

Bilevel optimization for

automated data-driven inverse problem resolution

Barbara Pascal (bpascal-fr.github.io)

Joint work with Patrice Abry, Nelly Pustelnik, Valérie Vidal, and Samuel Vaiter

January 14, 2025

Mathematics and Image Analysis (MIA'25)

Observation model

 $m{y} \sim \mathcal{B}\left(m{\Phi} \overline{m{x}}
ight)$

- $\mathbf{y} \in \mathbb{R}^{P}$: degraded observations;
- $\overline{\mathbf{x}} \in \mathbb{R}^{N}$: unknown quantity of interest;
- $\Phi : \mathbb{R}^N \to \mathbb{R}^P$: known deformation;
- \mathcal{B} : random measurement noise.

Observation model

 $m{y} \sim \mathcal{B}\left({\Phi \overline{m{x}}}
ight)$

- $\mathbf{y} \in \mathbb{R}^{P}$: degraded observations;
- $\overline{\mathbf{x}} \in \mathbb{R}^{N}$: unknown quantity of interest;
- $\Phi: \mathbb{R}^{N} \to \mathbb{R}^{P}$: known deformation;
- \mathcal{B} : random measurement noise.

Goal: Estimate \overline{x}

Observation model

 $\mathbf{y} \sim \mathcal{B}\left(\mathbf{\Phi}\mathbf{\overline{x}}
ight)$

- $\mathbf{y} \in \mathbb{R}^{P}$: degraded observations;
- $\overline{\mathbf{x}} \in \mathbb{R}^{N}$: unknown quantity of interest;
- $\Phi : \mathbb{R}^N \to \mathbb{R}^P$: known deformation;
- \mathcal{B} : random measurement noise.

Goal: Estimate \overline{x}

 \blacktriangleright ill-conditioned, rank deficient Φ

Inpainting

(Guillemot et al., 2013, IEEE Sig. Process. Mag.)

Super-resolution

(Marquina et al., 2008, J. Sci. Comput.)

Deblurring

(Pan, 2016, IEEE Trans. Pattern Anal. Mach. Intell.) 2/29

Observation model

 $\mathbf{y} \sim \mathcal{B}\left(\mathbf{\Phi}\overline{\mathbf{x}}
ight)$

- $\mathbf{y} \in \mathbb{R}^{P}$: degraded observations;
- $\overline{\mathbf{x}} \in \mathbb{R}^{N}$: unknown quantity of interest;
- $\Phi : \mathbb{R}^N \to \mathbb{R}^P$: known deformation;
- \mathcal{B} : random measurement noise.

Goal: Estimate x

- \blacktriangleright ill-conditioned, rank deficient Φ
- \blacktriangleright correlated, data-dependent ${\cal B}$

Correlated

(Pascal et al., 2021, J. Math. Imaging Vis.)

Data-dependent

(Luisier et al., 2010, IEEE Trans. Image Process.)

Multiplicative

(Shama, 2016, Appl. Math. Comput.)

The variational framework: penalized log-likelihood

Variational estimator

 $\widehat{\pmb{x}}(\pmb{y};\lambda)\in \operatorname*{Argmin}_{\pmb{x}\in\mathbb{R}^N}\mathcal{D}(\pmb{y},\pmb{\Phi}\pmb{x})$

•
$$\mathcal{D}(\mathbf{y}; \cdot) = -\log \mathbb{P}(\mathbf{y}|\cdot)$$
: negative log-likelihood

Ex: $\mathcal{D}(\boldsymbol{y}; \boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{x}\|_2^2$

No regularization

$$\mathcal{R} = 0$$

The variational framework: penalized log-likelihood

Variational estimator

$$\widehat{\boldsymbol{x}}(\boldsymbol{y};\lambda) \in \operatorname*{Argmin}_{\boldsymbol{x} \in \mathbb{R}^N} \mathcal{D}(\boldsymbol{y}, \boldsymbol{\Phi} \boldsymbol{x}) + \lambda \mathcal{R}(\boldsymbol{x})$$

•
$$\mathcal{D}(\mathbf{y}; \cdot) = -\log \mathbb{P}(\mathbf{y}| \cdot)$$
: negative log-likelihood

• \mathcal{R} : regularization term encoding a priori knowledge

Ex: $\mathcal{D}(\mathbf{y}; \mathbf{x}) = \|\mathbf{y} - \mathbf{x}\|_2^2$ Ex: $\mathcal{R}(\mathbf{x}) = \|\mathbf{D}_1\mathbf{x}\|_q^q$

(Giovannelli & Idier, 2015, Wiley)

No regularization

 ${\cal R}=\mathbf{0}$

Smooth

 $\mathcal{R}(\pmb{x}) = \|\pmb{\mathsf{D}}_1\pmb{x}\|_2^2$ (Tikhonov et al., 1977, *Wiley*)

Piecewise constant

 $\mathcal{R}(x) = \|D_1 x\|_1$ (Rudin et al., 1992, *Physica D*) 3/29

Fine-tuning of the regularization parameter

Example: $\widehat{x}(y; \lambda) \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|y - x\|_2^2 + \lambda \|\mathbf{D}_1 x\|_2^2$ (Tikhonov)

Fine-tuning of the regularization parameter

Example: $\widehat{x}(y; \lambda) \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|y - x\|_2^2 + \lambda \|\mathbf{D}_1 x\|_2^2$ (Tikhonov)

 $\lambda = 1$

not enough

Fine-tuning of the regularization parameter

Example: $\widehat{x}(y; \lambda) \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|y - x\|_2^2 + \lambda \|\mathbf{D}_1 x\|_2^2$ (Tikhonov)

not enough

 $\lambda = 25$

too regularized

Fine-tuning of the regularization parameter

Example: $\widehat{x}(y; \lambda) \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|y - x\|_2^2 + \lambda \|\mathbf{D}_1 x\|_2^2$ (Tikhonov)

$$\lambda = 1$$

 $\lambda = 25$

not enough

optimal

too regularized

Fine-tuning of the regularization parameter

Example: $\widehat{x}(y; \lambda) \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|y - x\|_2^2 + \lambda \|\mathbf{D}_1 x\|_2^2$ (Tikhonov)

$$\lambda = 1$$

 $\lambda = 25$

not enough

optimal

too regularized

Oracle-based hyperparameter selection

$$\lambda^{\dagger} \in \operatorname*{Argmin}_{\lambda \in \Lambda} \mathcal{O}(\boldsymbol{y}; \lambda)$$

Fine-tuning of the regularization parameter

Example: $\widehat{x}(y; \lambda) \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|y - x\|_2^2 + \lambda \|\mathbf{D}_1 x\|_2^2$ (Tikhonov)

$$\lambda = 1$$

 $\lambda = 25$

not enough

optimal

too regularized

Oracle-based hyperparameter selection

 $\lambda^{\dagger} \in \operatorname*{Argmin}_{\lambda \in \Lambda} \mathcal{O}(\boldsymbol{y}; \lambda)$

• golden case: $\mathcal{O}(\mathbf{y}; \lambda) = \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \overline{\mathbf{x}}\|^2 \Longrightarrow$ efficient bi-level (\mathbf{x}, λ) minimization

Fine-tuning of the regularization parameter

Example: $\widehat{x}(y; \lambda) \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \|y - x\|_2^2 + \lambda \|\mathbf{D}_1 x\|_2^2$ (Tikhonov)

 $\lambda = 25$

not enough

optimal

too regularized

Oracle-based hyperparameter selection

$$\lambda^{\dagger} \in \operatorname*{Argmin}_{\lambda \in \Lambda} \mathcal{O}(oldsymbol{y};\lambda)$$

- golden case: $\mathcal{O}(\mathbf{y}; \lambda) = \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) \overline{\mathbf{x}}\|^2 \Longrightarrow$ efficient bi-level (\mathbf{x}, λ) minimization
- practical case: ground truth $\overline{\mathbf{x}}$ not available! \Longrightarrow data-driven $\mathcal{O}(\mathbf{y}; \lambda)$

Image processing:

Texture segmentation

Textured image segmentation

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega=\Omega_1\bigsqcup\ldots\bigsqcup\Omega_K$

Textured image segmentation

Goal: obtain a partition of the image into K homogeneous textures $\Omega=\Omega_1\bigsqcup\ldots\bigsqcup\Omega_K$

7/29

Fractal attributes

• variance σ^2 amplitude of variations

Fractal attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

Fractal attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Fractal attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Fractal attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

 $\blacktriangleright \sigma^2$ and *h* piecewise constant

Fractal attributes

- variance σ^2 amplitude of variations
- local regularity h scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Segmentation

- $\blacktriangleright \sigma^2$ and *h* piecewise constant
- region Ω_k characterized by (σ_k^2, h_k)

Textured image

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

Textured image

				88
		1.10	See.	
	1353	12:22	2 F	
	889A)	12.00	22.2	
	4055	1220	12.5	1221
	1.5	628	2.26	
	100	84.42	10.00	88
12	~ 10	1.57		
	2.35	8.00	2.2	883
	1.00	9652		530
	1550	511	TR.	1898
	224	18.18	1000	333
	8635	100		88
				1
	(4) 浅	14.00		63
	60.36	250.0		245
211	25.942	6.36	1000	28
				20

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

 $a = 2^{1} \qquad a = 2^{2} \qquad a = 2^{5}$

Proposition (Jaffard, 2004, Proc. Symp. Pure Math.; Wendt et al., 2009, Signal Process.)

Scale

$$\log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\boldsymbol{\mathsf{regularity}}}} + \underbrace{\boldsymbol{\mathsf{v}}}_{\substack{\boldsymbol{\propto} \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}}$$

Textured image

S. States		40	-
12.2.7	343	12.00	
15335	2.6		1.1
882.63	13.5		Contraction of the
12033	1	62.4	
1000		1.5	Sec.
Bassa -	in the	2021	
1000	2.200	262	200
2000	100	Su	The second
0.052	3	25.14	24
122223	1995	87 E -	
10.225	- 法法共	2.4年	1
50333	2599	36.3	
23333	12/53		1
0502			11

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

$$\log \left(\mathcal{L}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\mathsf{regularity}}} + \underset{\substack{\mathsf{v} \\ \propto \log(\sigma^2) \\ (\text{variance})}}{\mathsf{v}}$$

Textured image

S. States		40	-
12.2.7	343	12.00	
15335	2.6		1.1
882.63	13.5		Contraction of the
12033	1	62.4	
1000	10.7	1.5	Sec.
Bassa -	in the	2021	
1000	2.200	262	200
2000	100	Su	The second
0.052	3	25.14	24
122223	1995	87 E -	
10.225	- 法法共	2.4年	1
50333	2599	36.3	
23333	12/53		1
0502			11

Local maximum of wavelet coefficients: $\mathcal{L}_{a,\cdot}$

$$\log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\boldsymbol{\mathsf{regularity}}}} + \underset{\substack{\boldsymbol{\mathsf{v}} \\ \propto \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}}{\boldsymbol{\mathsf{v}}}$$

Textured image

201				
1253		work	10.3	2
233			10.0	9
1818	, A			12
2358		302	5.60	20
25.2	$_{\odot}(B)$		编制	12
126323	1998	1.1	3. R	1000
	1	\mathbf{x}_{i}	55	102320
305	0100	Sec.		233
10000	1	2.2		139
13155	26	1		
23.25			52	
100555		200	45	12
12022	1000			100
1533				
1220			2014	100

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

$$\log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\boldsymbol{\mathsf{regularity}}}} + \underbrace{\boldsymbol{\mathsf{v}}}_{\substack{\boldsymbol{\propto} \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}}$$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

$$\log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\boldsymbol{\mathsf{regularity}}}} + \underbrace{\boldsymbol{\mathsf{v}}}_{\substack{\boldsymbol{\propto} \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}}$$

Textured image

2.62			Martin	
122		4003	6.8	2
1235		1		24
1993	14			63
2333	12	100	1.16	19
1252	318			124
222	1998	1.1	3.6	2
100	1	54 Y.	Sick	102320
1300	1016	Sec.		23-2
832	4	2.2		139
13153	20	1200		
1223				100
			.	343
2018	1			1000
1333		382		
1000				24

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

$$\log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\boldsymbol{\mathsf{regularity}}}} + \underbrace{\boldsymbol{\mathsf{v}}}_{\substack{\boldsymbol{\propto} \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}}$$

Textured image

Local maximum of wavelet coefficients: $\mathcal{L}_{a,.}$

$$\log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) \underset{a \to 0}{\simeq} \log(a)_{\substack{\boldsymbol{\mathsf{regularity}}}} + \underbrace{\boldsymbol{\mathsf{v}}}_{\substack{\boldsymbol{\propto} \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}}$$

Direct punctual estimation

$$\label{eq:linear} {\sf Linear regression} \qquad \log{(\mathcal{L}_{a,\cdot})} \simeq \log(a) \frac{h}{{\sf h}_{\sf regularity}} + \frac{{\sf v}}{{\scriptstyle \propto} \log(\sigma^2)}$$

Textured image

Direct punctual estimation

Linear regression
$$\log(\mathcal{L}_{a,\cdot}) \simeq \log(a) \frac{h}{regularity} + \frac{v}{\propto \log(\sigma^2)}$$

 $\left(\widehat{h}^{\text{LR}}, \widehat{v}^{\text{LR}}\right) = \operatorname*{argmin}_{h,v} \sum_{a=a_{\min}}^{a_{\max}} \left\|\log(\mathcal{L}_{a,\cdot}) - \log(a)h - v\right\|^2$

Textured image

Direct punctual estimation

Direct punctual estimation

 \longrightarrow large estimation variance

 $\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \boldsymbol{h} - \boldsymbol{v}\|^2}{\underset{\rightarrow \text{ fidelity to the log-linear model}}{\text{Least-Squares}}}$ $\log (\mathcal{L}_{a,\cdot})$ $\log(a)$

 $\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\underset{\rightarrow \text{ fidelity to the log-linear model}}{\text{Least-Squares}}} + \frac{\lambda}{\underset{\text{favors piecewise constancy}}{\Delta favors piecewise constancy}} + \frac{\lambda}{\underset{\text{favors piecewise constancy}}{\text{Total Variation}}} + \frac{\lambda}{\underset{\text{favors piecewise constancy}}{\Delta favors piecewise constancy}} + \frac{\lambda}{\underset{\text{favors piecewise constancy}}{\Delta favors piecewise constancy}}} + \frac{\lambda}{\underset{\text{$ $\log (\mathcal{L}_{a,\cdot})$ Ω_2 log(a)

Finite differences $\mathbf{D}_1^{\rightarrow} \mathbf{x}$ (horizontal), $\mathbf{D}_1^{\uparrow} \mathbf{x}$ (vertical) at each pixel

$$\begin{array}{ll} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} & + & \lambda \underbrace{\mathcal{Q}(\mathsf{D}_1h, \mathsf{D}_1\mathbf{v}; \alpha)}_{\mathsf{Total Variation}} \\ & \rightarrow \mathsf{fidelity to the log-linear model} & \downarrow & \rightarrow \mathsf{favors piecewise constancy} \end{array}$$

Finite differences
$$\mathbf{D}_1 \mathbf{x} = \begin{bmatrix} \mathbf{D}_1^{\rightarrow} \mathbf{x}, \mathbf{D}_1^{\uparrow} \mathbf{x} \end{bmatrix}$$

<u>Free:</u> \boldsymbol{h} , \boldsymbol{v} are independently piecewise constant $\mathcal{Q}_{\mathsf{F}}(\mathbf{D}_{1}\boldsymbol{h},\mathbf{D}_{1}\boldsymbol{v};\alpha) = \alpha \|\mathbf{D}_{1}\boldsymbol{h}\|_{2,1} + \|\mathbf{D}_{1}\boldsymbol{v}\|_{2,1}$

Finite differences
$$\mathbf{D}_1 \mathbf{x} = \begin{bmatrix} \mathbf{D}_1^{\rightarrow} \mathbf{x}, \mathbf{D}_1^{\uparrow} \mathbf{x} \end{bmatrix}$$

<u>Free:</u> \boldsymbol{h} , \boldsymbol{v} are independently piecewise constant $\mathcal{Q}_{\mathsf{F}}(\mathbf{D}_{1}\boldsymbol{h},\mathbf{D}_{1}\boldsymbol{v};\alpha) = \alpha \|\mathbf{D}_{1}\boldsymbol{h}\|_{2,1} + \|\mathbf{D}_{1}\boldsymbol{v}\|_{2,1}$

<u>Co-localized:</u> h, v are concomitantly piecewise constant $Q_{C}(D_{1}h, D_{1}v; \alpha) = \|[\alpha D_{1}h, D_{1}v]\|_{2,1}$

$$\begin{array}{l} \underset{h,v}{\operatorname{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)h - \mathbf{v}\|^2}{\operatorname{Least-Squares}} + \lambda \frac{\mathcal{Q}(\mathsf{D}_1h, \mathsf{D}_1v; \alpha)}{\operatorname{Total Variation}} \\ \end{array}$$
Textured image Lin. reg. \hat{h}^{LR}

[†](Cai et al., 2013, J. Sci. Comput.)

$$(\widehat{h}, \widehat{v})(\mathcal{L}; \lambda, \alpha) = \operatorname*{argmin}_{h, v} \sum_{a} \|\log \mathcal{L}_{a, .} - \log(a)h - v\|^2 + \lambda \mathcal{Q}(\mathsf{D}_1 h, \mathsf{D}_1 v; \alpha)$$

$$(\widehat{h}, \widehat{v}) (\mathcal{L}; \lambda, \alpha) = \underset{h, v}{\operatorname{argmin}} \sum_{a} ||\log \mathcal{L}_{a, .} - \log(a)h - v||^{2} + \lambda \mathcal{Q}(D_{1}h, D_{1}v; \alpha)$$
Lin. reg. \widehat{h}^{LR}

$$(\lambda, \alpha) = (0, 0)$$

too small

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}_1\boldsymbol{h}, \boldsymbol{\mathsf{D}}_1\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant, } \boldsymbol{v}: \ \text{auxiliary}$$

$$\begin{pmatrix} \hat{\boldsymbol{h}}, \hat{\boldsymbol{v}} \end{pmatrix} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}_1\boldsymbol{h}, \boldsymbol{\mathsf{D}}_1\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \text{ discriminant, } \boldsymbol{v}: \text{ auxiliary}$$

 $ar{m{h}}$: true regularity $\mathcal{R}(\lambda, \alpha) = \left\| \widehat{m{h}}(\mathcal{L}; \lambda, \alpha) - ar{m{h}} \right\|^2$

$$\begin{pmatrix} \hat{\boldsymbol{h}}, \hat{\boldsymbol{v}} \end{pmatrix} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}_1\boldsymbol{h}, \boldsymbol{\mathsf{D}}_1\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \text{ discriminant, } \boldsymbol{v}: \text{ auxiliary}$$

$$\begin{pmatrix} \hat{\boldsymbol{h}}, \hat{\boldsymbol{v}} \end{pmatrix} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}_1\boldsymbol{h}, \boldsymbol{\mathsf{D}}_1\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \ \text{discriminant}, \ \boldsymbol{v}: \ \text{auxiliary}$$

$$\widehat{(\boldsymbol{h}, \hat{\boldsymbol{v}})} (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}_1\boldsymbol{h}, \boldsymbol{\mathsf{D}}_1\boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \text{ discriminant, } \boldsymbol{v}: \text{ auxiliary}$$

h: *true* regularity $\mathcal{R}(\lambda,\alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L};\lambda,\alpha) - \overline{\boldsymbol{h}} \right\|^2$ 15000 1 $\log_{10}(\lambda)$ 10000 5000 -1 -2 -2 0 $\mathbf{2}$ $\log_{10}(\alpha)$

h: unknown!

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}_1 \boldsymbol{h}, \boldsymbol{\mathsf{D}}_1 \boldsymbol{v}; \alpha)$$

$$\boldsymbol{h}: \text{ discriminant, } \boldsymbol{v}: \text{ auxiliary}$$

h: *true* regularity $\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^2$ 15000 1 $\log_{10}(\lambda)$ 10000 5000 -1 -2 -2 0 $\mathbf{2}$ $\log_{10}(\alpha)$

Stein Unbiased Risk Estimate (SURE)

Stein Unbiased Risk Estimate (Principe)

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linear)} \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(nonlinear)} \end{cases}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linear)} \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(nonlinear)} \end{cases}$$

Quadratic error $R(\lambda) \triangleq \mathbb{E}_{\zeta} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\zeta} \widehat{R}(\boldsymbol{y}; \lambda)$ $\bar{\boldsymbol{x}}$ unknown

Observations $y = \bar{x} + \zeta \in \mathbb{R}^{P}$, \bar{x} : truth and $\zeta \sim \mathcal{N}(0, \rho^{2}I)$

Parametric estimator $(\mathbf{y}; \lambda) \mapsto \widehat{\mathbf{x}}(\mathbf{y}; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & (\text{linear}) \\ \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & (\text{nonlinear}) \end{cases}$$

Quadratic error $R(\lambda) \triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{!}{=} \mathbb{E}_{\boldsymbol{\zeta}} \widehat{R}(\boldsymbol{y}; \lambda)$

 $ar{x}$ unknown

Theorem (Stein, 1981, Ann. Stat.)

Let $(\boldsymbol{y}; \lambda) \mapsto \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda)$ an estimator of $\overline{\boldsymbol{x}}$

weakly differentiable w.r.t. y,

• such that
$$\boldsymbol{\zeta} \mapsto \langle \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{\zeta} \rangle$$
 is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \rho^2 \mathbf{I})$.
 $\widehat{R}(\boldsymbol{y}; \lambda) \triangleq \|\widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y}\|^2 + 2\rho^2 \operatorname{tr} (\partial_{\boldsymbol{y}} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda)) - \rho^2 P$
 $\Longrightarrow R(\lambda) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\boldsymbol{y}; \lambda)].$

Generalized Stein Unbiased Risk Estimate

Observations $\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^{P}$, $\bar{\mathbf{x}} \in \mathbb{R}^{N}$, $\mathbf{\Phi} : \mathbb{R}^{P \times N}$ and $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ **E.g.** the estimators $\hat{\mathbf{h}}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours $\log \mathcal{L} = \mathbf{\Phi}(\bar{\mathbf{h}}, \bar{\mathbf{v}}) + \boldsymbol{\zeta}$ $\boldsymbol{\Phi} : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_{a}$ $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ $\mathcal{R} = \|\hat{\mathbf{h}} - \bar{\mathbf{h}}\|^{2}$ $\mathbf{\Pi} : (\mathbf{h}, \mathbf{v}) \mapsto (\mathbf{h}, \mathbf{0})$

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Observations $\mathbf{y} = \Phi \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^{P}$, $\bar{\mathbf{x}} \in \mathbb{R}^{N}$, $\Phi : \mathbb{R}^{P \times N}$ and $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$ E.g. the estimators $\hat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha)$ with free or co-localized contours

Projected estimation error $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \widehat{x}(\mathbf{y}; \Lambda) - \Pi \overline{x}\|^2$

Theorem (Pascal et al., 2021, J. Math. Imaging Vis.)

Let $({m y}; {m \Lambda}) \mapsto \widehat{{m x}}({m y}; {m \Lambda})$ be an estimator of $ar{{m x}}$

- weakly differentiable w.r.t. y,
- such that $\boldsymbol{\zeta} \mapsto \langle \Pi \widehat{\boldsymbol{x}}(\overline{\boldsymbol{x}} + \boldsymbol{\zeta}; \lambda), \boldsymbol{A} \boldsymbol{\zeta} \rangle$ is integrable w.r.t. $\mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathcal{S}})$.

$$\widehat{R}(\mathbf{\Lambda}) \triangleq \|\mathbf{A}(\mathbf{\Phi}\widehat{\mathbf{x}}(\mathbf{y};\mathbf{\Lambda}) - \mathbf{y})\|^2 + 2\mathrm{tr}\left(\mathbf{S}\mathbf{A}^{\top}\mathbf{\Pi}\partial_{\mathbf{y}}\widehat{\mathbf{x}}(\mathbf{y};\mathbf{\Lambda})\right) - \mathrm{tr}\left(\mathbf{A}\mathbf{S}\mathbf{A}^{\top}\right)$$

 $\Longrightarrow R_{\mathbf{\Pi}}(\mathbf{\Lambda}) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\mathbf{\Lambda})].$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}_1 \boldsymbol{h}, \mathbf{D}_1 \boldsymbol{v}; \alpha)$$

h: unknown!

$$\widehat{R}_{\nu,\varepsilon}(\mathcal{L};\lambda,\alpha|\mathcal{S})$$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}_1 \boldsymbol{h}, \mathbf{D}_1 \boldsymbol{v}; \alpha)$$

 $ar{m{h}}$: unknown! $\widehat{R}_{
u,m{arepsilon}}(m{\mathcal{L}};\lambda,lpha|\,m{\mathcal{S}})$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}_1 \boldsymbol{h}, \mathbf{D}_1 \boldsymbol{v}; \alpha)$$

 $ar{m{h}}$: unknown! $\widehat{R}_{
u,m{arepsilon}}(m{\mathcal{L}};\lambda,lpha|\,m{\mathcal{S}})$

$$\left(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \operatorname*{argmin}_{\boldsymbol{h}, \boldsymbol{v}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}_1 \boldsymbol{h}, \boldsymbol{\mathsf{D}}_1 \boldsymbol{v}; \alpha)$$

 $ar{m{h}}$: unknown! $\widehat{R}_{
u,m{e}}(\mathcal{L};\lambda,lpha|\,\mathcal{S})$

Generalized Finite Difference Monte Carlo SURE

$$\widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \mid \boldsymbol{\mathcal{S}}) = \\ \|\boldsymbol{\mathsf{A}} \left(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y} \right)\|^{2} + \frac{2}{\nu} \left\langle \boldsymbol{\mathcal{S}} \boldsymbol{\mathsf{A}}^{\top} \boldsymbol{\Pi} \left(\widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu \varepsilon;\boldsymbol{\Lambda}) - \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) \right), \varepsilon \right\rangle - \operatorname{tr} \left(\boldsymbol{\mathsf{A}} \boldsymbol{\mathcal{S}} \boldsymbol{\mathsf{A}}^{\top} \right)$$

Generalized Finite Difference Monte Carlo SUGAR

$$egin{aligned} &\partial_{\mathbf{\Lambda}} R_{
u,oldsymbol{arepsilon}}(oldsymbol{y};oldsymbol{\Lambda} \mid oldsymbol{\mathcal{S}}) &= 2 \left(\mathbf{A} \Phi \partial_{\mathbf{\Lambda}} \widehat{oldsymbol{x}}(oldsymbol{y};oldsymbol{\Lambda})
ight)^{ op} \mathbf{A} \left(\Phi \widehat{oldsymbol{x}}(oldsymbol{y};oldsymbol{\Lambda}) - oldsymbol{y}
ight) \ &+ rac{2}{
u} \left\langle oldsymbol{\mathcal{S}} \mathbf{A}^{ op} \Pi \left(\partial_{\mathbf{\Lambda}} \widehat{oldsymbol{x}}(oldsymbol{y} +
u arepsilon;oldsymbol{\Lambda}) - \partial_{\mathbf{\Lambda}} \widehat{oldsymbol{x}}(oldsymbol{y};oldsymbol{\Lambda})
ight), arepsilon
ight
angle \end{aligned}$$

Theorem (Pascal et al., 2021, J. Math. Imaging Vis.)

Let $(oldsymbol{y}; oldsymbol{\Lambda}) \mapsto \widehat{oldsymbol{x}}(oldsymbol{y}; oldsymbol{\Lambda})$ be an estimator of $oldsymbol{ar{x}}$

- uniformly-Lipschitz continuous w.r.t. y
- such that $orall \Lambda \in \mathbb{R}^L$, $\widehat{\pmb{x}}(\pmb{0}_P; \pmb{\Lambda}) = \pmb{0}_N$,
- uniformly *L*-Lipschitz continuous w.r.t. Λ , *L* independently of \boldsymbol{y} . Then $\partial_{\Lambda} R_{\Pi}(\Lambda) = \lim_{\nu \to 0} \mathbb{E}_{\boldsymbol{\zeta}, \boldsymbol{\varepsilon}} \left[\partial_{\Lambda} \widehat{R}_{\nu, \boldsymbol{\varepsilon}}(\boldsymbol{y}; \Lambda \mid \boldsymbol{\mathcal{S}}) \right]$

Parameter tuning (Automatic selection)

$$(\widehat{\boldsymbol{h}}, \widehat{\boldsymbol{v}}) (\boldsymbol{\mathcal{L}}; \lambda, \alpha) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}_{1}\boldsymbol{h}, \mathbf{D}_{1}\boldsymbol{v}; \alpha)$$

$$\overline{\boldsymbol{h}}: \text{ true regularity}$$

$$\mathcal{R}(\lambda, \alpha) = \left\|\widehat{\boldsymbol{h}}(\boldsymbol{\mathcal{L}}; \lambda, \alpha) - \overline{\boldsymbol{h}}\right\|^{2}$$

$$\overset{2}{\underset{\boldsymbol{c}}{\underset{\boldsymbol{c}}{\overset{0}{\underset{\boldsymbol{c}}{\underset{\boldsymbol{c}}{\overset{0}{\underset{\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\underset{\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\underset{\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\underset{\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\atop\\\boldsymbol{c}}{\atop{\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\atop\atop\boldsymbol{c}}{\atop{\boldsymbol{c}}{\atop{s}}{\atop{\boldsymbol{c}}{\atop{s}}{\atop\atop\boldsymbol{c}}{\atop\atop\boldsymbol{c}}}}}}}}}}}}}}}}}{\tilde{\boldsymbol{b}} \boldsymbol{b} \boldsymbol{b}} \boldsymbol{b}}$$

L-BFGS-B quasi-Newton algorithm: $\widehat{R}_{\nu,\varepsilon}(\mathcal{L}; \lambda, \alpha | \mathcal{S})$ and $\partial_{\Lambda} \widehat{R}_{\nu,\varepsilon}(\mathbf{y}; \Lambda | \mathcal{S})$ 19/29 Automated selection of regularization parameters

225 calls of the estimator over the grid v.s. **40** for quasi-Newton

20/29

Time series analysis:

Epidemiological indicator estimation
Counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University \implies number of cases not informative enough: need to capture the **dynamics** Counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University \implies number of cases not informative enough: need to capture the **dynamics**

Design adapted counter measures and evaluate their effectiveness

- ightarrow efficient monitoring tools
- ightarrow robust to low quality of the data

epidemiological model, managing erroneous counts.

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Interpretation: at day t

- $R_t > 1$ the virus propagates at exponential speed,
- $\mathsf{R}_t < 1$ the epidemic shrinks with an exponential decay,
- $R_t = 1$ the epidemic is stable.

 \Longrightarrow one single indicator accounting for the overall pandemic mechanism

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Interpretation: at day t

 $R_t > 1$ the virus propagates at exponential speed,

 $\mathsf{R}_t < 1$ the epidemic shrinks with an exponential decay,

 $R_t = 1$ the epidemic is stable.

 \Longrightarrow one single indicator accounting for the overall pandemic mechanism

Principle: Z_t new infections at day t

$$\mathbb{E}\left[\mathsf{Z}_{t}\right] = \mathsf{R}_{t} \Phi_{t}, \quad \Phi_{t} = \sum_{u=1}^{\tau_{\Phi}} \phi_{u} \mathsf{Z}_{t-u}$$

with Φ_t global "infectiousness" in the population

 $\{\phi_u\}_{u=1}^{\tau_{\Phi}}$ distribution of delay between onset of symptoms in primary and secondary cases Gamma distribution truncated at 25 days, of mean 6.6 days and standard deviation 3.5 days

Data: daily counts $\mathbf{Z} = (Z_1, \ldots, Z_T)$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

Data: daily counts
$$\mathbf{Z} = (Z_1, \ldots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_{t-\tau_{\Phi}:t-1},\mathsf{R}_t) = \frac{(\mathsf{R}_t\Phi_t)^{\mathsf{Z}_t}\mathrm{e}^{-\mathsf{R}_t\Phi_t}}{\mathsf{Z}_t!}$$

 \implies At day t: $Z_t \sim \mathcal{P}(R_t \Phi_t)$

Data: daily counts
$$\mathbf{Z} = (Z_1, \dots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

 \implies At day t: $Z_t \sim \mathcal{P}(R_t \Phi_t)$

Inverse problem formalism:

$$\mathbf{Z} \sim \mathcal{P}\left(\mathbf{\Phi}\mathbf{R}\right)$$

- $\mathbf{Z} \in \mathbb{N}^{T}$: reported infection counts,
- $\mathbf{R} = (\mathsf{R}_1, \dots, \mathsf{R}_T) \in \mathbb{R}_+^T$: daily unknown reproduction number,
- $\Phi = \operatorname{diag}(\Phi_1, \dots, \Phi_T)$: linear operator,
- \mathcal{P} : data-dependent Poisson noise.

$$\Longrightarrow \mathcal{D}(\mathsf{Z}, \mathbf{\Phi}\mathsf{R}) = -\log \mathbb{P}(\mathsf{Z}|\mathsf{R})$$

Data: daily counts
$$\mathbf{Z} = (Z_1, \dots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

$$\begin{split} &\ln\left(\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t)\right) \\ &= \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \ln(\mathsf{Z}_t!) \\ &\underset{\mathsf{Z}_t \gg 1}{\simeq} \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \mathsf{Z}_t \ln(\mathsf{Z}_t) + \mathsf{Z}_t \\ &= -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_t | \mathsf{R}_t \Phi_t) \quad (\mathsf{Kullback-Leibler}) \end{split}$$

Data: daily counts
$$\mathbf{Z} = (Z_1, \dots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t !}$$

Maximum Likelihood Estimate (MLE)

$$\begin{aligned} &\ln\left(\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t)\right) \\ &= \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \ln(\mathsf{Z}_t!) \\ &\underset{Z_t \gg 1}{\simeq} \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \mathsf{Z}_t \ln(\mathsf{Z}_t) + \mathsf{Z}_t \\ &= -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_t | \mathsf{R}_t \Phi_t) \quad (\mathsf{Kullback-Leibler}) \\ &\implies \widehat{\mathsf{R}}_t^{\mathsf{MLE}} = \mathsf{Z}_t / \Phi_t = \mathsf{Z}_t / \sum_{u=1}^{\tau_{\Phi}} \phi_u \mathsf{Z}_{t-u} \\ &\text{ratio of moving averages} \end{aligned}$$

Data: daily counts
$$\mathbf{Z} = (Z_1, \dots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

Maximum Likelihood Estimate (MLE)

$$\begin{split} &\ln\left(\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t)\right) \\ &= \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \ln(\mathsf{Z}_t!) \\ &\underset{\mathsf{Z}_t \gg 1}{\simeq} \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \mathsf{Z}_t \ln(\mathsf{Z}_t) + \mathsf{Z}_t \\ &= -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_t | \mathsf{R}_t \Phi_t) \quad (\mathsf{Kullback-Leibler}) \\ \end{split}$$

$$\implies \widehat{\mathsf{R}}_t^{\mathsf{MLE}} = \mathsf{Z}_t / \Phi_t = \mathsf{Z}_t / \sum_{u=1}^{\infty} \phi_u \mathsf{Z}_{t-u}$$

ratio of moving averages

- huge variability along time/ no local trend
- not robust to pseudo-periodicity/ misreported counts

Penalized likelihood: regularization through nonlinear filtering

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}_{+}^{T}}{\operatorname{argmin}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t} \, | \, \mathsf{R}_{t} \Phi_{t} \, \right) + \lambda \mathcal{R}(\mathbf{R}) \quad \text{(penalized Kullback-Leibler)}$$

with $\mathcal{R}(\mathbf{R})$ favoring some temporal regularity

Penalized likelihood: regularization through nonlinear filtering

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}_{+}^{T}}{\operatorname{argmin}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t} \Phi_{t}\right) + \lambda \mathcal{R}(\mathbf{R}) \quad \text{(penalized Kullback-Leibler)}$$

with $\mathcal{R}(\mathbf{R})$ favoring some temporal regularity

captures global trend, smooth temporal behavior, no pseudo-oscillations

Penalized Kullback-Leibler estimator:

$$\widehat{\mathsf{R}}(\mathsf{Z};\lambda) = \underset{\mathsf{R} \in \mathbb{R}_{+}^{T}}{\operatorname{argmin}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t} \Phi_{t}\right) + \lambda \|\mathsf{D}_{2}\mathsf{R}\|_{1}$$

with $\mathcal{R}(\boldsymbol{R})$ favoring some temporal regularity

Penalized Kullback-Leibler estimator:

$$\widehat{\mathsf{R}}(\mathsf{Z};\lambda) = \underset{\mathsf{R} \in \mathbb{R}_{+}^{T}}{\operatorname{argmin}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t} \Phi_{t}\right) + \lambda \|\mathsf{D}_{2}\mathsf{R}\|_{1}$$

with $\mathcal{R}(\mathbf{R})$ favoring some temporal regularity

Penalized Kullback-Leibler estimator:

$$\widehat{\mathbf{R}}(\mathbf{Z};\lambda) = \underset{\mathbf{R} \in \mathbb{R}_{+}^{T}}{\operatorname{argmin}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t} \Phi_{t}\,\right) + \lambda \|\mathbf{D}_{2}\mathbf{R}\|_{1}$$

with $\mathcal{R}(\mathbf{R})$ favoring some temporal regularity

Goal:
$$\mathcal{O}$$
 data-driven proxy for $\|\widehat{\mathbf{R}}(\mathbf{Z}; \lambda) - \overline{\mathbf{R}}\|_2^2$
Strategy: Unbiased Risk Estimate $\mathbb{E}_{\mathbf{Z}}[\mathcal{O}(\mathbf{Z}; \lambda)] = \mathbb{E}_{\mathbf{Z}}\left[\|\widehat{\mathbf{R}}(\mathbf{Z}; \lambda) - \overline{\mathbf{R}}\|_2^2\right]$

Goal:
$$\mathcal{O}$$
 data-driven proxy for $\|\widehat{\mathbf{R}}(\mathbf{Z};\lambda) - \overline{\mathbf{R}}\|_2^2$

Strategy: Unbiased Risk Estimate $\mathbb{E}_{\mathbf{Z}}\left[\mathcal{O}(\mathbf{Z};\lambda)\right] = \mathbb{E}_{\mathbf{Z}}\left[\|\widehat{\mathbf{R}}(\mathbf{Z};\lambda) - \overline{\mathbf{R}}\|_{2}^{2}\right]$

Reminder:

$$Z \sim \mathcal{P}(\Phi R)$$

- $\mathbf{Z} \in \mathbb{N}^T$: reported infection counts,
- $\mathbf{R} = (\mathsf{R}_1, \dots, \mathsf{R}_T) \in \mathbb{R}_+^T$: daily unknown reproduction number,
- $\Phi = \operatorname{diag}(\Phi_1, \ldots, \Phi_T)$: linear operator,
- \mathcal{P} : data-dependent Poisson noise.

Goal:
$$\mathcal{O}$$
 data-driven proxy for $\|\widehat{\mathbf{R}}(\mathbf{Z};\lambda) - \overline{\mathbf{R}}\|_2^2$

Strategy: Unbiased Risk Estimate $\mathbb{E}_{Z} \left[\mathcal{O}(Z; \lambda) \right] = \mathbb{E}_{Z} \left[\| \widehat{R}(Z; \lambda) - \overline{R} \|_{2}^{2} \right]$

Reminder:

$$\mathbf{Z} \sim \mathcal{P}(\mathbf{\Phi}\mathbf{R})$$

- $\mathbf{Z} \in \mathbb{N}^T$: reported infection counts,
- $\mathbf{R} = (\mathsf{R}_1, \dots, \mathsf{R}_T) \in \mathbb{R}_+^T$: daily unknown reproduction number,
- $\Phi = \operatorname{diag}(\Phi_1, \dots, \Phi_T)$: linear operator,
- \mathcal{P} : data-dependent Poisson noise.

Challenges:

Poisson model: Stein lemma does not apply (Eldar, 2008, IEEE Trans. Signal Process.; Luisier et al., 2010, IEEE Trans. Image Process.; Li et al., 2017, IEEE Trans. Image Process.)

Goal:
$$\mathcal{O}$$
 data-driven proxy for $\|\widehat{\mathbf{R}}(\mathbf{Z};\lambda) - \overline{\mathbf{R}}\|_2^2$

Strategy: Unbiased Risk Estimate $\mathbb{E}_{\mathbf{Z}}\left[\mathcal{O}(\mathbf{Z};\lambda)\right] = \mathbb{E}_{\mathbf{Z}}\left[\|\widehat{\mathbf{R}}(\mathbf{Z};\lambda) - \overline{\mathbf{R}}\|_{2}^{2}\right]$

Reminder:

$$Z \sim \mathcal{P}(\Phi(Z)R)$$

- $\mathbf{Z} \in \mathbb{N}^T$: reported infection counts,
- $\mathbf{R} = (\mathsf{R}_1, \dots, \mathsf{R}_T) \in \mathbb{R}_+^T$: daily unknown reproduction number,
- $\Phi = \operatorname{diag}(\Phi_1, \ldots, \Phi_T)$: linear operator,
- \mathcal{P} : data-dependent Poisson noise.

Challenges:

- ▶ Poisson model: Stein lemma does not apply (Eldar, 2008, IEEE Trans. Signal Process.; Luisier et al., 2010, IEEE Trans. Image Process.; Li et al., 2017, IEEE Trans. Image Process.)
- ▶ Nonstationary driven autoregressive model: $(\Phi R)_t = R_t \sum_{s=1}^{\tau_{\Phi}} \phi_s Z_{t-s}$

 $[\]implies$ Novel counterpart of Stein lemma for driven autoregressive Poisson model

Goal:
$$\mathcal{O}$$
 data-driven proxy for $\|\widehat{\mathbf{R}}(\mathbf{Z};\lambda) - \overline{\mathbf{R}}\|_2^2$

Strategy: Unbiased Risk Estimate $\mathbb{E}_{\mathbf{Z}}\left[\mathcal{O}(\mathbf{Z};\lambda)\right] = \mathbb{E}_{\mathbf{Z}}\left[\|\widehat{\mathbf{R}}(\mathbf{Z};\lambda) - \overline{\mathbf{R}}\|_{2}^{2}\right]$

Reminder:

$$Z \sim \mathcal{P}(\Phi(Z)R)$$

- $\mathbf{Z} \in \mathbb{N}^{T}$: reported infection counts,
- $\mathbf{R} = (\mathsf{R}_1, \dots, \mathsf{R}_T) \in \mathbb{R}_+^T$: daily unknown reproduction number,
- $\Phi = \operatorname{diag}(\Phi_1, \dots, \Phi_T)$: linear operator,
- \mathcal{P} : data-dependent Poisson noise.

Challenges:

- ▶ Poisson model: Stein lemma does not apply (Eldar, 2008, IEEE Trans. Signal Process.; Luisier et al., 2010, IEEE Trans. Image Process.; Li et al., 2017, IEEE Trans. Image Process.)
- ► Nonstationary driven autoregressive model: $(\mathbf{\Phi}\mathbf{R})_t = \mathsf{R}_t \sum_{s=1}^{\tau_{\Phi}} \phi_s \mathsf{Z}_{t-s}$

 \implies Novel counterpart of Stein lemma for driven autoregressive Poisson model

Autoregressive Poisson Unbiased Risk Estimate (APURE)

Pascal & Vaiter, *Preprint arXiv:2409.14937*, 2024 Codes: github.com/bpascal-fr/APURE-Estim-Epi

28/29

Conclusion and perspectives

Inverse problem $\mathbf{y} \sim \mathcal{B}\left(\mathbf{\Phi}\overline{\mathbf{x}}
ight)$

 $\lambda^{\dagger} \in \operatorname*{Argmin}_{\lambda \in \Lambda} \mathcal{O}(\boldsymbol{y}; \lambda), \quad \text{for} \quad \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) \in \operatorname*{Argmin}_{\boldsymbol{x} \in \mathbb{R}^{N}} \mathcal{D}(\boldsymbol{y}, \boldsymbol{\Phi} \boldsymbol{x}) + \lambda \mathcal{R}(\boldsymbol{x})$

Conclusion and perspectives

Inverse problem $\mathbf{y} \sim \mathcal{B}\left(\mathbf{\Phi}\overline{\mathbf{x}}\right)$

 $\lambda^{\dagger} \in \operatorname*{Argmin}_{\lambda \in \Lambda} \mathcal{O}(oldsymbol{y}; \lambda), \hspace{1em} ext{for} \hspace{1em} \widehat{oldsymbol{x}}(oldsymbol{y}; \lambda) \in \operatorname*{Argmin}_{oldsymbol{x} \in \mathbb{R}^N} \mathcal{D}(oldsymbol{y}, oldsymbol{\Phi} oldsymbol{x}) + \lambda \mathcal{R}(oldsymbol{x})$

Data-driven parameter selection

⇒ O: Unbiased Risk Estimate (Stein, 1981, Ann. Stat.; Eldar, 2008, IEEE Trans. Signal Process.; Luisier et al., 2010, IEEE Trans. Image Process.; Deledalle et al., 2014, SIAM J. Imaging Sci.; Pascal et al., 2021, J. Math. Imaging Vis.; Lucas et al., 2023, Signal, Image Video Process.)

- ▶ Texture segmentation: additive correlated Gaussian noise;
- ▶ Epidemic monitoring: driven autoregressive data-dependent Poisson noise.

Conclusion and perspectives

Inverse problem $\mathbf{y} \sim \mathcal{B}\left(\mathbf{\Phi}\overline{\mathbf{x}} ight)$

 $\lambda^{\dagger} \in \operatorname*{Argmin}_{\lambda \in \Lambda} \mathcal{O}(oldsymbol{y}; \lambda), \hspace{1em} ext{for} \hspace{1em} \widehat{oldsymbol{x}}(oldsymbol{y}; \lambda) \in \operatorname*{Argmin}_{oldsymbol{x} \in \mathbb{R}^N} \mathcal{D}(oldsymbol{y}, oldsymbol{\Phi} oldsymbol{x}) + \lambda \mathcal{R}(oldsymbol{x})$

Data-driven parameter selection

⇒ O: Unbiased Risk Estimate (Stein, 1981, Ann. Stat.; Eldar, 2008, IEEE Trans. Signal Process.; Luisier et al., 2010, IEEE Trans. Image Process.; Deledalle et al., 2014, SIAM J. Imaging Sci.; Pascal et al., 2021, J. Math. Imaging Vis.; Lucas et al., 2023, Signal, Image Video Process.)

- ▶ Texture segmentation: additive correlated Gaussian noise;
- ▶ Epidemic monitoring: driven autoregressive data-dependent Poisson noise.

Extensions and perspectives

- Efficient and robust scheme for nonconvex $\mathcal{R}(\mathbf{x})$;
- ▶ Generalization to other noise models: speckle noise in medical imaging;
- Unsupervised learning for $\widehat{x}(y; \lambda) = NN_{\theta}(y)$ with loss $\mathcal{O}(y; \theta)$.