

Detectability of patches in fractal textures

for assessing Hölder exponent-based breast cancer risk evaluation

Journées MISTIC

Lyon

May 26, 2025

Barbara Pascal

Laboratoire des Sciences du Numérique de Nantes: B. Pascal

Institut Denis Poisson: H. Biermé

Thank you MISTIC!

Breast cancer:

- most common cancer amongst women with ~ 1 over 8 diagnosed in her life
- early detection is critical for the patient's survival

Breast cancer:

- most common cancer amongst women with ~ 1 over 8 diagnosed in her life
- early detection is critical for the patient's survival

X-ray imaging: most used imaging technique yielding a so-called mammogram

Mammogram provided by CompUMaine (Gerasimova-Chechkina et al., 2021, Front. Physiol.)

Breast cancer:

- most common cancer amongst women with ~ 1 over 8 diagnosed in her life
- early detection is critical for the patient's survival

X-ray imaging: most used imaging technique yielding a so-called mammogram

Assessment by a radiologist:

- fatty tissues: translucent to X-rays (black)
- epithelial and stromal tissues: absorb X-rays (white)
- tumorous tissues: also absorb X-rays (white)
- \Longrightarrow errors of both I and II types

Mammogram provided by CompUMaine (Gerasimova-Chechkina et al., 2021, Front. Physiol.)

Breast cancer:

- most common cancer amongst women with ~ 1 over 8 diagnosed in her life
- early detection is critical for the patient's survival

X-ray imaging: most used imaging technique yielding a so-called mammogram

Assessment by a radiologist:

- fatty tissues: translucent to X-rays (black)
- epithelial and stromal tissues: absorb X-rays (white)
- tumorous tissues: also absorb X-rays (white)
- \Longrightarrow errors of both I and II types

Mammogram provided by CompUMaine (Gerasimova-Chechkina et al., 2021, Front. Physiol.)

Computer-Aided Detection: used in 92% of screening mammograms in the U.S.

Self-similar isotropic random fields: $\forall c > 0$ $\{F(c\underline{x}); \underline{x} \in \mathbb{R}^2\} \stackrel{(law)}{=} c^H \{F(\underline{x}); \underline{x} \in \mathbb{R}^2\}$

 $h(\underline{x})$: local Hölder exponent $\equiv H \in (0, 1)$

Mammogram

fractal random field

Self-similar isotropic random fields: $\forall c > 0$ $\{F(c\underline{x}); \underline{x} \in \mathbb{R}^2\} \stackrel{(law)}{=} c^H \{F(\underline{x}); \underline{x} \in \mathbb{R}^2\}$ $h(\underline{x}): local Hölder exponent \equiv H \in (0, 1)$

Fractal analysis applied to mammograms: e.g., fractal dimension of a rough surface

- characterization of mammogram density (Caldwell et al., 1990, Phys. Med. Biol.)
- lesion detection in mammograms (Burgess et al., 2001, *Med. Biol.*; Zebari et al., 2021, *Appl. Sci.*)
- assessment of breast cancer risk (Heine et al., 2002, *Acad. Radiol.*; Marin et al., 2017, *Med. Phys.*; Gerasimova-Chechkina et al., 2021, *Front. Physiol.*)

Self-similar isotropic random fields: $\forall c > 0$ $\{F(c\underline{x}); \underline{x} \in \mathbb{R}^2\} \stackrel{(law)}{=} c^H \{F(\underline{x}); \underline{x} \in \mathbb{R}^2\}$ $h(\underline{x}): local Hölder exponent \equiv H \in (0, 1)$

Fractal analysis applied to mammograms: e.g., fractal dimension of a rough surface

- characterization of mammogram density (Caldwell et al., 1990, Phys. Med. Biol.)
- lesion detection in mammograms (Burgess et al., 2001, *Med. Biol.*; Zebari et al., 2021, *Appl. Sci.*)
- assessment of breast cancer risk (Heine et al., 2002, *Acad. Radiol.*; Marin et al., 2017, *Med. Phys.*; Gerasimova-Chechkina et al., 2021, *Front. Physiol.*)

And beyond in medical imaging:

(Biermé et al., 2009, Proc. ESAIM)

- characterization of osteoporosis in X-ray images of bones (Benhamou et al., 2001, J. Bone Miner. Res.; Cui et al., 2023, Front. Bioeng. Biotechnol.)
- morphological evaluation of white matter in brain magnetic resonance images (Shan et al., 2006, *Magn. Reson. Imaging*)

Self-similar isotropic random fields: $\forall c > 0$ $\{F(c\underline{x}); \underline{x} \in \mathbb{R}^2\} \stackrel{(law)}{=} c^H \{F(\underline{x}); \underline{x} \in \mathbb{R}^2\}$ $h(x): local Hölder exponent \equiv H \in (0, 1)$

Tissue characterization based on local Hölder exponent:

fatty tissues

healthy dense tissues

 $H_{\rm b}\simeq 0.30$

(Kestener et al., 2001, Image Anal. Stereol.;

Self-similar isotropic random fields: $\forall c > 0$ $\{F(c\underline{x}); \underline{x} \in \mathbb{R}^2\} \stackrel{(law)}{=} c^H \{F(\underline{x}); \underline{x} \in \mathbb{R}^2\}$ $h(x): local Hölder exponent \equiv H \in (0, 1)$

fractal random field

Tissue characterization based on local Hölder exponent:

fatty tissues

disrupted tissues

 $H_{
m p}\simeq 0.5$

 \implies breast cancer risk

healthy dense tissues

 $H_{
m b}\simeq 0.65$

(Kestener et al., 2001, *Image Anal. Stereol.*; Marin et al., 2017, *Med. Phys.*; Gerasimova-Chechkina et al., 2021, *Front. Physiol.*) Self-similar Gaussian fields: $\forall c > 0, \{F(c\underline{x}); \underline{x} \in \mathbb{R}^2\} \stackrel{(\text{law})}{=} c^H \{F(\underline{x}); \underline{x} \in \mathbb{R}^2\}, H \in (0, 1)$

- computer vision (llow et al., 2001, IEEE Trans. Image Process.)
- stochastic geometry (Biermé et al., 2009, Proc. ESAIM; Cohen & Istas, 2013, Spinger)
- turbulent fluid mechanics (Pereira, et al., 2016, J. Fluid Mech.)

Self-similar Gaussian fields: $\forall c > 0, \{\mathsf{F}(c\underline{x}); \underline{x} \in \mathbb{R}^2\} \stackrel{(\mathsf{law})}{=} c^H \{\mathsf{F}(\underline{x}); \underline{x} \in \mathbb{R}^2\}, \ H \in (0, 1)$

- computer vision (llow et al., 2001, IEEE Trans. Image Process.)
- stochastic geometry (Biermé et al., 2009, Proc. ESAIM; Cohen & Istas, 2013, Spinger)
- turbulent fluid mechanics (Pereira, et al., 2016, J. Fluid Mech.)

Fractional Brownian field (B. B. Mandelbrot & J. W. Van Ness, 1968, SIAM Rev.)

$$\mathsf{B}_{H}(\underline{x}) = \int_{\mathbb{R}^{2}} \frac{\mathrm{e}^{-\mathrm{i}\underline{x}\cdot\underline{\omega}} - 1}{\|\underline{\omega}\|^{H+1}} \,\mathrm{d}\widetilde{\mathsf{W}}(\underline{\omega}), \quad \mathsf{Hurst exponent} \ H \in (0,1)$$

Stationary isotropic self-similar textures:

Fractional Gaussian field (B. Pascal et al., 2021, Appl. Comput. Harmon. Anal.)

$$\mathsf{G}_{H}(\underline{x}) = \frac{1}{2} \left(\mathsf{B}_{H}(\underline{x} + \underline{e}_{1}) + \mathsf{B}_{H}(\underline{x} + \underline{e}_{2}) - 2\mathsf{B}_{H}(\underline{x})\right)$$

Filtered fractional Brownian field

 $C_H(\underline{x}) = \langle B_H, \underline{u}_{\underline{x}} \rangle$, u isotropic high-pass filter, $\langle \cdot, \cdot \rangle$ scalar product in $L^2(\mathbb{R}^2)$

Design of filter *u* inspired by (Biermé et al., 2024, *Preprint*)

Synthetic fractal models: local modeling of mammogram texture

Self-similar fields: two stationary texture models

fBf
$$B_H(\underline{x}) = \int_{\mathbb{R}^2} \frac{e^{-i\underline{x}\cdot\underline{\omega}} - 1}{\|\underline{\omega}\|^{H+1}} d\widetilde{W}(\underline{\omega}), \quad \text{Hurst exponent } H \in (0, 1)$$

fGf $G_H(\underline{x}) = \frac{1}{2} \left(\mathsf{B}_H(\underline{x} + \underline{e}_1) + \mathsf{B}_H(\underline{x} + \underline{e}_2) - 2\mathsf{B}_H(\underline{x}) \right)$

Filtered fBf $C_H(\underline{x}) = \langle B_H, u_{\underline{x}} \rangle$, u isotropic high-pass filter

Examples: *left:* $H = 0.3 \sim$ fatty tissues; *right:* $H = 0.65 \sim$ healthy dense tissues

Detectability of disrupted tissues depending on microenvironment

Background: healthy microenvironment

- fatty: $H_{\rm b}=0.3$ (anticorrelated)
- dense: $H_{\rm b} = 0.65$ (correlated)

Patch: disrupted tissues

•
$$H_{\rm p} = 0.5$$
 (uncorrelated)

Self-similarity index and local Hölder exponent

Field F : $\mathbb{R}^2 \to \mathbb{R}$, *local Hölder exponent* at \underline{x}_0 largest $\alpha > 0$ such that $\forall \underline{x} \in \mathcal{V}(\underline{x}_0), \quad |F(x) - \mathcal{P}_{\underline{x}_0}(\underline{x})| \leq \chi ||\underline{x} - \underline{x}_0||^{\alpha}, \quad \chi > 0$

with $\mathcal{P}_{\underline{x}_0}$ a polynomial of degree lower than α .

 B_H , G_H and C_H : $\forall \underline{x} \in \mathbb{R}^2$, $h(\underline{x}) = H$.

Self-similarity index and local Hölder exponent

Field $F : \mathbb{R}^2 \to \mathbb{R}$, *local Hölder exponent* at \underline{x}_0 largest $\alpha > 0$ such that $\forall \underline{x} \in \mathcal{V}(\underline{x}_0), \quad |F(x) - \mathcal{P}_{\underline{x}_0}(\underline{x})| \leq \chi ||\underline{x} - \underline{x}_0||^{\alpha}, \quad \chi > 0$ with $\mathcal{P}_{\underline{x}_0}$ a polynomial of degree lower than α .

Examples: *left:* $H = 0.3 \sim$ fatty tissues; *right:* $H = 0.65 \sim$ healthy dense tissues

Decimated Wavelet Transform: field $F : \mathbb{R}^2 \to \mathbb{R}$ (Mallat, 1999, *Elsevier*)

scaling function ϕ , mother wavelet $\psi \Longrightarrow \mathcal{Y}_{\mathsf{F}}^{(m)}(j,\underline{k}) = 2^{-j} \langle \mathsf{F}, \psi_{j,k}^{(m)} \rangle$;

Decimated Wavelet Transform: field $F : \mathbb{R}^2 \to \mathbb{R}$ (Mallat, 1999, *Elsevier*) scaling function ϕ , mother wavelet $\psi \Longrightarrow \mathcal{Y}_{F}^{(m)}(j, \underline{k}) = 2^{-j} \langle F, \psi_{i,k}^{(m)} \rangle$;

Wavelet leaders:

(Jaffard, 2004, Proc. Symp. Pure Math.)

$$\mathcal{L}_{j,\underline{k}} = \sup\{|2^{j}\mathcal{Y}_{j',\underline{k}'}^{(m)}|, \ \lambda_{j',\underline{k}'} \subset 3\lambda_{j,\underline{k}}, m = 1, 2, 3\}$$

Decimated Wavelet Transform: field $F : \mathbb{R}^2 \to \mathbb{R}$ (Mallat, 1999, *Elsevier*) scaling function ϕ , mother wavelet $\psi \Longrightarrow \mathcal{Y}_{F}^{(m)}(j,\underline{k}) = 2^{-j} \langle F, \psi_{j,\underline{k}}^{(m)} \rangle$;

Wavelet leaders:

(Jaffard, 2004, Proc. Symp. Pure Math.)

$$\mathcal{L}_{j,\underline{k}} = \sup\{|2^{j}\mathcal{Y}_{j',\underline{k}'}^{(m)}|, \ \lambda_{j',\underline{k}'} \subset 3\lambda_{j,\underline{k}}, m = 1, 2, 3\}$$

 $\mathcal{L}_{j,\underline{k}}\simeq\eta(\underline{x})2^{jh(\underline{x})}$ as $2^{j}
ightarrow 0$ (Jaffard, 2004, *Proc. Symp. Pure Math.*)

Decimated Wavelet Transform: field $F : \mathbb{R}^2 \to \mathbb{R}$ (Mallat, 1999, Elsevier) scaling function ϕ , mother wavelet $\psi \Longrightarrow \mathcal{Y}_{\mathsf{F}}^{(m)}(j,\underline{k}) = 2^{-j} \langle \mathsf{F}, \psi_{i,k}^{(m)} \rangle$; Wavelet leaders: (Jaffard, 2004, Proc. Symp. Pure Math.) $\mathcal{L}_{j,k} = \sup\{|2^{j}\mathcal{Y}_{i',k'}^{(m)}|, \ \lambda_{j',k'} \subset 3\lambda_{j,k}, \ m = 1, 2, 3\}$ scale a $\mathcal{L}_{i,k} \simeq \eta(x) 2^{jh(x)}$ as $2^j \to 0$ (Jaffard, 2004, Proc. Symp. Pure Math.) pixel n $a = 2^1$ $a = 2^2$ $a = 2^7$ Textured image

 $a = 2^7$

$a = 2^1$

$$a = 2^2$$

(Nelson et al., 2016, IEEE Trans. Image Process.; B. Pascal et

al., 2018, ICASSP; Cai et al., 2013, SIAM J. Imaging Sci.; Pascal et al., 2021, Appl. Comput. Harm. Anal.)

Threshold Rudin-Osher-Fatemi estimator:D: 2D discrete gradients $\hat{h}^{\text{ROF}} = \operatorname{argmin}_{h} \|h - \hat{h}^{\text{LR}}\|_{2}^{2} + \lambda \|Dh\|_{2,1}$ & iterative thresholding $\implies \hat{\mathcal{T}h}^{\text{ROF}}$ (Nelson et al., 2016, IEEE Trans. Image Process.; B. Pascal et al., 2018, ICASSP; Cai et al., 2013, SIAM J. Imaging Sci.; Pascal et al., 2021, Appl. Comput. Harm. Anal.)

Threshold Rudin-Osher-Fatemi estimator: D: 2D discrete gradients $\hat{h}^{\text{ROF}} = \operatorname{argmin}_{h} \|h - \hat{h}^{\text{LR}}\|_{2}^{2} + \lambda \|Dh\|_{2,1}$ & iterative thresholding $\implies \hat{T}\hat{h}^{\text{ROF}}$ (Nelson et al., 2016, *IEEE Trans. Image Process.*; B. Pascal et al., 2018, *ICASSP*; Cai et al., 2013, SIAM J. Imaging Sci.; Pascal et al., 2021, Appl. Comput. Harm. Anal.)

Stein-based automated parameter tuning: Generalized Stein Unbiased Risk Estimate GSURE(λ) = $\|\hat{\boldsymbol{h}}^{ROF} - \hat{\boldsymbol{h}}^{LR}\|^2 + 2\text{Tr}(SJ) - \text{Tr}(S)$ not explicitly depending on $\overline{\boldsymbol{h}}$ J: Jacobian of $\hat{\boldsymbol{h}}^{ROF}$ w.r.t. $\hat{\boldsymbol{h}}^{LR}$; S: empirical covariance of Gaussian noise in $\hat{\boldsymbol{h}}^{LR}$ GSURE(λ) $\approx \|\hat{\boldsymbol{h}}^{ROF} - \overline{\boldsymbol{h}}\|_2^2 \Longrightarrow \lambda^*$: minimization of GSURE(λ) with a BFGS scheme

(Pascal et al., 2020, Ann. Telecommun.) $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{p} = 0.5
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$ $\begin{array}{c}
\overline{H}_{a} = 0.65 \\
\hline
\overline{H}_{a} = 0.65
\end{array}$

Detectability of disrupted tissues

Detection performance criteria: F-score $F_1^{-1} = \text{precision}^{-1} + \text{recall}^{-1}$

- precision: proportion of pixels segmented in the central patch belonging to it;
- recall: proportion of pixels belonging to the central patch correctly segmented.

 \Longrightarrow The larger $\mathsf{F}_1\in[0,1]$ the better in terms of both types I and II errors.

Detectability of disrupted tissues

Detection performance criteria: F-score $F_1^{-1} = \text{precision}^{-1} + \text{recall}^{-1}$

- precision: proportion of pixels segmented in the central patch belonging to it;
- recall: proportion of pixels belonging to the central patch correctly segmented.
- \implies The larger $F_1 \in [0,1]$ the better in terms of both types I and II errors.

Patch of disrupted tissues embedded in fatty (top) vs. dense (bottom) background

▶ average and 95% confidence regions computed on 10 texture realizations.

Detectability of disrupted tissues

Detection performance criteria: F-score $F_1^{-1} = \text{precision}^{-1} + \text{recall}^{-1}$

- precision: proportion of pixels segmented in the central patch belonging to it;
- recall: proportion of pixels belonging to the central patch correctly segmented.
- \implies The larger $\mathsf{F}_1 \in [0,1]$ the better in terms of both types I and II errors.

Patch of disrupted tissues embedded in fatty (top) vs. dense (bottom) background

average and 95% confidence regions computed on 10 texture realizations.

Conclusion & Perspectives

Contributions:

- Filtered fractional Brownian field model for stationary isotropic fractal textures.
- Disrupted patch detection in synthetic *filtered fBf* and fractional Gaussian Fields.
- Quantification of the detectability of simulated disrupted tissues $H_{
 m p}=0.5$ in

simulated fatty $H_{\rm b}=0.3$ vs. dense $H_{\rm b}=0.65$ tissues.

Outcomes:

- High performance for large patches in fatty environments, but rapid drop.
- In dense environments: good performance, decrease slowly with patch size.

Perspectives:

- Disrupted tissues in anistropic textures (Richard & Biermé, 2010, J. Math. Imaging Vis.),
- Confidence level on risk cancer assessment on real datasets: VinDr-Mammo.