, h_k)

Textured image

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

 $a = 2^1$ $a = 2^{2}$ $a = 2^5$. . .

Proposition (Jaffard, 2004), (Wendt, 2008)

Scale

$$\log (\mathcal{L}_{a,\cdot}) \underset{a \to 0}{\simeq} \log(a)_{\text{regularity}} + \underset{\substack{\alpha \mid \text{og}(\sigma^2) \\ (\text{variance})}}{\nu}$$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

 $\log(a)$

Textured image $a = 2^1$ Scale $a = 2^2$ $a = 2^5$. . .

Proposition (Jaffard, 2004), (Wendt, 2008)

$$\log (\mathcal{L}_{a,.}) \simeq_{a \to 0} \log(a) \frac{\mathbf{h}}{\operatorname{regularity}} + \frac{\mathbf{v}}{\operatorname{clog}(\sigma^{2})}$$
(variance)

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$ Scale $a = 2^1$ $a = 2^2$ $a = 2^5$. . .

$$\log \left(\mathcal{L}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underbrace{\mathbf{v}}_{\underset{\text{} \propto \log(\sigma^2)}{\text{}}}$$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

Proposition (Jaffard, 2004), (Wendt, 2008)

$$\log \left(\mathcal{L}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\text{regularity}} + \underset{\substack{\alpha \setminus \log(\sigma^2) \\ (\text{variance})}}{\mathsf{v}}$$

Textured image $a = 2^1$ $a = 2^2$ Scale $a = 2^5$. . .

Proposition (Jaffard, 2004), (Wendt, 2008)
$$\log (\mathcal{L}_{a,\cdot}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underset{\substack{\mathsf{v} \\ \propto \log(\sigma^2) \\ (\text{variance})}}{v}$$

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

 $\log \left(\mathcal{L}_{a,\cdot} \right)$

Textured image Scale $a = 2^1$ $a = 2^2$ $a = 2^5$. . .

Proposition (Jaffard, 2004), (Wendt, 2008)
$$\log (\mathcal{L}_{a,\cdot}) \underset{a \to 0}{\simeq} \log(a) \underset{\text{regularity}}{h} + \underset{\substack{\mathsf{v} \\ \propto \log(\sigma^2) \\ (\text{variance})}}{\mathsf{v}}$$

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

$$\label{eq:linear} {\sf Linear regression} \qquad \log{(\mathcal{L}_{a,\cdot})} \simeq \log(a) \frac{h}{{\sf h}_{\sf regularity}} + \frac{{\sf v}}{{\scriptstyle \propto} \log(\sigma^2)}$$

Textured image

Linear regression
$$\log(\mathcal{L}_{a,\cdot}) \simeq \log(a) \frac{h}{regularity} + \frac{v}{\propto \log(\sigma^2)}$$

 $\left(\widehat{h}^{\text{LR}}, \widehat{v}^{\text{LR}}\right) = \operatorname*{argmin}_{h,v} \sum_{a=a_{\min}}^{a_{\max}} \left\|\log(\mathcal{L}_{a,\cdot}) - \log(a)h - v\right\|^2$

Textured image

 \longrightarrow large estimation variance

A posteriori regularization

Filter smoothing (linear)

$$\left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \widehat{\boldsymbol{h}}^{\mathrm{LR}}$$

Linear regression $\widehat{\pmb{h}}^{\mathrm{LR}}$

${\sf Smoothing}$

A posteriori regularization

ightarrow cumulative estimation variance and regularization bias

 $\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \boldsymbol{h} - \boldsymbol{v}\|^2}{\underset{\rightarrow \text{ fidelity to the log-linear model}}{\text{Least-Squares}}}$ $\log (\mathcal{L}_{a,\cdot})$ $\log(a)$

 $\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\underset{\rightarrow \text{ fidelity to the log-linear model}}{\text{Least-Squares}}} + \frac{\lambda}{\underset{\text{favors piecewise constancy}}{\sum} \frac{\mathcal{Q}(\mathsf{D}h, \mathsf{D}\mathbf{v}; \alpha)}{\underset{\text{Favors piecewise constancy}}{\sum}}$ $\log (\mathcal{L}_{a,\cdot})$ Ω_2 log(a)

Finite differences $D_1 x$ (horizontal), $D_2 x$ (vertical) in each pixel

Finite differences $\mathbf{D}\mathbf{x} = [\mathbf{D}_1\mathbf{x}, \mathbf{D}_2\mathbf{x}]$

<u>Free:</u> \boldsymbol{h} , \boldsymbol{v} are **independently** piecewise constant $\mathcal{Q}_{\mathsf{F}}(\mathsf{D}\boldsymbol{h},\mathsf{D}\boldsymbol{v};\alpha) = \alpha \|\mathsf{D}\boldsymbol{h}\|_{2,1} + \|\mathsf{D}\boldsymbol{v}\|_{2,1}$
Functionals with either free or co-localized contours

Finite differences $\mathbf{D}\mathbf{x} = [\mathbf{D}_1\mathbf{x}, \mathbf{D}_2\mathbf{x}]$

<u>Free:</u> h, v are independently piecewise constant $Q_F(Dh, Dv; \alpha) = \alpha \|Dh\|_{2,1} + \|Dv\|_{2,1}$

<u>Co-localized:</u> h, v are concomitantly piecewise constant $Q_{C}(Dh, Dv; \alpha) = \|[\alpha Dh, Dv]\|_{2,1}$

• gradient descent $\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$

 $\boldsymbol{x} = (\boldsymbol{h}, \boldsymbol{v})$

▶ gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$
 $\mathbf{x} = (\mathbf{h}, \mathbf{v})$

▶ implicit subgradient descent: proximal point algorithm

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

▶ gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$
 $\mathbf{x} = (\mathbf{h}, \mathbf{v})$

▶ implicit subgradient descent: proximal point algorithm

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

▶ splitting proximal algorithm (Chambolle, 2011)

$$\begin{aligned} \mathbf{y}^{n+1} &= \operatorname{prox}_{\sigma(\lambda \mathcal{Q})^*} \left(\mathbf{y}^n + \sigma \mathbf{D} \bar{\mathbf{x}}^n \right) \\ \mathbf{x}^{n+1} &= \operatorname{prox}_{\tau \parallel \mathcal{L} - \mathbf{\Phi} \cdot \parallel_2^2} \left(\mathbf{x}^n - \tau \mathbf{D}^\top \mathbf{y}^{n+1} \right), \quad \mathbf{\Phi} : (\mathbf{h}, \mathbf{v}) \mapsto \{ \log(\mathbf{a})\mathbf{h} + \mathbf{v} \}_{\mathbf{a}} \\ \bar{\mathbf{x}}^{n+1} &= 2\mathbf{x}^{n+1} - \mathbf{x}^n \end{aligned}$$

▶ gradient descent
$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$$
 $\mathbf{x} = (\mathbf{h}, \mathbf{v})$

▶ implicit subgradient descent: proximal point algorithm

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \ \Leftrightarrow \ \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

▶ splitting proximal algorithm (Chambolle, 2011)

$$\begin{aligned} \mathbf{y}^{n+1} &= \operatorname{prox}_{\sigma(\lambda \mathcal{Q})^*} \left(\mathbf{y}^n + \sigma \mathbf{D} \bar{\mathbf{x}}^n \right) \\ \mathbf{x}^{n+1} &= \operatorname{prox}_{\tau \parallel \mathcal{L} - \Phi \cdot \parallel_2^2} \left(\mathbf{x}^n - \tau \mathbf{D}^\top \mathbf{y}^{n+1} \right), \quad \Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{ \log(\mathbf{a})\mathbf{h} + \mathbf{v} \}_{\mathbf{a}} \\ \bar{\mathbf{x}}^{n+1} &= 2\mathbf{x}^{n+1} - \mathbf{x}^n \end{aligned}$$

Accelerated algorithm based on strong-convexity

Accelerated algorithm based on strong-convexity

Convexity properties

Convexity properties

•
$$\varphi \ \mu$$
-strongly convex iff $\varphi - \frac{\mu}{2} \| \cdot \|^2$ convex

Convexity properties

Strong-convexity

- $\varphi \mu$ -strongly convex iff $\varphi \frac{\mu}{2} \| \cdot \|^2$ convex
- $\varphi \ C^2$ with Hessian matrix $\pmb{H} \varphi \succeq \pmb{0} \implies \mu = \min \operatorname{Sp}(\pmb{H} \varphi)$

•
$$\varphi \mu$$
-strongly convex iff $\varphi - \frac{\mu}{2} \| \cdot \|^2$ convex

• $\varphi \ C^2$ with Hessian matrix $\pmb{H} \varphi \succeq 0 \implies \mu = \min \operatorname{Sp}(\pmb{H} \varphi)$

Proposition (Pascal, 2019)

$$\sum_{a} \|\log \mathcal{L} - \log(a)h - \mathbf{v}\|^2 \text{ is } \mu \text{-strongly convex.}$$

$$\boxed{\begin{array}{c|c} a_{\min} = 2^1, & a_{\max} & 2^2 & 2^3 & 2^4 & 2^5 & 2^6 \\ \hline \mu = \min \operatorname{Sp}\left(2\Phi^{\top}\Phi\right) & 0.29 & \mathbf{0.72} & 1.20 & 1.69 & 2.20 \end{array}}$$

Accelerated algorithm based on strong-convexity

Accelerated Primal-dual algorithm (Chambolle, 2011)

for
$$n = 0, 1, ...$$

 $\mathbf{y}^{n+1} = \operatorname{prox}_{\sigma_n(\lambda Q)^*} (\mathbf{y}^n + \sigma_n \mathbf{D} \bar{\mathbf{x}}^n)$
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau_n \parallel \mathcal{L} - \mathbf{\Phi} \cdot \parallel_2^2} (\mathbf{x}^n - \tau_n \mathbf{D}^\top \mathbf{y}^{n+1})$
 $\theta_n = \sqrt{1 + 2\mu\tau_n}, \quad \tau_{n+1} = \tau_n/\theta_n, \quad \sigma_{n+1} = \theta_n \sigma_n$
 $\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta_n^{-1} (\mathbf{x}^{n+1} - \mathbf{x}^n)$

Accelerated algorithm based on strong-convexity

[†](Cai, 2013)

Only based on regularity h.

State-of-the-art methods for texture segmentation

Factorization based segmentation[↑] (Yuan, 2015) (i) local histograms

- ••//=/
- (ii) matrix factorization

Fig. 2. Scatterplot of features in subspace. (a) Scatterplot of features projected onto the 3-d subspace. (b) Scatterplot after removing features with high edgeness.

[†]https://sites.google.com/site/factorizationsegmentation/

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Solid foam

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Multiphase flow through porous media Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

- $ightarrow\,$ 1600 imes 1100 pixels
- ightarrow video: \sim 1000 images
- ightarrow phase diagram: ightarrow 10 flow rates

Low activity: $Q_{\rm G}=300 {\rm mL}/{\rm min}$ - $Q_{\rm L}=300 {\rm mL}/{\rm min}$

Low activity: $Q_{\rm G}=300 {\rm mL}/{\rm min}$ - $Q_{\rm L}=300 {\rm mL}/{\rm min}$

Liquid: $h_{\rm L} = 0.4$ $\sigma_{\rm hard}^2 = 10^{-2}$

Gas: $h_{\rm G} = 0.9$

Transition: $Q_{\rm G} = 400 \text{mL}/\text{min}$ - $Q_{\rm L} = 700 \text{mL}/\text{min}$

High activity: $Q_{\rm G} = 1200 {
m mL}/{
m min}$ - $Q_{\rm L} = 300 {
m mL}/{
m min}$

High activity: $Q_{
m G} = 1200 {
m mL}/{
m min}$ - $Q_{
m L} = 300 {
m mL}/{
m min}$

$$(\widehat{h}, \widehat{v})(\mathcal{L}; \lambda, \alpha) = \operatorname*{argmin}_{h, v} \sum_{a} \|\log \mathcal{L}_{a, .} - \log(a)h - v\|^2 + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$(\hat{\boldsymbol{h}}, \hat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} ||\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}||^2 + \boldsymbol{\lambda} \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \boldsymbol{\alpha})$$
Lin. reg. $\hat{\boldsymbol{h}}^{LR}$
($\boldsymbol{\lambda}, \boldsymbol{\alpha}) = (0, 0)$

too small

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

$$(\widehat{\mathbf{h}}, \widehat{\mathbf{v}}) (\mathbf{\mathcal{L}}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{a} \|\log \mathbf{\mathcal{L}}_{a,.} - \log(a)\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

h: discriminant, **v**: auxiliary

 $ar{m{h}}$: true regularity $\mathcal{R}(\lambda, \alpha) = \left\| \hat{m{h}}(\mathcal{L}; \lambda, \alpha) - ar{m{h}} \right\|^2$

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

$$(\widehat{\mathbf{h}}, \widehat{\mathbf{v}}) (\mathcal{L}; \lambda, \alpha) = \underset{\mathbf{h}, \mathbf{v}}{\operatorname{argmin}} \sum_{a} \|\log \mathcal{L}_{a,.} - \log(a)\mathbf{h} - \mathbf{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)$$

$$\mathbf{h}: \ discriminant, \ \mathbf{v}: \ auxiliary$$

h: *true* regularity $\mathcal{R}(\lambda,\alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L};\lambda,\alpha) - \overline{\boldsymbol{h}} \right\|^2$ 215000 1 $\log_{10}(\lambda)$ 10000 5000 -1 -2 -2 0 $\mathbf{2}$ $\log_{10}(\alpha)$

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

h: *true* regularity $\mathcal{R}(\lambda,\alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L};\lambda,\alpha) - \overline{\boldsymbol{h}} \right\|^2$ $\mathbf{2}$ 15000 1 $\log_{10}(\lambda)$ 10000 5000 -1 -2 -2 0 $\mathbf{2}$ $\log_{10}(\alpha)$

h: unknown!
$$\widehat{(\boldsymbol{h}, \boldsymbol{\hat{v}})} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

h: *true* regularity $\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^2$ 15000 1 $\log_{10}(\lambda)$ 10000 5000 -1 -2 -2 0 $\mathbf{2}$ $\log_{10}(\alpha)$

Stein Unbiased Risk Estimate (SURE)

Stein Unbiased Risk Estimate (Principe)

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linear)} \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(nonlinear)} \end{cases}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linear)} \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(nonlinear)} \end{cases}$$

Quadratic error $R(\lambda) \triangleq \mathbb{E}_{\zeta} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\zeta} \widehat{R}(\boldsymbol{y}; \lambda)$ $\bar{\boldsymbol{x}}$ unknown

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & (\text{linear}) \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & (\text{nonlinear}) \end{cases}$$

Quadratic error $R(\lambda) \triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\boldsymbol{\zeta}} \widehat{R}(\boldsymbol{y}; \lambda)$

 $ar{x}$ unknown

Theorem (Stein, 1981)

Let $(\boldsymbol{y};\lambda)\mapsto \widehat{\boldsymbol{x}}(\boldsymbol{y};\lambda)$ an estimator of $\bar{\boldsymbol{x}}$

weakly differentiable w.r.t. y,

• such that
$$\boldsymbol{\zeta} \mapsto \langle \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{\zeta} \rangle$$
 is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \rho^2 \mathbf{I})$.
 $\widehat{R}(\boldsymbol{y}; \lambda) \triangleq \|\widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y}\|^2 + 2\rho^2 \operatorname{tr} (\partial_{\boldsymbol{y}} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda)) - \rho^2 P$
 $\Longrightarrow R(\lambda) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\boldsymbol{y}; \lambda)].$

Generalized Stein Unbiased Risk Estimate

Observations $\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^{P}$, $\bar{\mathbf{x}} \in \mathbb{R}^{N}$, $\mathbf{\Phi} : \mathbb{R}^{P \times N}$ and $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ **E.g.** the estimators $\hat{\mathbf{h}}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours $\log \mathcal{L} = \mathbf{\Phi}(\bar{\mathbf{h}}, \bar{\mathbf{v}}) + \boldsymbol{\zeta}$ $\boldsymbol{\Phi} : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_{a}$ $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ $\mathcal{R} = \|\hat{\mathbf{h}} - \bar{\mathbf{h}}\|^{2}$ $\mathbf{\Pi} : (\mathbf{h}, \mathbf{v}) \mapsto (\mathbf{h}, \mathbf{0})$

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Observations $\mathbf{y} = \Phi \bar{\mathbf{x}} + \zeta \in \mathbb{R}^{P}$, $\bar{\mathbf{x}} \in \mathbb{R}^{N}$, $\Phi : \mathbb{R}^{P \times N}$ and $\zeta \sim \mathcal{N}(\mathbf{0}, S)$ **E.g.** the estimators $\hat{\mathbf{h}}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours $\log \zeta = \Phi(\bar{\mathbf{h}}, \bar{\mathbf{x}}) + \zeta$, $\zeta \sim \mathcal{N}(\mathbf{0}, S)$, $\mathcal{P} = \|\bar{\mathbf{h}} - \bar{\mathbf{h}}\|^{2}$

$$\Phi: (\boldsymbol{h}, \boldsymbol{v}) \mapsto \{\log(a)\boldsymbol{h} + \boldsymbol{v}\}_a \quad \overleftarrow{\boldsymbol{v}} \mapsto (\overleftarrow{\boldsymbol{v}}, \overleftarrow{\boldsymbol{v}}) \mapsto (\overleftarrow{\boldsymbol{h}}, \overleftarrow{\boldsymbol{v}}) \mapsto$$

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Theorem (Pascal, 2020)

Let $(oldsymbol{y};oldsymbol{\Lambda})\mapsto \widehat{oldsymbol{x}}(oldsymbol{y};oldsymbol{\Lambda})$ an estimator of $ar{oldsymbol{x}}$

- weakly differentiable w.r.t. y,
- such that $\boldsymbol{\zeta} \mapsto \langle \Pi \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{A} \boldsymbol{\zeta} \rangle$ is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathcal{S}})$.

$$\widehat{R}(\mathbf{\Lambda}) \triangleq \|\mathbf{A}(\mathbf{\Phi}\widehat{\mathbf{x}}(\mathbf{y};\mathbf{\Lambda}) - \mathbf{y})\|^2 + 2\mathrm{tr}\left(\mathbf{S}\mathbf{A}^{\top}\mathbf{\Pi}\partial_{\mathbf{y}}\widehat{\mathbf{x}}(\mathbf{y};\mathbf{\Lambda})\right) - \mathrm{tr}\left(\mathbf{A}\mathbf{S}\mathbf{A}^{\top}\right)$$

 $\Longrightarrow R_{\mathbf{\Pi}}(\mathbf{\Lambda}) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\mathbf{\Lambda})].$

$$\widehat{(\boldsymbol{h}, \hat{\boldsymbol{v}})} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} ||\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}||^{2} + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\overline{\boldsymbol{h}}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\boldsymbol{\mathcal{L}}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^{2}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\boldsymbol{\mathcal{L}}; \lambda, \alpha | \boldsymbol{\mathcal{S}})$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\boldsymbol{\mathcal{L}}; \lambda, \alpha | \boldsymbol{\mathcal{S}})$$

$$\widehat{(\hat{h}, \hat{v})} (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$\overline{h}: true regularity$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha | S)$$

$$(\hat{\boldsymbol{h}}, \hat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^{2} + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h}, \boldsymbol{D}\boldsymbol{v}; \alpha)$$

$$\bar{\boldsymbol{h}}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \hat{\boldsymbol{h}}(\boldsymbol{\mathcal{L}}; \lambda, \alpha) - \bar{\boldsymbol{h}} \right\|^{2}$$

$$\widehat{\boldsymbol{\mathcal{L}}}_{2}^{2} \underbrace{\int_{0}^{1} \int_{0}^{1} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{10000} \int_{0}^{1} \underbrace{\int_{0}^{2} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{10000} \int_{0}^{1} \int$$

$$\widehat{(\hat{h}, \hat{v})} (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$\overline{h}: true regularity$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha|S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha|S)$$

$$\widehat{\mathcal{R}}_{\nu, \varepsilon}(\mathcal{L}; \lambda, \alpha|S)$$

Parameter tuning (Automatic selection)

$$\widehat{(\hat{h}, \hat{v})} (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(\mathsf{D}h, \mathsf{D}v; \alpha)$$

$$\overline{\hat{h}}: true \text{ regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\mathcal{L}; \lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\lambda, \alpha) - \widehat{h}(\lambda, \alpha) - \overline{h} \right\|^{2}$$

$$\widehat{\mathcal{R}}(\lambda, \alpha) = \left\| \widehat{h}(\lambda, \alpha) - \widehat{h}(\lambda, \alpha) -$$

Automated selection of regularization parameters

$$(\hat{h}, \hat{v}) (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(Dh, Dv; \alpha)$$

$$Example \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \lambda^{\dagger}, \alpha^{\dagger}) \\ (grid) \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \hat{\lambda}^{\dagger}, \hat{\alpha}^{\dagger}) \\ (grid) \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \hat{\lambda}^{\dagger}, \hat{\alpha}^{\dagger}) \\ (quasi-Newton) \qquad \qquad \hat{h}^{\mathsf{F}}(\mathcal{L}; \hat{\lambda}^{\mathsf{qN}}, \hat{\alpha}^{\mathsf{qN}}) \\ (quasi-Newton) \qquad \qquad \hat{h}^{\mathsf{P}}(\mathcal{L}; \hat{\lambda}^$$

225 calls of the estimator over the grid v.s. 40 for quasi-Newton

27/28

> Fractal texture model based on local regularity and variance

- * appropriate for real-world texture characterization
- * complementary attributes able to finely discriminate

Fractal texture model based on local regularity and variance

- * appropriate for real-world texture characterization
- * complementary attributes able to finely discriminate

Simultaneous estimation and regularization

- * significant decrease of the estimation error
- * accurate and regular contours thanks to co-localized penalization

Fractal texture model based on local regularity and variance

- * appropriate for real-world texture characterization
- * complementary attributes able to finely discriminate

Simultaneous estimation and regularization

- * significant decrease of the estimation error
- * accurate and regular contours thanks to co-localized penalization

▶ Fast algorithms for automated tuning of hyperparameters

- * possibility to manage huge amount of data
- * amenable to process data corrupted by correlated Gaussian noise
- * ensured objectivity and reproducibility