Convex nonsmooth optimization Part I: Moreau subdifferential

Barbara Pascal

LS2N, CNRS, Centrale Nantes, Nantes University, Nantes, France
barbara.pascal@cnrs.fr
http://bpascal-fr.github.io

Collaboration

This course is a direct adaptation of the course built by Jean-Christophe Pesquet (CentraleSupélec) and Nelly Pustelnik (LPENSL)

Gradient descent in dimension N

Gradient descent

Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be convex, continuously differentiable on \mathbb{R}^{N} and with a β Lipschitz gradient.
Let $x_{0} \in \mathbb{R}^{N}$ and $\left.\gamma_{n} \in\right] 0,2 / \beta[$

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

$\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a minimizer of f.

β-Lipschitz gradient Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be convex, continuously differentiable on \mathbb{R}^{N}. f is gradient β-Lipschitz with $\beta>0$ if

$$
\left(\forall(u, v) \in \mathbb{R}^{N} \times \mathbb{R}^{N}\right) \quad\|\nabla f(u)-\nabla f(v)\| \leq \beta\|u-v\|
$$

Gradient descent in dimension N

Gradient descent

Let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be convex, continuously differentiable on \mathbb{R}^{N} and with a β Lipschitz gradient.
Let $x_{0} \in \mathbb{R}^{N}$ and $\left.\gamma_{n} \in\right] 0,2 / \beta[$

$$
(\forall n \in \mathbb{N}) \quad x_{n+1}=x_{n}-\gamma_{n} \nabla f\left(x_{n}\right)
$$

$\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a minimizer of f.

- Iterative method: build a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ s.t., at each iteration n

$$
f\left(x_{n+1}\right)<f\left(x_{n}\right)
$$

- Choose γ_{n} for fast convergence: Newton method, ...
- Convergence proof: fixed point theorem.

Non-smooth convex optimization

$$
\|\cdot\|_{1}:\left\{\begin{array}{ccc}
\mathbb{R}^{2} & \rightarrow & \mathbb{R} \\
(x, y) & \mapsto & |x|+|y|
\end{array}\right.
$$

not differentiable on $\{0\} \times \mathbb{R} \cup \mathbb{R} \times\{0\}$

Reference books

- D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont, Massachussets, 1995.
- Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer, 2004.
- S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.

Functional analysis: definitions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ where \mathcal{H} is a Hilbert space.
The domain of f is $\operatorname{dom} f=\{x \in \mathcal{H} \mid f(x)<+\infty\}$.
The function f is proper if $\operatorname{dom} f \neq \varnothing$.

Domains of the functions?

Functional analysis: definitions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ where \mathcal{H} is a Hilbert space.
The domain of f is $\operatorname{dom} f=\{x \in \mathcal{H} \mid f(x)<+\infty\}$.
The function f is proper if $\operatorname{dom} f \neq \varnothing$.

Domains of the functions?

$\operatorname{dom} f=\mathbb{R}$ (proper)

Functional analysis: definitions

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ where \mathcal{H} is a Hilbert space.
The domain of f is $\operatorname{dom} f=\{x \in \mathcal{H} \mid f(x)<+\infty\}$.
The function f is proper if $\operatorname{dom} f \neq \varnothing$.

Domains of the functions?

$\operatorname{dom} f=\mathbb{R}$ (proper)

$\operatorname{dom} f=] 0, \delta]$
(proper)

A pioneer

Jean-Jacques Moreau (1923-2014)

Subdifferential of function: definition

The (Moreau) subdifferential of f, denoted by ∂f,

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f,

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of function: definition

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Subdifferential of a function: properties

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted by ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

Fermat's rule : $0 \in \partial f(x) \Leftrightarrow x \in \operatorname{Argmin} f$

Subdifferential of a function: properties

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function.
The (Moreau) subdifferential of f, denoted ∂f, is such that

$$
\begin{aligned}
\partial f: \mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \rightarrow\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H})\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}
$$

$u \in \partial f(x)$ is a subgradient of f at x.

Subdifferential of a convex function: properties

If $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex and it is Gâteaux differentiable at x, then

$$
\partial f(x)=\{\nabla f(x)\}
$$

Subdifferential of a convex function: properties

If $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex and it is Gâteaux differentiable at x, then

$$
\partial f(x)=\{\nabla f(x)\}
$$

$(\forall y \in \mathcal{H}) \quad\langle\nabla f(x) \mid y\rangle=\lim _{\substack{\alpha \rightarrow 0 \\ \alpha \neq 0}} \frac{f(x+\alpha y)-f(x)}{\alpha}$.
Proof:
For every $\alpha \in[0,1]$ and $y \in \mathcal{H}$,

$$
\begin{aligned}
f(x+\alpha(y-x)) & \leq(1-\alpha) f(x)+\alpha f(y) \\
\Rightarrow \quad\langle\nabla f(x) \mid y-x\rangle & =\lim _{\substack{\alpha \rightarrow 0 \\
\alpha \neq 0}} \frac{f(x+\alpha(y-x))-f(x)}{\alpha} \leq f(y)-f(x)
\end{aligned}
$$

Then $\nabla f(x) \in \partial f(x)$.

Subdifferential of a convex function: properties

If $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ is convex and it is Gâteaux differentiable at x, then

$$
\partial f(x)=\{\nabla f(x)\}
$$

$(\forall y \in \mathcal{H}) \quad\langle\nabla f(x) \mid y\rangle=\lim _{\substack{\alpha \rightarrow 0 \\ \alpha \neq 0}} \frac{f(x+\alpha y)-f(x)}{\alpha}$.
Proof:
Conversely, if $u \in \partial f(x)$, then, for every $\alpha \in[0,+\infty[$ and $y \in \mathcal{H}$,

$$
\begin{aligned}
& f(x+\alpha y) \geq f(x)+\langle u \mid x+\alpha y-x\rangle \\
\Rightarrow \quad & \langle\nabla f(x) \mid y\rangle=\lim _{\substack{\alpha \rightarrow 0 \\
\alpha \neq 0}} \frac{f(x+\alpha y)-f(x)}{\alpha} \geq\langle u \mid y\rangle
\end{aligned}
$$

By selecting $y=u-\nabla f(x)$, it results that $\|u-\nabla f(x)\|^{2} \leq 0$ and then $u=\nabla f(x)$.

Subdifferential of a convex function: properties

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be Gâteaux differentiable on $\operatorname{dom} f$, with $\operatorname{dom} f$ a convex subset of \mathcal{H}.
Then, f is convex if and only if

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad f(y) \geq f(x)+\langle\nabla f(x) \mid y-x\rangle .
$$

Subdifferential of a convex function: properties

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be Gâteaux differentiable on $\operatorname{dom} f$, with $\operatorname{dom} f$ a convex subset of \mathcal{H}.
Then, f is convex if and only if

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad f(y) \geq f(x)+\langle\nabla f(x) \mid y-x\rangle .
$$

Proof:

We have already seen that the gradient inequality holds when f is convex and differentiable at $x \in \mathcal{H}$.

Subdifferential of a convex function: properties

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be Gâteaux differentiable on $\operatorname{dom} f$, with $\operatorname{dom} f$ a convex subset of \mathcal{H}.
Then, f is convex if and only if

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad f(y) \geq f(x)+\langle\nabla f(x) \mid y-x\rangle .
$$

Proof:
Conversely, if the gradient inequality is satisfied, we have, for every $(x, y) \in(\operatorname{dom} f)^{2}$ and $\alpha \in[0,1], \alpha x+(1-\alpha) y \in \operatorname{dom} f$, and

$$
\begin{aligned}
& f(x) \geq f(\alpha x+(1-\alpha) y)+(1-\alpha)\langle\nabla f(\alpha x+(1-\alpha) y) \mid x-y\rangle \\
& f(y) \geq f(\alpha x+(1-\alpha) y)+\alpha\langle\nabla f(\alpha x+(1-\alpha) y) \mid y-x\rangle .
\end{aligned}
$$

By multiplying the first inequality by α and the second one by $1-\alpha$ and summing them, we get

$$
\alpha f(x)+(1-\alpha) f(y) \geq f(\alpha x+(1-\alpha) y)
$$

Subdifferential of a convex function: example

Let C be a nonempty subset of \mathcal{H} with indicator function defined as

$$
(\forall x \in \mathcal{H}) \quad{ }^{\iota} C(x)= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { otherwise } .\end{cases}
$$

For every $x \in \mathcal{H}, \partial \iota_{C}(x)$ is the normal cone to C at x defined by

$$
N_{C}(x)= \begin{cases}\{u \in \mathcal{H} \mid(\forall y \in C) \quad\langle u \mid y-x\rangle \leq 0\} & \text { if } x \in C \\ \varnothing & \text { otherwise }\end{cases}
$$

Subdifferential calculus

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces.

- Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be proper, then $\forall \lambda \in] 0,+\infty[\partial(\lambda f)=\lambda \partial f$.
- Let $f: \mathcal{H} \rightarrow]-\infty,+\infty], g: \mathcal{G} \rightarrow]-\infty,+\infty]$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Define $g \circ L(x):=g(L x)$ and L^{*} the adjoint operator of L :

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle y \mid L x\rangle=\left\langle L^{*} y \mid x\right\rangle .
$$

If $\operatorname{dom} g \cap L(\operatorname{dom} f) \neq \varnothing$, then

$$
(\forall x \in \mathcal{H}) \quad \partial f(x)+L^{*} \partial g(L x) \subset \partial(f+g \circ L)(x)
$$

Subdifferential calculus

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be proper, then $\forall \lambda \in] 0,+\infty[\partial(\lambda f)=\lambda \partial f$.
Let $f: \mathcal{H} \rightarrow]-\infty,+\infty], g: \mathcal{G} \rightarrow]-\infty,+\infty]$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.
Define $g \circ L(x):=g(L x)$ and L^{*} the adjoint operator of L :

$$
(\forall(x, y) \in \mathcal{H} \times \mathcal{G}) \quad\langle y \mid L x\rangle=\left\langle L^{*} y \mid x\right\rangle
$$

If $\operatorname{dom} g \cap L(\operatorname{dom} f) \neq \varnothing$, then

$$
(\forall x \in \mathcal{H}) \quad \partial f(x)+L^{*} \partial g(L x) \subset \partial(f+g \circ L)(x)
$$

Proof: Let $x \in \mathcal{H}, u \in \partial f(x)$ and $v \in \partial g(L x)$. We have: $u+L^{*} v \in \partial f(x)+L^{*} \partial g(L x)$ and

$$
(\forall y \in \mathcal{H}) \quad f(y) \geq f(x)+\langle y-x \mid u\rangle
$$

Therefore, by summing,

$$
g(L y) \geq g(L x)+\langle L(y-x) \mid v\rangle
$$

$$
f(y)+g(L y) \geq f(x)+g(L x)+\left\langle y-x \mid u+L^{*} v\right\rangle
$$

We deduce that $u+L^{*} v \in \partial(f+g \circ L)(x)$.

Subdifferential: the case of discontinuous functions

Epigraph

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$. The epigraph of f is

$$
\text { epi } f=\{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}
$$

Epigraph

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$. The epigraph of f is

$$
\text { epi } f=\{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}
$$

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed.

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed.

- I.s.c. functions ?

Lower semi-continuity

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$.
f is a lower semi-continuous function on \mathcal{H} if and only if epi f is closed.
$>$ I.s.c. functions ?

Lower semi-continuity

- Every continuous function on \mathcal{H} is I.s.c.
- Every finite sum of I.s.c. functions is I.s.c.
\Rightarrow Let $\left(f_{i}\right)_{i \in I}$ be a family of I.s.c functions. Then, $\sup _{i \in I} f_{i}$ is I.s.c.

A class of convex functions

$\Gamma_{0}(\mathcal{H})$: class of convex, I.s.c., and proper functions from \mathcal{H} to $]-\infty,+\infty]$.
${ } \iota_{C} \in \Gamma_{0}(\mathcal{H}) \Leftrightarrow C$ is a nonempty closed convex set.
Proof: epi ${ }_{\iota c}=C \times[0,+\infty[$.

Subdifferential calculus

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces.
Let $f \in \Gamma_{0}(\mathcal{H}), g \in \Gamma_{0}(\mathcal{G})$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.
If $\operatorname{int}(\operatorname{dom} g) \cap L(\operatorname{dom} f) \neq \varnothing$ or $\operatorname{dom} g \cap \operatorname{int}(L(\operatorname{dom} f)) \neq \varnothing$, then

$$
\partial f+L^{*} \partial g L=\partial(f+g \circ L)
$$

Particular case:

- If $f \in \Gamma_{0}(\mathcal{H}), g \in \Gamma_{0}(\mathcal{G})$, and f is finite valued, then
$\partial f+\partial g=\partial(f+g)$.
- If $g \in \Gamma_{0}(\mathcal{G}), L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$, and $\operatorname{int}(\operatorname{dom} g) \cap \operatorname{ran} L \neq \varnothing$, then $L^{*} \partial g L=\partial(g \circ L)$.

Subdifferential calculus

Let $(\mathcal{H})_{i \in I}$ where $I \subset \mathbb{N}$ be Hilbert spaces and let $\mathcal{H}=\bigoplus_{i \in I} \mathcal{H}_{i}$. For every $i \in I$, let $\left.\left.f_{i}: \mathcal{H}_{i} \rightarrow\right]-\infty,+\infty\right]$ be a proper function. Let

$$
f: \mathcal{H} \rightarrow]-\infty,+\infty]: x=\left(x_{i}\right)_{i \in I} \mapsto \sum_{i \in I} f_{i}\left(x_{i}\right)
$$

Then,

$$
\left(\forall x=\left(x_{i}\right)_{i \in I} \in \mathcal{H}\right) \quad \partial f(x)=\underset{i \in I}{\times} \partial f_{i}\left(x_{i}\right)
$$

Subdifferential calculus

Let $(\mathcal{H})_{i \in I}$ where $I \subset \mathbb{N}$ be Hilbert spaces and let $\mathcal{H}=\bigoplus_{i \in I} \mathcal{H}_{i}$.
For every $i \in I$, let $\left.f_{i}: \mathcal{H}_{i} \rightarrow\right]-\infty,+\infty$] be a proper function. Let

$$
f: \mathcal{H} \rightarrow]-\infty,+\infty]: x=\left(x_{i}\right)_{i \in I} \mapsto \sum_{i \in I} f_{i}\left(x_{i}\right)
$$

Then,

$$
\left(\forall x=\left(x_{i}\right)_{i \in I} \in \mathcal{H}\right) \quad \partial f(x)=\underset{i \in I}{\times} \partial f_{i}\left(x_{i}\right) .
$$

Proof: Let $x=\left(x_{i}\right)_{i \in I} \in \mathcal{H}$. We have

$$
\begin{aligned}
& t=\left(t_{i}\right)_{i \in I} \in \underset{i \in I}{\times} \partial f_{i}\left(x_{i}\right) \\
\Leftrightarrow & (\forall i \in I)\left(\forall y_{i} \in \mathcal{H}_{i}\right) f_{i}\left(y_{i}\right) \geq f_{i}\left(x_{i}\right)+\left\langle t_{i} \mid y_{i}-x_{i}\right\rangle \\
\Rightarrow & \left(\forall y=\left(y_{i}\right)_{i \in I} \in \mathcal{H}\right) \sum_{i \in I} f_{i}\left(y_{i}\right) \geq \sum_{i \in I} f_{i}\left(x_{i}\right)+\sum_{i \in I}\left\langle t_{i} \mid y_{i}-x_{i}\right\rangle \\
\Leftrightarrow & (\forall y \in \mathcal{H}) f(y) \geq f(x)+\langle t \mid y-x\rangle .
\end{aligned}
$$

Subdifferential calculus

Let $(\mathcal{H})_{i \in I}$ where $I \subset \mathbb{N}$ be Hilbert spaces and let $\mathcal{H}=\bigoplus_{i \in I} \mathcal{H}_{i}$.
For every $i \in I$, let $\left.\left.f_{i}: \mathcal{H}_{i} \rightarrow\right]-\infty,+\infty\right]$ be a proper function. Let

$$
f: \mathcal{H} \rightarrow]-\infty,+\infty]: x=\left(x_{i}\right)_{i \in I} \mapsto \sum_{i \in I} f_{i}\left(x_{i}\right)
$$

Then,

$$
\left(\forall x=\left(x_{i}\right)_{i \in I} \in \mathcal{H}\right) \quad \partial f(x)=\underset{i \in I}{\times} \partial f_{i}\left(x_{i}\right)
$$

Proof: Conversely,

$$
\begin{aligned}
& t=\left(t_{i}\right)_{i \in I} \in \partial f(x) \\
\Leftrightarrow \quad & \left(\forall y=\left(y_{i}\right)_{i \in I} \in \mathcal{H}\right) \quad \sum_{i \in I} f_{i}\left(y_{i}\right) \geq \sum_{i \in I} f_{i}\left(x_{i}\right)+\sum_{i \in I}\left\langle t_{i} \mid y_{i}-x_{i}\right\rangle .
\end{aligned}
$$

Let $j \in I$. By setting $(\forall i \in I \backslash\{j\}) y_{i}=x_{i} \in \operatorname{dom} f_{i}$, we get

$$
\left(\forall y_{j} \in \mathcal{H}_{j}\right) f_{j}\left(y_{j}\right) \geq f_{j}\left(x_{j}\right)+\left\langle t_{j} \mid y_{j}-x_{j}\right\rangle
$$

Exercise 1: Huber function

Let $\rho>0$ and set

$$
f: \mathbb{R} \rightarrow \mathbb{R}: \mapsto \begin{cases}\frac{x^{2}}{2}, & \text { if }|x| \leq \rho \\ \rho|x|-\frac{\rho^{2}}{2}, & \text { otherwise }\end{cases}
$$

1. What is the domain of f ?
2. Plot the subdifferential of f.
3. Is f differentiable ? Prove that f is convex.

Exercise 2

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ and let $C \subset \mathcal{H}$ such that $\operatorname{dom} f \cap C \neq \varnothing$. Give a sufficient condition for $x \in \mathcal{H}$ to be a global minimizer of $f+\iota c$.

Exercice 3: Monotony of the subdifferential of a function

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function. Its subdifferential is a monotone operator, i.e.

$$
\left(\forall\left(x_{1}, x_{2}\right) \in \mathcal{H}^{2}\right)\left(\forall u_{1} \in \partial f\left(x_{1}\right)\right)\left(\forall u_{2} \in \partial f\left(x_{2}\right)\right) \quad\left\langle u_{1}-u_{2} \mid x_{1}-x_{2}\right\rangle \geq 0 .
$$

Exercice 3: Monotony of the subdifferential of a function

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be a proper function. Its subdifferential is a monotone operator, i.e.

$$
\left(\forall\left(x_{1}, x_{2}\right) \in \mathcal{H}^{2}\right)\left(\forall u_{1} \in \partial f\left(x_{1}\right)\right)\left(\forall u_{2} \in \partial f\left(x_{2}\right)\right) \quad\left\langle u_{1}-u_{2} \mid x_{1}-x_{2}\right\rangle \geq 0 .
$$

Proof:
By definition:

$$
\begin{aligned}
& \left\langle x_{2}-x_{1} \mid u_{1}\right\rangle+f\left(x_{1}\right) \leq f\left(x_{2}\right) \\
& \left\langle x_{1}-x_{2} \mid u_{2}\right\rangle+f\left(x_{2}\right) \leq f\left(x_{1}\right) \\
& \Rightarrow \text { It results that }\left\langle x_{1}-x_{2} \mid u_{1}-u_{2}\right\rangle \geq 0 \text {. }
\end{aligned}
$$

Exercice 4: Convexity and monotony

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be Gâteaux differentiable on $\operatorname{dom} f$, which is convex.
Then, f is convex if and only if ∇f is monotone on $\operatorname{dom} f$, i.e.

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad\langle\nabla f(y)-\nabla f(x) \mid y-x\rangle \geq 0 .
$$

Exercice 4: Convexity and monotony

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ be Gâteaux differentiable on $\operatorname{dom} f$, which is convex.
Then, f is convex if and only if ∇f is monotone on $\operatorname{dom} f$, i.e.

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad\langle\nabla f(y)-\nabla f(x) \mid y-x\rangle \geq 0
$$

Proof:
When f is convex, we have seen that its subdifferential is monotone and, for every $x \in \operatorname{dom} f, \partial f(x)=\{\nabla f(x)\}$.

Exercice 4: Convexity and monotony

Let $f: \mathcal{H} \rightarrow]-\infty,+\infty$] be Gâteaux differentiable on $\operatorname{dom} f$, which is convex.
Then, f is convex if and only if ∇f is monotone on $\operatorname{dom} f$, i.e.

$$
\left(\forall(x, y) \in(\operatorname{dom} f)^{2}\right) \quad\langle\nabla f(y)-\nabla f(x) \mid y-x\rangle \geq 0
$$

Proof:
Conversely, assume that ∇f is monotone on $\operatorname{dom} f$. For every $(x, y) \in(\operatorname{dom} f)^{2}$, let $\varphi:[0,1] \rightarrow \mathbb{R}: \alpha \mapsto f(x+\alpha(y-x))$.
φ is differentiable on $[0,1]$ and

$$
(\forall \alpha \in[0,1]) \quad \varphi^{\prime}(\alpha)=\langle\nabla f(x+\alpha(y-x)) \mid y-x\rangle .
$$

On the other hand, for every $\alpha \in] 0,1]$

$$
\begin{aligned}
& \langle\nabla f(x+\alpha(y-x))-\nabla f(x) \mid y-x\rangle \geq 0 \\
\Leftrightarrow & \varphi^{\prime}(\alpha) \geq\langle\nabla f(x) \mid y-x\rangle \\
\Rightarrow & \varphi(1)-\varphi(0)=\int_{0}^{1} \varphi^{\prime}(\alpha) d \alpha \geq\langle\nabla f(x) \mid y-x\rangle \\
\Leftrightarrow & f(y)-f(x) \geq\langle\nabla f(x) \mid y-x\rangle .
\end{aligned}
$$

