

IV Nantes U Université

Detection of change in cancer breast tissues from fractal indicators:

A brief introduction

ANR MISTIC

Journées Textures à Vannes

October, 10 & 11 2024

Barbara Pascal

Laboratoire des Sciences du Numérique de Nantes: B. Pascal

Laboratoire de Physique ENSL: P. Abry, B. Audit, L. Davy, N. Pustelnik

CompuMAINE:[∗] K. Batchelder, A. Khalil, B. G. White

[∗] Computational Modeling, Analysis of Imagery and Numerical Experiments

Tissue density fluctuations in normal vs. cancerous breasts

Overall mammographic density:

 \implies important risk factor for breast cancer radiological assessment

Tissue density fluctuations in normal vs. cancerous breasts

Overall mammographic density:

 \implies important risk factor for breast cancer radiological assessment

Local fluctuations: self-similar textures \implies fractal analysis for

- classification of mammogram density (Caldwell et al., 1990, Phys. Med. Biol.)
- lesion detectability in mammograms (Burgess et al., 2001, Med. Biol.)
- assessment of breast cancer risk (Heine et al., 2002, Acad. Radiol.)

Mammogram

Tissue density fluctuations in normal vs. cancerous breasts

Overall mammographic density:

 \implies important risk factor for breast cancer radiological assessment

Local fluctuations: self-similar textures \implies fractal analysis for

- classification of mammogram density (Caldwell et al., 1990, Phys. Med. Biol.)
- lesion detectability in mammograms (Burgess et al., 2001, Med. Biol.)
- assessment of breast cancer risk (Heine et al., 2002, Acad. Radiol.)

Fractional Brownian fields: characterized by their local roughness

Mammogram fractional Brownian field stationary increments

Motivations and goals

Breast **microenvironment** plays a crucial role in tumorigenesis:

- structure integrity preserved \implies lesions are suppressed
- structure lost by tissue disruption \implies tumor is promoted

Tumor vs. healthy not only in the tumor but also in its surrounding tissue

Motivations and goals

Breast **microenvironment** plays a crucial role in tumorigenesis:

- structure integrity preserved \implies lesions are suppressed
- structure lost by tissue disruption \implies tumor is promoted

Tumor vs. healthy not only in the tumor but also in its surrounding tissue

Pioneer work: Marin et al., 2017, Med. Phys. quantitatively and objectively assessed

- tissue disruption
- loss of homeostasis in breast tissue microenvironment
- bilateral asymmetry

via wavelet-based mammogram local analysis.

Motivations and goals

Breast **microenvironment** plays a crucial role in tumorigenesis:

- structure integrity preserved \implies lesions are suppressed
- structure lost by tissue disruption \implies tumor is promoted

Tumor vs. healthy not only in the tumor but also in its surrounding tissue

Pioneer work: Marin et al., 2017, Med. Phys. quantitatively and objectively assessed

- tissue disruption
- loss of homeostasis in breast tissue microenvironment
- bilateral asymmetry

via wavelet-based mammogram local analysis.

Main idea: quantify density fluctuations through the Hust exponent estimated in

multifractal formalism based on 2D Wavelet Transform Modulus Maxima

risk assessment and tumorous breasts detection without seeing a tumor

fBf of Hurst exponent $H \in [0,1]$ denoted $\{B_H(\textbf{x}), \textbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- \bullet and for some $\sigma^2 > 0$, correlation function writing

$$
\mathbb{E}\left[B_H(\mathbf{x})B_H(\mathbf{y})\right] = \frac{\sigma^2}{2}\left(\|\mathbf{x}\|^{2H} + \|\mathbf{y}\|^{2H} - \|\mathbf{x} - \mathbf{y}\|^{2H}\right)
$$

fBf of Hurst exponent $H \in [0,1]$ denoted $\{B_H(\textbf{x}), \textbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- \bullet and for some $\sigma^2 > 0$, correlation function writing

$$
\mathbb{E}\left[B_H(\mathbf{x})B_H(\mathbf{y})\right] = \frac{\sigma^2}{2}\left(\|\mathbf{x}\|^{2H} + \|\mathbf{y}\|^{2H} - \|\mathbf{x} - \mathbf{y}\|^{2H}\right)
$$

Stationary increments

$$
\forall \mathbf{h} \in \mathbb{R}^2, \quad \mathbb{E}\left[\left(B_H(\mathbf{x}+\mathbf{h})-B_H(\mathbf{x})\right)\left(B_H(\mathbf{y}+\mathbf{h})-B_H(\mathbf{y})\right)\right]
$$

$$
= \|\mathbf{x}+\mathbf{h}-\mathbf{y}\|^{2H} + \|\mathbf{x}-\mathbf{h}-\mathbf{y}\|^{2H} - 2\|\mathbf{x}-\mathbf{y}\|^{2H}
$$

fBf of Hurst exponent $H \in [0,1]$ denoted $\{B_H(\textbf{x}), \textbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- \bullet and for some $\sigma^2 > 0$, correlation function writing

$$
\mathbb{E}\left[B_H(\mathbf{x})B_H(\mathbf{y})\right] = \frac{\sigma^2}{2}\left(\|\mathbf{x}\|^{2H} + \|\mathbf{y}\|^{2H} - \|\mathbf{x} - \mathbf{y}\|^{2H}\right)
$$

Stationary increments

$$
\forall \mathbf{h} \in \mathbb{R}^2, \quad \mathbb{E} [(B_H(\mathbf{x} + \mathbf{h}) - B_H(\mathbf{x})) (B_H(\mathbf{y} + \mathbf{h}) - B_H(\mathbf{y}))]
$$

\n
$$
= ||\mathbf{x} + \mathbf{h} - \mathbf{y}||^{2H} + ||\mathbf{x} - \mathbf{h} - \mathbf{y}||^{2H} - 2||\mathbf{x} - \mathbf{y}||^{2H}
$$

\nFor $||\mathbf{h}|| \ll ||\mathbf{x} - \mathbf{y}||$,
$$
\mathbb{E} [(B_H(\mathbf{x} + \mathbf{h}) - B_H(\mathbf{x})) (B_H(\mathbf{y} + \mathbf{h}) - B_H(\mathbf{y}))]
$$

\n
$$
= ||\mathbf{x} - \mathbf{y}||^{2(H-1)} 2H(2H - 1)||\mathbf{h}||^2 + o (||\mathbf{h}||^2)
$$

fBf of Hurst exponent $H \in [0,1]$ denoted $\{B_H(\textbf{x}), \textbf{x} \in \mathbb{R}^2\}$

- Gaussian field with zero-mean
- \bullet and for some $\sigma^2 > 0$, correlation function writing

$$
\mathbb{E}\left[B_H(\mathbf{x})B_H(\mathbf{y})\right] = \frac{\sigma^2}{2}\left(\|\mathbf{x}\|^{2H} + \|\mathbf{y}\|^{2H} - \|\mathbf{x} - \mathbf{y}\|^{2H}\right)
$$

Stationary increments

$$
\forall \mathbf{h} \in \mathbb{R}^2, \quad \mathbb{E}\left[\left(B_H(\mathbf{x}+\mathbf{h})-B_H(\mathbf{x})\right)\left(B_H(\mathbf{y}+\mathbf{h})-B_H(\mathbf{y})\right)\right]
$$

$$
= \|\mathbf{x}+\mathbf{h}-\mathbf{y}\|^{2H} + \|\mathbf{x}-\mathbf{h}-\mathbf{y}\|^{2H} - 2\|\mathbf{x}-\mathbf{y}\|^{2H}
$$

For $||h|| \ll ||x - y||$, E $[(B_H(x + h) - B_H(x))(B_H(y + h) - B_H(y))]$ $= ||x - y||^{2(H-1)} 2H(2H-1)||h||^2 + o (||h||^2)$

- H *<* 1*/*2: anti-correlated
- $H = 1/2$: uncorrelated \implies disruption
- \bullet $H > 1/2$: long-range correlated

Self-similarity

$$
\forall \mathbf{h} \in \mathbb{R}^2, \lambda > 0, \quad B_H(\mathbf{x} + \lambda \mathbf{h}) - B_H(\mathbf{x}) \stackrel{\text{(law)}}{\simeq} \lambda^H (B_H(\mathbf{x} + \mathbf{h}) - B_H(\mathbf{x}))
$$

Self-similarity

$$
\forall \mathbf{h} \in \mathbb{R}^2, \lambda > 0, \quad B_H(\mathbf{x} + \lambda \mathbf{h}) - B_H(\mathbf{x}) \stackrel{\text{(law)}}{\simeq} \lambda^H (B_H(\mathbf{x} + \mathbf{h}) - B_H(\mathbf{x}))
$$

Local regularity: same roughness everywhere $h(x) \equiv H \implies$ monofractal signature

The larger the Hurst exponent H, the smoother the texture.

Self-similarity

$$
\forall \mathbf{h} \in \mathbb{R}^2, \lambda > 0, \quad B_H(\mathbf{x} + \lambda \mathbf{h}) - B_H(\mathbf{x}) \stackrel{\text{(law)}}{\simeq} \lambda^H (B_H(\mathbf{x} + \mathbf{h}) - B_H(\mathbf{x}))
$$

Local regularity: same roughness everywhere $h(x) \equiv H \implies$ monofractal signature The larger the Hurst exponent H, the smoother the texture.

Singularity spectrum: $\mathcal{D}(h)$ Haussdorff dimension of $\{x \in \mathbb{R}^2, h(x) = h\}$

$$
\mathcal{D}(h) = \left\{ \begin{array}{cl} 2 & h = H \\ -\infty & h \neq H \end{array} \right.
$$

Self-similarity

$$
\forall \mathbf{h} \in \mathbb{R}^2, \lambda > 0, \quad B_H(\mathbf{x} + \lambda \mathbf{h}) - B_H(\mathbf{x}) \stackrel{\text{(law)}}{\simeq} \lambda^H (B_H(\mathbf{x} + \mathbf{h}) - B_H(\mathbf{x}))
$$

Local regularity: same roughness everywhere $h(x) \equiv H \implies$ monofractal signature The larger the Hurst exponent H, the smoother the texture.

Singularity spectrum: $\mathcal{D}(h)$ Haussdorff dimension of $\{x \in \mathbb{R}^2, h(x) = h\}$

$$
\mathcal{D}(h) = \left\{ \begin{array}{cl} 2 & h = H \\ -\infty & h \neq H \end{array} \right.
$$

 \implies estimation of $h, \mathcal{D}(h)$: multifractal formalism based on wavelet transform

CompuMAINE local mammogram analysis (Marin et al., 2017, Phys. Med. Biol.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

Dataset: University of South Florida, Digital Database for Screening Mammography

- Mediolateral oblique views only;
- 43 normal, 49 cancer, 35 benign;
- for benign and cancer microcalcification only, masses excluded;

Image sliding-window analysis:

- squared 360×360 -pixel window
- with 32-pixel horizontal and vertical shifts

 \implies analysis of all 360 \times 360-pixel overlapping patches

Example: mammogram of size 4459×2155 pixels 4457 patches \Longleftrightarrow 4457 measures of the roughness H

Metric: number of yellow patches

H ∼ 1/2 \implies disrupted tissues

Q.: Is the quantity of disrupted tissues, $H \approx 1/2$, indicative of a tumorous breast?

Q.: Is the quantity of disrupted tissues, $H \approx 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

H0: $\mathbb{P}(X > Y) = \mathbb{P}(Y > X)$

Q.: Is the quantity of disrupted tissues, $H \approx 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

$$
H0: \mathbb{P}(X > Y) = \mathbb{P}(Y > X)
$$

(i) order elements of $X \cup Y$ to form an increasing sequence;

(ii) assign to each element in $X \cup Y$ its *rank* in the sequence;

(iii) sum the ranks of elements in X: variable S_{x} .

Q.: Is the quantity of disrupted tissues, $H \approx 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

$$
H0: \mathbb{P}(X > Y) = \mathbb{P}(Y > X)
$$

(i) order elements of $X \cup Y$ to form an increasing sequence;

(ii) assign to each element in $X \cup Y$ its *rank* in the sequence;

(iii) sum the ranks of elements in X: variable S_{x} .

If at least 20 samples, law of S_{x} well approximated by a Gaussian with

$$
\mu = n_x n_y/2;
$$
 $\sigma^2 = n_x n_y (n_x + n_y + 1)/2.$

If $|S_x - \mu|/\sigma > 1.96$, HO is rejected with confidence level $\alpha = 0.05$.

Q.: Is the quantity of disrupted tissues, $H \approx 1/2$, indicative of a tumorous breast?

Wilcoxon rank test a.k.a. Wilcoxon-Mann-Whitney

Independent sets of real numbers X and Y, of cardinalities n_x and n_y respectively

$$
H0: \mathbb{P}(X > Y) = \mathbb{P}(Y > X)
$$

(i) order elements of $X \cup Y$ to form an increasing sequence;

(ii) assign to each element in $X \cup Y$ its *rank* in the sequence;

(iii) sum the ranks of elements in X: variable S_{x} .

If at least 20 samples, law of S_{x} well approximated by a Gaussian with

$$
\mu = n_x n_y/2;
$$
 $\sigma^2 = n_x n_y (n_x + n_y + 1)/2.$

If $|S_x - \mu|/\sigma > 1.96$, HO is rejected with confidence level $\alpha = 0.05$.

Tumorous breasts have **more disrupted tissues** compared to normal breasts: normal vs. cancer: $P \sim 0.0423$, normal vs. benign: $P \sim 0.0009$.

Fractal features piecewise constant estimation from leaders

Pascal et al., 2020, Ann. Telecommun.; Pascal et al., 2021, Appl. Comput. Harmon. Anal.; Pascal et al., 2021, J. Math. Imaging Vis. \implies Journées ANR Mistic, April 2023

 \implies estimation of the local regularity, i.e., roughness, at the **pixel** level

But first: assess that the wavelet leaders formalism agrees with WTMM on patches

But first: assess that the wavelet leaders formalism agrees with WTMM on patches

Wavelet leaders: $\mathcal{L}_{a,n}$ at scale a and pixel \underline{n} supremum of wavelet coefficients

- at all finer scales $a' \le a$
- in a spatial neighborhood

But first: assess that the wavelet leaders formalism agrees with WTMM on patches

Wavelet leaders: $\mathcal{L}_{a,n}$ at scale a and pixel \underline{n} supremum of wavelet coefficients

- at all finer scales $a' \le a$
- in a spatial neighborhood

For a grid of pixels $\Omega \subset \mathbb{R}^2$, scaling exponent $\tau(q)$ accessible through

$$
\frac{1}{|\Omega|} \sum_{\underline{n} \in \Omega} \mathcal{L}_{a,\underline{n}}^q = F_q a^{\tau(q)}, \quad a \to 0^+
$$

homogeneous monofractal texture of Hurst exponent $H \Longrightarrow \tau(q) = qH$

But first: assess that the wavelet leaders formalism agrees with WTMM on patches

Wavelet leaders: $\mathcal{L}_{a,n}$ at scale a and pixel n supremum of wavelet coefficients

- at all finer scales $a' \le a$
- in a spatial neighborhood

For a grid of pixels $\Omega \subset \mathbb{R}^2$, scaling exponent $\tau(q)$ accessible through

$$
\frac{1}{|\Omega|}\sum_{\underline{n}\in \Omega} \mathcal{L}_{a,\underline{n}}^q=F_qa^{\tau(q)},\quad a\to 0^+
$$

homogeneous monofractal texture of Hurst exponent $H \Longrightarrow \tau(q) = qH$

linear regression to estimate H for all 360×360 -pixel overlapping patches

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine Leaders

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine Leaders

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

2D Wavelet Transform: $\{f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$ 2D-field Smoothing function $\varphi(\mathbf{x}) \implies$ wavelets $\psi_1(\mathbf{x}) = \partial_{x_1} \varphi(x_1, x_2), \ \psi_2(\mathbf{x}) = \partial_{x_2} \varphi(x_1, x_2)$

$$
\mathbf{T}_{\psi}[f](\boldsymbol{b},a) = \begin{pmatrix} a^{-2} \int \psi_1 \left(a^{-1}(\mathbf{x}-\boldsymbol{b}) \right) f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \\ a^{-2} \int \psi_2 \left(a^{-1}(\mathbf{x}-\boldsymbol{b}) \right) f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{pmatrix} \stackrel{\text{(complex)}}{=} \mathbf{M}_{\psi}[f](\boldsymbol{b},a) \exp\left(i \mathbf{A}_{\psi}[f](\boldsymbol{b},a) \right)
$$

Example: Gaussian and Mexican hat smoothing functions

$$
\varphi_{\text{Gauss}}(\bm{x}) = \text{exp}(-\|\bm{x}\|^2/2); \quad \varphi_{\text{Mex}}(\bm{x}) = (2 - \|\bm{x}\|^2) \exp(-\|\bm{x}\|^2/2)
$$

Multifractal analysis of mamographic microenvironment

Kestener et al., 2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021

2D Wavelet Transform: $\{f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2\}$ 2D-field Smoothing function $\varphi(\mathbf{x}) \implies$ wavelets $\psi_1(\mathbf{x}) = \partial_{x_1} \varphi(x_1, x_2), \ \psi_2(\mathbf{x}) = \partial_{x_2} \varphi(x_1, x_2)$

$$
\mathbf{T}_{\psi}[f](\boldsymbol{b},a) = \begin{pmatrix} a^{-2} \int \psi_1 \left(a^{-1}(\mathbf{x}-\boldsymbol{b}) \right) f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \\ a^{-2} \int \psi_2 \left(a^{-1}(\mathbf{x}-\boldsymbol{b}) \right) f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{pmatrix} \stackrel{\text{(complex)}}{=} \mathbf{M}_{\psi}[f](\boldsymbol{b},a) \exp\left(i \mathbf{A}_{\psi}[f](\boldsymbol{b},a) \right)
$$

Example: Gaussian and Mexican hat smoothing functions

$$
\varphi_{\text{Gauss}}(\boldsymbol{x}) = \exp(-\|\boldsymbol{x}\|^2/2); \quad \varphi_{\text{Mex}}(\boldsymbol{x}) = (2 - \|\boldsymbol{x}\|^2) \exp(-\|\boldsymbol{x}\|^2/2)
$$

Wavelet Transform Modulus Maxima

 $\{(\bm{b}, a) \in \mathbb{R}^2, \times \mathbb{R}_+^* \quad \mathsf{M}_{\psi}[f](\bm{b}, a)$ locally maximal in direction $\mathbf{A}_{\psi}[f](\bm{b}, a)\}$

Figure 4.2: The maxima chains are shown for scales $a = 2^{1} \sigma_{w}$ (left), $a = 2^{2} \sigma_{w}$ (middle), and $a = 2^3 \sigma_w$ (right) (where $\sigma_w = 7$ pixels) overlaid onto a 2D fBm image with $H = 0.5$. The local maxima along \mathcal{M}_{ψ} (WTMMM) are shown through small filled black dots.

Source: Basel G. White

Figure 4.2: The maxima chains are shown for scales $a = 2^{1} \sigma_{w}$ (left), $a = 2^{2} \sigma_{w}$ (middle), and $a = 2³ \sigma_w$ (right) (where $\sigma_w = 7$ pixels) overlaid onto a 2D fBm image with $H = 0.5$. The local maxima along \mathcal{M}_{ψ} (WTMMM) are shown through small filled black dots.

Source: Basel G. White

Wavelet Transform space-scale skeleton: L(a)

lines formed by WTMM maxima across scales

Figure 4.2: The maxima chains are shown for scales $a = 2^1 \sigma_w$ (left), $a = 2^2 \sigma_w$ (middle), and $a = 2^3 \sigma_w$ (right) (where $\sigma_w = 7$ pixels) overlaid onto a 2D fBm image with $H = 0.5$. The local maxima along \mathcal{M}_{ψ} (WTMMM) are shown through small filled black dots.

Source: Basel G. White

Wavelet Transform space-scale skeleton: L(a)

lines formed by WTMM maxima across scales

If a maxima line $\mathcal{L}_{\mathsf{x}_0}(a)$ is pointing toward a singularity x_0 as $a \to 0^+$, then

$$
\mathsf{M}_{\psi}[f](\mathcal{L}_{x_0}(a)) \sim a^{h(x_0)}, \quad a \to 0^+
$$

provided that the wavelet has $n_{\psi} > h(x_0)$ vanishing moments.

Partition function: for a set $\mathfrak{L}(a)$ of maxima lines

$$
\mathcal{Z}(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \left(\sup_{(\boldsymbol{b}, a') \in \ell, a' \leq a} \mathbf{M}_{\psi}[f](\boldsymbol{b}, a') \right)^q
$$

q: statistical order moment

Partition function: for a set $\mathfrak{L}(a)$ of maxima lines

$$
\mathcal{Z}(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \left(\sup_{(\boldsymbol{b}, a') \in \ell, a' \leq a} \mathsf{M}_{\psi}[f](\boldsymbol{b}, a') \right)^q
$$

q: statistical order moment

Roughness, quantified by Hölder exponent, characterized by $\tau(q)$ spectrum

$$
Z(q,a) \sim a^{\tau(q)}, \quad a \to 0^+
$$

For 2D fractional Brownian field: $\tau(q) = qH - 2$ is **linear**.

Partition function: for a set $\mathfrak{L}(a)$ of maxima lines

$$
\mathcal{Z}(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \left(\sup_{(\boldsymbol{b}, a') \in \ell, a' \leq a} \mathbf{M}_{\psi}[f](\boldsymbol{b}, a') \right)^q
$$

q: statistical order moment

Roughness, quantified by Hölder exponent, characterized by $\tau(q)$ spectrum

$$
Z(q,a) \sim a^{\tau(q)}, \quad a \to 0^+
$$

For 2D fractional Brownian field: $\tau(q) = qH - 2$ is **linear**.

Singularity spectrum: $\mathcal{D}(h)$ Haussdorff dimension of $\{x \in \mathbb{R}^2, h(x) = h\}$

$$
\mathcal{D}(h) = \min_{q} (qh - \tau(q))
$$
 (Legendre transform of τ)

Numerically: unstable estimation of $\tau(q)$ and $\mathcal{D}(q)$

⇒ Mean quantities in a canonical ensemble with Boltzmann weights

$$
W_{\psi}[f](q,\ell,a) = \frac{\left|\sup_{(\boldsymbol{b},a')\in\ell,a'\leq a}\mathbf{M}_{\psi}[f](\boldsymbol{b},a')\right|^{q}}{\mathcal{Z}(q,a)}
$$

Numerically: unstable estimation of $\tau(q)$ and $\mathcal{D}(q)$

⇒ Mean quantities in a canonical ensemble with Boltzmann weights

$$
W_{\psi}[f](q,\ell,a) = \frac{\left|\sup_{(\boldsymbol{b},a')\in\ell,a'\leq a} \mathbf{M}_{\psi}[f](\boldsymbol{b},a')\right|^{q}}{\mathcal{Z}(q,a)}
$$

Roughness: robust local regularity estimation

$$
h(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \ln (W_{\psi}[f](q, \ell, a)) W_{\psi}[f](q, \ell, a),
$$

$$
h(q) = \frac{d\tau}{dq} = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}
$$

Numerically: unstable estimation of $\tau(q)$ and $\mathcal{D}(q)$

 \implies Mean quantities in a canonical ensemble with Boltzmann weights

$$
W_{\psi}[f](q,\ell,a) = \frac{\left|\sup_{(\boldsymbol{b},a')\in\ell,a'\leq a} \mathbf{M}_{\psi}[f](\boldsymbol{b},a')\right|^{q}}{\mathcal{Z}(q,a)}
$$

Roughness: robust local regularity estimation

$$
h(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \ln (W_{\psi}[f](q, \ell, a)) W_{\psi}[f](q, \ell, a),
$$

$$
h(q) = \frac{d\tau}{dq} = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}
$$

Singularity spectrum:

$$
\mathcal{D}(q, a) = \sum_{\ell \in \mathfrak{L}(a)} \ln (W_{\psi}[f](q, \ell, a)) W_{\psi}[f](q, \ell, a),
$$

$$
\mathcal{D}(q) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}
$$

Roughness:
$$
h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}
$$
; Singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

- The larger the patch, the larger the range of q values, the better the estimate;
- but risk of confusing average of several monofractal signatures and multifractal.
- \Rightarrow estimation on overlapping patches of size 360 \times 360 pixels with 32-pixel shift

Roughness:
$$
h(q) = \lim_{a \to 0^+} \frac{h(q, a)}{\ln a}
$$
; Singularity spectrum: $\mathcal{D}(q, a) = \lim_{a \to 0^+} \frac{\mathcal{D}(q, a)}{\ln a}$

- The larger the patch, the larger the range of q values, the better the estimate;
- but risk of confusing average of several monofractal signatures and multifractal. \implies estimation on overlapping patches of size 360 \times 360 pixels with 32-pixel shift

Image sliding window analysis

- 1. Check that the central 256 \times 256 pixels are contained in the mask;
- 2. if so, compute the Wavelet Transform for 50 scales, from $a = 7$ to 120 pixels;
- 3. extract the space-scale skeleton from the central 256 \times 256 pixels;
- 4. compute $h(q, a)$ and $\mathcal{D}(q, a)$ from the partition function $\mathcal{Z}(q, a)$;
- 5. linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$:

how to choose the range of scales $[a_{min}, a_{max}]$?

For **each** patch of 360×360 pixels, i.e., 15.5×15.5 mm

roughness: $h(q) = \lim_{a \to 0^+}$ h(q*,* a) $\frac{(\mathbf{q}, \mathbf{w})}{\ln a}$; singularity spectrum: $\mathcal{D}(\mathbf{q}, \mathbf{a}) = \lim_{a \to 0^+}$ D(q*,* a) ln a

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

For **each** patch of 360 \times 360 pixels, i.e., 15.5 \times 15.5 mm

roughness: $h(q) = \lim_{a \to 0^+}$ h(q*,* a) $\frac{(\mathbf{q}, \mathbf{w})}{\ln a}$; singularity spectrum: $\mathcal{D}(\mathbf{q}, \mathbf{a}) = \lim_{a \to 0^+}$ D(q*,* a) ln a

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

The Autofit Methodology: imposing log₂ $a_{\text{max}} - \log_2 a_{\text{min}} \geq 1$ explore

$$
\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \ldots, 2.1, \ , \ \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \ldots, 4.1, \ \ \text{with} \ \ \sigma_w = 7 \ \ \text{pixels}
$$

and select $[a_{\min}, a_{\max}]$ if and only if

For **each** patch of 360×360 pixels, i.e., 15.5×15.5 mm

roughness: $h(q) = \lim_{a \to 0^+}$ h(q*,* a) $\frac{(\mathbf{q}, \mathbf{w})}{\ln a}$; singularity spectrum: $\mathcal{D}(\mathbf{q}, \mathbf{a}) = \lim_{a \to 0^+}$ D(q*,* a) ln a

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

The Autofit Methodology: imposing log₂ $a_{\text{max}} - \log_2 a_{\text{min}} \geq 1$ explore

$$
\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \ldots, 2.1, \ , \ \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \ldots, 4.1, \ \ \text{with} \ \ \sigma_w = 7 \ \ \text{pixels}
$$

and select $[a_{min}, a_{max}]$ if and only if

• linear regression on $h(q=0, a)$ from a_{min} to a_{max} yields

 $-0.2 < \widehat{h}(q=0) = \widehat{H} < 1$

- H ≤ −0*.*2: high roughness =⇒ abnormally high noise
- $H \geq 1$: low roughness, differentiable field \implies artificially smooth

For **each** patch of 360×360 pixels, i.e., 15.5×15.5 mm

roughness: $h(q) = \lim_{a \to 0^+}$ h(q*,* a) $\frac{(\mathbf{q}, \mathbf{w})}{\ln a}$; singularity spectrum: $\mathcal{D}(\mathbf{q}, \mathbf{a}) = \lim_{a \to 0^+}$ D(q*,* a) ln a

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

The Autofit Methodology: imposing log₂ $a_{\text{max}} - \log_2 a_{\text{min}} \geq 1$ explore

$$
\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \ldots, 2.1, \ , \ \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \ldots, 4.1, \ \ \text{with} \ \ \sigma_w = 7 \ \ \text{pixels}
$$

and select $[a_{\min}, a_{\max}]$ if and only if

• linear regression on $\mathcal{D}(q=0, a)$ from a_{\min} to a_{\max} yields

 $1.7 < \hat{\mathcal{D}}(h(q = 0)) < 2.5$

for a monofractal field of Hurst exponent H, expected to be $\mathcal{D}(H) = 2$

 $\bm{\mathsf{but}}$ finite size effect affect the maxima lines as $\bm{s} \to \bm{0}^+$

For **each** patch of 360×360 pixels, i.e., 15.5×15.5 mm

roughness: $h(q) = \lim_{a \to 0^+}$ h(q*,* a) $\frac{(\mathbf{q}, \mathbf{w})}{\ln a}$; singularity spectrum: $\mathcal{D}(\mathbf{q}, \mathbf{a}) = \lim_{a \to 0^+}$ D(q*,* a) ln a

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

The Autofit Methodology: imposing log₂ $a_{\text{max}} - \log_2 a_{\text{min}} \geq 1$ explore

$$
\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \ldots, 2.1, \ , \ \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \ldots, 4.1, \ \ \text{with} \ \ \sigma_w = 7 \ \ \text{pixels}
$$

and select $[a_{\min}, a_{\max}]$ if and only if

• coefficient of determination of linear regression on $h(q = 0, a)$ from a_{min} to a_{max}

 $R^2 > 0.96$

sufficiently linear to extract the Hurst exponent H

For **each** patch of 360 \times 360 pixels, i.e., 15.5 \times 15.5 mm

roughness: $h(q) = \lim_{a \to 0^+}$ h(q*,* a) $\frac{(\mathbf{q}, \mathbf{w})}{\ln a}$; singularity spectrum: $\mathcal{D}(\mathbf{q}, \mathbf{a}) = \lim_{a \to 0^+}$ D(q*,* a) ln a

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

The Autofit Methodology: imposing log₂ $a_{\text{max}} - \log_2 a_{\text{min}} \geq 1$ explore

$$
\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \ldots, 2.1, \ , \ \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \ldots, 4.1, \ \ \text{with} \ \ \sigma_w = 7 \ \ \text{pixels}
$$

and select $[a_{\min}, a_{\max}]$ if and only if

• weighted standard deviation across q of the $\widehat{h}(q)$ estimated from a_{\min} to a_{\max}

sd^w *<* 0*.*06

17/24

For **each** patch of 360×360 pixels, i.e., 15.5×15.5 mm

roughness: $h(q) = \lim_{a \to 0^+}$ h(q*,* a) $\frac{(\mathbf{q}, \mathbf{w})}{\ln a}$; singularity spectrum: $\mathcal{D}(\mathbf{q}, \mathbf{a}) = \lim_{a \to 0^+}$ D(q*,* a) ln a

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

The Autofit Methodology: imposing log₂ $a_{\text{max}} - \log_2 a_{\text{min}} \geq 1$ explore

$$
\log_2 \frac{a_{\text{min}}}{\sigma_w} = 0.0, 0.1, \ldots, 2.1, \ , \ \ \log_2 \frac{a_{\text{max}}}{\sigma_w} = 2.0, 2.1, \ldots, 4.1, \ \ \text{with} \quad \sigma_w = 7 \ \ \text{pixels}
$$

and select $[a_{\min}, a_{\max}]$ if and only if

• weighted average of goodness of fit of $\widehat{h}(q)$ estimated from a_{min} to a_{max}

 $\langle R_{\rm w}^2 \rangle > 0.96$

 \implies ensures self-similarity

17/24

For **each** patch of 360×360 pixels:

 \implies linear regressions $h(q,a)$ vs. $\log_2(a)$ and $\mathcal{D}(q,a)$ vs. $\log_2(a)$ across $[a_{\min},a_{\max}]$

The Autofit Methodology: imposing $\log_2 a_{\sf max} - \log_2 a_{\sf min} \geq 1$ explore 418 couples

$$
\log_2 \frac{a_{\min}}{\sigma_w} = 0.0, 0.1, \dots, 2.1, , \ \ \log_2 \frac{a_{\max}}{\sigma_w} = 2.0, 2.1, \dots, 4.1, \ \ \text{with} \ \ \sigma_w = 7 \ \ \text{pixels}
$$

and select $[a_{\min}, a_{\max}]$ if and only if

- \bullet $-0.2 < h(q = 0) < 1$: expected roughness
- 1.7 $< \widehat{D}$ $<$ 2.5: expect 2
- \bullet $R^2 > 0.96$: accurate estimation of H
- $sd_w < 0.06$: monofractal scaling
- $\text{\textbf{0}}\cdot\langle R_w^2\rangle>$ 0.96: $\text{\textit{h}}(q,a)$ sufficiently linear
- \implies If no scale range [a_{min}, a_{max}] for which all conditions are satisfied: **no scaling**.

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine fixed scales

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine fixed scales adaptive scales

$$
[a_{\text{min}}, a_{\text{max}}] = [2^3, 2^5] \quad [a_{\text{min}}, a_{\text{max}}] \subset [2^2, 2^8]
$$

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine fixed scales adaptive scales

$$
[a_{\text{min}},a_{\text{max}}]=[2^3,2^5] \quad \, [a_{\text{min}},a_{\text{max}}]\subset [2^2,2^8]
$$

19/24

Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography 43 normal vs. 49 cancer, 35 benign

=⇒ digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0*,* 4095]) Tumorous breasts have more disrupted tissues compared to normal breasts: normal vs. cancer: P ∼ 0*.*0423, normal vs. benign: P ∼ 0*.*0009.

Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography 43 normal vs. 49 cancer, 35 benign

=⇒ digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0*,* 4095])

Tumorous breasts have more disrupted tissues compared to normal breasts:

normal vs. cancer: P ∼ 0*.*0423, normal vs. benign: P ∼ 0*.*0009.

Gerasimova-Chechkina et al., 2021, Front. Physiol.

Russian: Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

=⇒ digitally acquired mammograms: uncompressed 8-bit BMP images ([0*,* 255]) Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: $P \sim 0.003$

Mammogram datasets

Marin et al., 2017, Phys. Med. Biol.

DDSM: University of South Florida, Digital Database for Screening Mammography 43 normal vs. 49 cancer, 35 benign

=⇒ digitized films: lossless LJPEG 12-bit images (pixel values: integers in [0*,* 4095]) Tumorous breasts have more disrupted tissues compared to normal breasts: normal vs. cancer: P ∼ 0*.*0423, normal vs. benign: P ∼ 0*.*0009.

Gerasimova-Chechkina et al., 2021, *Front. Physiol.* \implies shared with us, with analyses **Russian:** Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

=⇒ digitally acquired mammograms: uncompressed 8-bit BMP images ([0*,* 255]) Cancerous breasts have more disrupted tissues compared to breasts with benign lesions: cancer vs. benign: $P \sim 0.003$

Wavelet leader coefficients (Wendt et al., 2009, Sig. Process.)

- H *<* 1*/*2 monofractal anti-correlated: fatty tissues (healthy)
- H *>* 1*/*2 monofractal long-range correlated: dense tissues (healthy)
- $H \simeq 1/2$ monofractal uncorrelated: disrupted tissues (tumorous)

CompuMaine fixed scales adaptive scales

$$
[a_{min},a_{max}]=[2^3,2^5] \quad \, [a_{min},a_{max}]\subset [2^2,2^8]
$$

Gerasimova-Chechkina et al., 2021, Front. Physiol. \implies shared with us, with analyses **Russian:** Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0,255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: P ∼ 0*.*003

Gerasimova-Chechkina et al., 2021, Front. Physiol. \implies shared with us, with analyses **Russian:** Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0,255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: P ∼ 0*.*003

Wavelet leaders with

- Daubechies wavelets with $n_{\Psi} = 2$ vanishing moments
- ∼ scales selected by the CompuMaine autofit method, up to rounding errors

Gerasimova-Chechkina et al., 2021, Front. Physiol. \implies shared with us, with analyses **Russian:** Perm Regional Oncological Dispensary

81 cancer vs. 23 benign

 \implies digitally acquired mammograms: uncompressed 8-bit BMP images ([0,255])

Cancerous breasts have more disrupted tissues compared to breasts with benign lesions:

cancer vs. benign: P ∼ 0*.*003

Wavelet leaders with

- Daubechies wavelets with $n_{\Psi} = 2$ vanishing moments
- ∼ scales selected by the CompuMaine autofit method, up to rounding errors

cancer vs. benign: P ∼ 0*.*074

Conclusions

Patch-wise fractal analysis of mammograms with WT modulus maxima method

- disrupted tissues, characterized by H ∼ 1*/*2, indicate loss of homeostasis
- quantity of disrupted tissues discriminates between (Marin et al., 2017) tumorous vs. normal P ∼ 0*.*0006 (Gerasimova-Chechkina et al., 2021) cancer vs. benign P ∼ 0*.*0030
- \implies exploration of 418 couples of (a_{min}, a_{max}) for each patch and strict conditions

Conclusions

Patch-wise fractal analysis of mammograms with WT modulus maxima method

- disrupted tissues, characterized by H ∼ 1*/*2, indicate loss of homeostasis
- quantity of disrupted tissues discriminates between (Marin et al., 2017) tumorous vs. normal P ∼ 0*.*0006 (Gerasimova-Chechkina et al., 2021) cancer vs. benign P ∼ 0*.*0030
- \implies exploration of 418 couples of (a_{min}, a_{max}) for each patch and strict conditions

Reproduction with wavelet leaders formalism on Russian dataset

- range of scales for each patch extracted from CompuMaine analyses,
- remains less informative: P ∼ 0*.*0740

Perspectives

From patch-wise to pixel-wise fractal analysis

- using wavelet leaders framework,
- combined with variational methods.
- with PyTorch implementation to benefit from fast GPU computing,
- reduced number of hyperparameters & fine-tuned automatically

 \implies increase the sensibility in the measurement of the quantity of disrupted tissues

Perspectives

From patch-wise to pixel-wise fractal analysis

- using wavelet leaders framework,
- combined with variational methods,
- with PyTorch implementation to benefit from fast GPU computing,
- reduced number of hyperparameters & fine-tuned automatically

 \implies increase the sensibility in the measurement of the quantity of disrupted tissues

Asymmetry in tissue disruption in cancerous cases

- assessed both in Marin et al., 2017 and Gerasimova-Chechkina et al., 2021,
- to be evaluated with (pixel-wise) wavelet leader fractal analysis

Perspectives

From patch-wise to pixel-wise fractal analysis

- using wavelet leaders framework,
- combined with variational methods.
- with PyTorch implementation to benefit from fast GPU computing,
- reduced number of hyperparameters & fine-tuned automatically

 \implies increase the sensibility in the measurement of the quantity of disrupted tissues

Asymmetry in tissue disruption in cancerous cases

- assessed both in Marin et al., 2017 and Gerasimova-Chechkina et al., 2021,
- to be evaluated with (pixel-wise) wavelet leader fractal analysis

Anisotropic Gaussian fields for mammogram modeling

- observed in Richard & Biermé, 2010
- many tools that have never been applied to mammogram yet!