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Tissue density fluctuations in normal vs. cancerous breasts

Overall mammographic density:
=⇒ important risk factor for breast cancer radiological assessment

Local fluctuations: self-similar textures =⇒ fractal analysis for
• classification of mammogram density (Caldwell et al., 1990, Phys. Med. Biol.)
• lesion detectability in mammograms (Burgess et al., 2001, Med. Biol.)
• assessment of breast cancer risk (Heine et al., 2002, Acad. Radiol.)

Fractional Brownian fields: characterized by their local roughness

Mammogram

fractional Brownian field stationary increments
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Motivations and goals

Breast microenvironment plays a crucial role in tumorigenesis:
• structure integrity preserved =⇒ lesions are suppressed
• structure lost by tissue disruption =⇒ tumor is promoted

Tumor vs. healthy not only in the tumor but also in its surrounding tissue

Pioneer work: Marin et al., 2017, Med. Phys. quantitatively and objectively assessed

• tissue disruption
• loss of homeostasis in breast tissue microenvironment
• bilateral asymmetry

via wavelet-based mammogram local analysis.

Main idea: quantify density fluctuations through the Hust exponent estimated in

multifractal formalism based on 2D Wavelet Transform Modulus Maxima

=⇒ risk assessment and tumorous breasts detection without seeing a tumor
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A very short reminder about fractional Brownian fields

fBf of Hurst exponent H ∈ [0, 1] denoted {BH(x), x ∈ R2}

• Gaussian field with zero-mean

• and for some σ2 > 0, correlation function writing

E [BH(x)BH(y)] = σ2

2
(
‖x‖2H + ‖y‖2H − ‖x − y‖2H)

Stationary increments

∀h ∈R2, E [(BH(x + h)− BH(x))(BH(y + h)− BH(y))]

= ‖x + h − y‖2H + ‖x − h − y‖2H − 2‖x − y‖2H

For ‖h‖ � ‖x − y‖, E [(BH(x + h)− BH(x))(BH(y + h)− BH(y))]

= ‖x − y‖2(H−1)2H(2H − 1)‖h‖2 + o
(
‖h‖2)

• H < 1/2: anti-correlated
• H = 1/2: uncorrelated =⇒ disruption
• H > 1/2: long-range correlated
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A very short reminder about fractional Brownian fields

Self-similarity

∀h ∈ R2, λ > 0, BH(x + λh)− BH(x)
(law)
' λH(BH(x + h)− BH(x))

Local regularity: same roughness everywhere h(x) ≡ H =⇒ monofractal signature

The larger the Hurst exponent H, the smoother the texture.

Singularity spectrum: D(h) Haussdorff dimension of {x ∈ R2, h(x) = h}

D(h) =
{

2 h = H
−∞ h 6= H

=⇒ estimation of h,D(h): multifractal formalism based on wavelet transform
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Local fractal analysis of mammographic breast tissue

CompuMAINE local mammogram analysis (Marin et al., 2017, Phys. Med. Biol.)

• H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
• H > 1/2 monofractal long-range correlated: dense tissues (healthy)
• H ' 1/2 monofractal uncorrelated: disrupted tissues (tumorous)
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Assessment of the role of disruption in tumor promotion

Dataset: University of South Florida, Digital Database for Screening Mammography

• Mediolateral oblique views only;
• 43 normal, 49 cancer, 35 benign;
• for benign and cancer microcalcification only, masses excluded;

Image sliding-window analysis:

• squared 360× 360-pixel window

• with 32-pixel horizontal and vertical shifts

=⇒ analysis of all 360× 360-pixel overlapping patches

Example: mammogram of size 4459× 2155 pixels

4457 patches ⇐⇒ 4457 measures of the roughness H

Metric: number of yellow patches

H ∼ 1/2 =⇒ disrupted tissues
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Assessment of the role of disruption in tumor promotion

Q.: Is the quantity of disrupted tissues, H ' 1/2, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y , of cardinalities nx and ny respectively

H0: P(X > Y ) = P(Y > X)

(i) order elements of X ∪ Y to form an increasing sequence;
(ii) assign to each element in X ∪ Y its rank in the sequence;
(iii) sum the ranks of elements in X : variable Sx .

If at least 20 samples, law of Sx well approximated by a Gaussian with

µ = nx ny/2; σ2 = nx ny (nx + ny + 1)/2.

If |Sx − µ|/σ > 1.96, H0 is rejected with confidence level α = 0.05.

Tumorous breasts have more disrupted tissues compared to normal breasts:
normal vs. cancer: P ∼ 0.0423, normal vs. benign: P ∼ 0.0009.
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Fractal features piecewise constant estimation from leaders

Pascal et al., 2020, Ann. Telecommun.; Pascal et al., 2021, Appl. Comput. Harmon. Anal.;
Pascal et al., 2021, J. Math. Imaging Vis. =⇒ Journées ANR Mistic, April 2023(

ĥ, v̂
)

(L;λ, α) = argmin
h,v

∑
a

‖log La,. − log(a)h − v‖2 + λQ(Dh,Dv ;α)

=⇒ estimation of the local regularity, i.e., roughness, at the pixel level
9/24



Local fractal analysis of mammographic breast tissue

But first: assess that the wavelet leaders formalism agrees with WTMM on patches

Wavelet leaders: La,n at scale a and pixel n supremum of wavelet coefficients

• at all finer scales a′ ≤ a

• in a spatial neighborhood

For a grid of pixels Ω ⊂ R2, scaling exponent τ(q) accessible through

1
|Ω|
∑
n∈Ω

Lq
a,n = Fqaτ(q), a→ 0+

homogeneous monofractal texture of Hurst exponent H =⇒ τ(q) = qH

linear regression to estimate H for all 360× 360-pixel overlapping patches
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Local fractal analysis of mammographic breast tissue

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

• H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
• H > 1/2 monofractal long-range correlated: dense tissues (healthy)
• H ' 1/2 monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine Leaders
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Multifractal framework: Wavelet Transform Modulus Maxima

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

2D Wavelet Transform: {f (x), x ∈ R2} 2D-field

Smoothing function ϕ(x) =⇒ wavelets ψ1(x) = ∂x1ϕ(x1, x2), ψ2(x) = ∂x2ϕ(x1, x2)

Tψ[f ](b, a) =
(

a−2
∫
ψ1
(
a−1(x − b)

)
f (x) dx

a−2
∫
ψ2
(
a−1(x − b)

)
f (x) dx

)
(complex)= Mψ[f ](b, a) exp (iAψ[f ](b, a))

Example: Gaussian and Mexican hat smoothing functions

ϕGauss(x) = exp(−‖x‖2/2); ϕMex(x) = (2− ‖x‖2) exp(−‖x‖2/2)

Wavelet Transform Modulus Maxima

{(b, a) ∈ R2,×R∗+ Mψ[f ](b, a) locally maximal in direction Aψ[f ](b, a)}
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Multifractal framework: Wavelet Transform Modulus Maxima

Source: Basel G. White

Wavelet Transform space-scale skeleton: L(a)

lines formed by WTMM maxima across scales

If a maxima line Lx0 (a) is pointing toward a singularity x0 as a→ 0+, then

Mψ[f ](Lx0 (a)) ∼ ah(x0), a→ 0+

provided that the wavelet has nψ > h(x0) vanishing moments.
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Multifractal framework: Wavelet Transform Modulus Maxima

Partition function: for a set L(a) of maxima lines

Z(q, a) =
∑
`∈L(a)

(
sup

(b,a′)∈`,a′≤a
Mψ[f ](b, a′)

)q

q: statistical order moment

Roughness, quantified by Hölder exponent, characterized by τ(q) spectrum

Z(q, a) ∼ aτ(q), a→ 0+

For 2D fractional Brownian field: τ(q) = qH − 2 is linear.

Singularity spectrum: D(h) Haussdorff dimension of {x ∈ R2, h(x) = h}

D(h) = min
q

(qh − τ(q)) (Legendre transform of τ)
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Multifractal framework: Wavelet Transform Modulus Maxima

Numerically: unstable estimation of τ(q) and D(q)

=⇒ Mean quantities in a canonical ensemble with Boltzmann weights

Wψ[f ](q, `, a) =

∣∣∣∣ sup
(b,a′)∈`,a′≤a

Mψ[f ](b, a′)
∣∣∣∣q

Z(q, a)

Roughness: robust local regularity estimation

h(q, a) =
∑
`∈L(a)

ln (Wψ[f ](q, `, a)) Wψ[f ](q, `, a),

h(q) = dτ
dq = lim

a→0+

h(q, a)
ln a

Singularity spectrum:

D(q, a) =
∑
`∈L(a)
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Local fractal analysis of mammographic breast tissue

Roughness: h(q) = lim
a→0+

h(q, a)
ln a ; Singularity spectrum: D(q, a) = lim

a→0+

D(q, a)
ln a

• The larger the patch, the larger the range of q values, the better the estimate;

• but risk of confusing average of several monofractal signatures and multifractal.

=⇒ estimation on overlapping patches of size 360× 360 pixels with 32-pixel shift

Image sliding window analysis

1. Check that the central 256× 256 pixels are contained in the mask;

2. if so, compute the Wavelet Transform for 50 scales, from a = 7 to 120 pixels;

3. extract the space-scale skeleton from the central 256× 256 pixels;

4. compute h(q, a) and D(q, a) from the partition function Z(q, a);

5. linear regressions h(q, a) vs. log2(a) and D(q, a) vs. log2(a):

how to choose the range of scales [amin, amax]?
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Local fractal analysis of mammographic breast tissue

For each patch of 360× 360 pixels, i.e., 15.5× 15.5 mm

roughness: h(q) = lim
a→0+

h(q, a)
ln a ; singularity spectrum: D(q, a) = lim

a→0+

D(q, a)
ln a

=⇒ linear regressions h(q, a) vs. log2(a) and D(q, a) vs. log2(a) across [amin, amax]

The Autofit Methodology: imposing log2 amax − log2 amin ≥ 1 explore

log2
amin

σw
= 0.0, 0.1, . . . , 2.1, , log2

amax

σw
= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

17/24



Local fractal analysis of mammographic breast tissue

For each patch of 360× 360 pixels, i.e., 15.5× 15.5 mm

roughness: h(q) = lim
a→0+

h(q, a)
ln a ; singularity spectrum: D(q, a) = lim

a→0+

D(q, a)
ln a

=⇒ linear regressions h(q, a) vs. log2(a) and D(q, a) vs. log2(a) across [amin, amax]

The Autofit Methodology: imposing log2 amax − log2 amin ≥ 1 explore

log2
amin

σw
= 0.0, 0.1, . . . , 2.1, , log2

amax

σw
= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

17/24



Local fractal analysis of mammographic breast tissue

For each patch of 360× 360 pixels, i.e., 15.5× 15.5 mm

roughness: h(q) = lim
a→0+

h(q, a)
ln a ; singularity spectrum: D(q, a) = lim

a→0+

D(q, a)
ln a

=⇒ linear regressions h(q, a) vs. log2(a) and D(q, a) vs. log2(a) across [amin, amax]

The Autofit Methodology: imposing log2 amax − log2 amin ≥ 1 explore

log2
amin

σw
= 0.0, 0.1, . . . , 2.1, , log2
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σw
= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

• linear regression on h(q = 0, a) from amin to amax yields

−0.2 < ĥ(q = 0) = Ĥ < 1

– H ≤ −0.2: high roughness =⇒ abnormally high noise
– H ≥ 1: low roughness, differentiable field =⇒ artificially smooth
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= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

• linear regression on D(q = 0, a) from amin to amax yields

1.7 < D̂(h(q = 0)) < 2.5

for a monofractal field of Hurst exponent H, expected to be D(H) = 2

but finite size effect affect the maxima lines as a→ 0+
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amax

σw
= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

• coefficient of determination of linear regression on h(q = 0, a) from amin to amax

R2 > 0.96

sufficiently linear to extract the Hurst exponent H
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= 0.0, 0.1, . . . , 2.1, , log2

amax

σw
= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

• weighted standard deviation across q of the ĥ(q) estimated from amin to amax

sdw < 0.06
=⇒ excludes multifractal scaling

q −2 −1.5 −1 −0.5 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.5 1 1.5 2 2.5 3

w 0.1 0.5 1 3 5 7 9 10 9 8 7 5 3 2 1 0.5 0.2
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= 0.0, 0.1, . . . , 2.1, , log2

amax

σw
= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

• weighted average of goodness of fit of ĥ(q) estimated from amin to amax

〈R2
w 〉 > 0.96

=⇒ ensures self-similarity
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w 0.1 0.5 1 3 5 7 9 10 9 8 7 5 3 2 1 0.5 0.2

17/24



Local fractal analysis of mammographic breast tissue

For each patch of 360× 360 pixels:

=⇒ linear regressions h(q, a) vs. log2(a) and D(q, a) vs. log2(a) across [amin, amax]

The Autofit Methodology: imposing log2 amax − log2 amin ≥ 1 explore 418 couples

log2
amin

σw
= 0.0, 0.1, . . . , 2.1, , log2

amax

σw
= 2.0, 2.1, . . . , 4.1, with σw = 7 pixels

and select [amin, amax] if and only if

• −0.2 < h(q = 0) < 1: expected roughness

• 1.7 < D̂ < 2.5: expect 2
• R2 > 0.96: accurate estimation of H
• sdw < 0.06: monofractal scaling
• 〈R2

w 〉 > 0.96: h(q, a) sufficiently linear

=⇒ If no scale range [amin, amax] for which all conditions are satisfied: no scaling.
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Local fractal analysis of mammographic breast tissue

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

• H < 1/2 monofractal anti-correlated: fatty tissues (healthy)
• H > 1/2 monofractal long-range correlated: dense tissues (healthy)
• H ' 1/2 monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine fixed scales

adaptive scales

[amin, amax] = [23, 25]

[amin, amax] ⊂ [22, 28]
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Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography
43 normal vs. 49 cancer, 35 benign

=⇒ digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0, 4095])

Tumorous breasts have more disrupted tissues compared to normal breasts:
normal vs. cancer: P ∼ 0.0423, normal vs. benign: P ∼ 0.0009.

Gerasimova-Chechkina et al., 2021, Front. Physiol.

=⇒ shared with us, with analyses

Russian: Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

=⇒ digitally acquired mammograms: uncompressed 8-bit BMP images ([0, 255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:
cancer vs. benign: P ∼ 0.003
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Local fractal analysis of mammographic breast tissue
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Mammogram datasets

Gerasimova-Chechkina et al., 2021, Front. Physiol. =⇒ shared with us, with analyses

Russian: Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

=⇒ digitally acquired mammograms: uncompressed 8-bit BMP images ([0, 255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: P ∼ 0.003

Wavelet leaders with

• Daubechies wavelets with nΨ = 2 vanishing moments

• ∼ scales selected by the CompuMaine autofit method, up to rounding errors

cancer vs. benign: P ∼ 0.074
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Conclusions

Patch-wise fractal analysis of mammograms with WT modulus maxima method

• disrupted tissues, characterized by H ∼ 1/2, indicate loss of homeostasis

• quantity of disrupted tissues discriminates between
(Marin et al., 2017) tumorous vs. normal P ∼ 0.0006
(Gerasimova-Chechkina et al., 2021) cancer vs. benign P ∼ 0.0030

=⇒ exploration of 418 couples of (amin, amax) for each patch and strict conditions

Reproduction with wavelet leaders formalism on Russian dataset
• range of scales for each patch extracted from CompuMaine analyses,

• remains less informative: P ∼ 0.0740
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Perspectives

From patch-wise to pixel-wise fractal analysis

• using wavelet leaders framework,

• combined with variational methods,

• with PyTorch implementation to benefit from fast GPU computing,

• reduced number of hyperparameters & fine-tuned automatically

=⇒ increase the sensibility in the measurement of the quantity of disrupted tissues

Asymmetry in tissue disruption in cancerous cases

• assessed both in Marin et al., 2017 and Gerasimova-Chechkina et al., 2021,

• to be evaluated with (pixel-wise) wavelet leader fractal analysis

Anisotropic Gaussian fields for mammogram modeling

• observed in Richard & Biermé, 2010

• many tools that have never been applied to mammogram yet!
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