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Collaboration

This course is a direct adaptation of the course built by
Jean-Christophe Pesquet (CentraleSupélec) and Nelly Pustelnik (LPENSL)
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Gradient descent in dimension N

X2

Gradient descent

Let f : RY — R be convex, continu-
ously differentiable on RN and with a - .
Lipschitz gradient. .
Let xo € RN and v, €]0,2/8[ .

(Vn € N)  Xp11 = Xxn — Ya VI (Xn). VF(x) |

XIU(J N X1

(Xn)nen converges to a minimizer of f.

[-Lipschitz gradient Let f : RV — R be convex, continuously differen-
tiable on RN, f is gradient S3-Lipschitz with 8 > 0 if

(V(u,v) € RV x RY) ||V (u) = VF(v)|| < Bllu — v
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Gradient descent in dimension N

Gradient descent x
Let f : RY — R be convex, continu- N=2
ously differentiable on RN and with a - .
Lipschitz gradient. \‘
Let xo € RN and v, €]0,2/8[ N
2
(Vn € N)  Xp11 = Xxn — Ya VI (Xn). VF(x) E \ )
e X[kJ N ’Xl

(Xn)nen converges to a minimizer of f. '

> lterative method: build a sequence (x,)nen S.t., at each iteration n

f(Xn+1) < f(xn)
> Choose ~, for fast convergence: Newton method, ...
> Convergence proof: fixed point theorem.
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Functional analysis: definitions

Let £ : H — ]—o00,+00] where H is a Hilbert space.
» The domain of f isdomf = {x € H|f(x) < +00}.
> The function f is proper if domf # @.

Domains of the functions ?

L ,

\ |/

x




6/25

Functional analysis: definitions

Let £ : H — ]—o00,+00] where H is a Hilbert space.
» The domain of f isdomf = {x € H|f(x) < +00}.
> The function f is proper if domf # @.

Domains of the functions ?

O ;

L/

x

domf =R
(proper)



6/25

Functional analysis: definitions

Let £ : H — ]—o00,+00] where H is a Hilbert space.
» The domain of f isdomf = {x € H|f(x) < +00}.
> The function f is proper if domf # @.

Domains of the functions ?

. f(x) i HOR

I

L/

x

7

domf =R dom f =]0, 4]
(proper) (proper)
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Jean-Jacques Moreau
(1923-2014)
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Subdifferential of function: definition

The (Moreau) subdifferential of f , denoted by Of,
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Subdifferential of function: definition

Let £ : H — ]—o00,400] be a proper function.
The (Moreau) subdifferential of f , denoted by Of,

+f(y)
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Subdifferential of function: definition

Let f : H — ]—00, +0o0] be a proper function.
The (Moreau) subdifferential of f , denoted by Of, is such that

of - H — 27
x—= {veH|(Vy e H) (y — x|u) + f(x) < f(y)}

+f(y) AU
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Subdifferential of a function: properties

Let f : H — ]—00, +0o0] be a proper function.
The (Moreau) subdifferential of f, denoted by Of, is such that

of - H — 27
x—=>{ueH|(Vy eH) (y —x|u) + f(x) <f(y)}

f(y) A U
)+ y - x|u)

Fermat's rule : 0 € 0f(x) < x € Argmin f
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Subdifferential of a function: properties

Let f : H — ]—00, +0o0] be a proper function.
The (Moreau) subdifferential of f, denoted Of, is such that

of - H — 2%
x—=>{ueH|(Vy eH) (y —x|u) +f(x) < f(y)}

» u € Of(x) is a subgradient of f at x.
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Subdifferential of a convex function: properties

If f: H — ]—00,+00] is convex and it is Gateaux differentiable at x, then

0f (x) = {VFf(x)}
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Subdifferential of a convex function: properties

If f: H — ]—o00,+00] is convex and it is Gateaux differentiable at x, then

of (x) ={Vrf(x)}
(yeH) (VA |y) = lim [EFD T

Proof:
For every v € [0,1] and y € H,

f(x—l—a(y —X)) < (1—a)f(x)+ af(y)
f(x—l—a(y—x)) — f(x)

= lim
a—0 «

= (VIx) |y =x)

< f(y) = f(x)

i
a0

Then V£(x) € 0f(x).
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Subdifferential of a convex function: properties

If f: H — ]—o00,+00] is convex and it is Gateaux differentiable at x, then

0f (x) = {VFf(x)}
(yeH)  (VA()|y) = lim FEEIZT0D,

«
a0

Proof:
Conversely, if u € 9f(x), then, for every a € [0, +o0[ and y € H,

fix+ay) 2 f(x)+(u|x+ay —x)
f(x+ay) — f(x)

= lim
a—0 (%
a0

= (VFf(x)|y) > (uly)

By selecting y = u — Vf(x), it results that ||u — Vf(x)||> < 0 and then
u = Vf(x).
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Subdifferential of a convex function: properties

Let f: H — ]—o0, +00] be Gateaux differentiable on dom f, with dom f a
convex subset of H.
Then, f is convex if and only if

(V(x,y) € (dom £)?) f(y) = f(x) +(VF(x) | y —x).
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Subdifferential of a convex function: properties

Let f: H — ]—o0, +00] be Gateaux differentiable on dom f, with dom f a
convex subset of H.

Then, f is convex if and only if

(V(x,y) € (dom £)?) f(y) = f(x) +(VF(x) | y —x).

Proof:

We have already seen that the gradient inequality holds when f is convex
and differentiable at x € H.
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Subdifferential of a convex function: properties

Let f: H — ]—o0, +00] be Gateaux differentiable on dom f, with dom f a
convex subset of H.
Then, f is convex if and only if

(V(x,y) € (dom £)?) f(y) = f(x) +(VF(x) | y —x).

Proof:

Conversely, if the gradient inequality is satisfied, we have, for every

(x,y) € (domf)? and o € [0,1], ax + (1 — a)y € dom f, and
f(x)>flax+(1—a)y)+(1—a)(Vf(ax+ (1 —a)y) | x —y)
f(y) > flax+ (1 —a)y)+a(Vi(lax+ (1 —a)y) |y — x).

By multiplying the first inequality by o and the second one by 1 — o and

summing them, we get

af(x) + (1 —a)f(y) > f(ax + (1 — a)y).
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Subdifferential of a convex function: example

Let C be a nonempty subset of H with indicator function defined as

0 if xe C
400 otherwise.

(Vx e H) te(x) = {

For every x € H, duc(x) is the normal cone to C at x defined by

Nc(x):{r{a"EHl(Wec) (u]y-x)<0} ifxecC

otherwise.

Ne(x)
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Subdifferential calculus

Let H and G be two real Hilbert spaces.
> Let f: H — ]|—00,+00] be proper, then VA € ]0, +oo[ O(Af) = M\Of.

b Let f: H — |—o00,+0], g: G — |—00,+0¢], and L € B(H, G).
Define g o L(x) := g(Lx) and L* the adjoint operator of L:
(Mxy) eHxG) (y|Llx)=({Ly|x).
If dom g N L(dom f) # &, then

(Vx e H)  Of(x)+ L*0g(Lx) C O(f + g o L)(x).
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Subdifferential calculus

Let H and G be two real Hilbert spaces.
> Let f: H — ]—o00,+00] be proper, then VA € 0, +oo[ O(Af) = AIf.

> Let f: H — |—00,+00], g: G = |—00,+00], and L € B(H,G).
Define g o L(x) := g(Lx) and L* the adjoint operator of L:
(Vix,y) €1 xG) (y|Lx)= (LY [x).
If domg N L(dom f) # &, then

(Vx e H)  Of(x)+ L*dg(Lx) C O(f + g o L)(x).

Proof: Let x € H, u € 9f(x) and v € dg(Lx). We have:
u+ L*v € 9f(x) + L*0g(Lx) and

(VyeH) fly)>f(x)+{y—x|u
g(Ly) > g(Lx) +(Lly =x) | v).
Therefore, by summing,

F(y) + &(Ly) = F(x) + (L) + (y — x| u+ L*).

We deduce that u+ L*v € O(f + g o L)(x).
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Subdifferential: the case of discontinuous functions

f(x)
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Epigraph

Let f : H — ]—o00,+00]. The epigraph of f is

epif = {(x,¢) edomf xR | f(x) < ¢}
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Epigraph

Let f : H — ]—o00,+00]. The epigraph of f is

epif = {(x,¢) edomf xR | f(x) < ¢}

I F(x) = Ix| F(x) = t-s,5(x)
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Lower semi-continuity

Let f : H — |—o00, +00].
f is a lower semi-continuous function on H if and only if epif is closed .




17/25

Lower semi-continuity

Let f: H — ]—o0, +0o0].
f is a lower semi-continuous function on H if and only if epif is closed .

b |.s.c. functions ?
i< ()

RN ' X
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Lower semi-continuity

Let f: H — ]—o0, +0o0].
f is a lower semi-continuous function on H if and only if epif is closed .

b |.s.c. functions ?
f(x)
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Lower semi-continuity

> Every continuous function on H is I.s.c.
> Every finite sum of |.s.c. functions is |.s.c.

> Let (fi)ie be a family of I.s.c functions.
Then, sup;¢, fi is |.s.c.
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A class of convex functions

> To(H) : class of convex, |.s.c., and proper functions from H to
|—o0, +o0.

> 1c € Tp(H) < C is a nonempty closed convex set.

Proof: epi,. = C x [0, +o0[.
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Subdifferential calculus

Let H and G be two real Hilbert spaces.
Let f € To(H), g € To(9), and L € B(H,G).
If int (dom g) N L(dom ) # & or dom g Nint (L(dom f)) # &, then

Of + L*0gL=0(f +gol).

Particular case:

> If f € To(H), g € To(G), and f is finite valued, then
Of + 0g = A(f +g).

> If g €To(G), L e B(G,H), and int (dom g) Nran L # &, then
L*0gL=090(gol).
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Subdifferential calculus

Let (H)ie; where | C N be Hilbert spaces and let % = @, H,.
For every i € I, let f;: H; — ]—o00, +00] be a proper function. Let

f:H — ]—o00,+00] : x = (x;)ies = Z fi(xi)
iel
Then,

(VX =] (X,‘),'e/ = 7‘[) af(x) = Xlaf;'(xi)'
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Subdifferential calculus

Let (H)jes where | C N be Hilbert spaces and let H = @, H,.
For every i € [, let f;: H; — ]—o00, +00] be a proper function. Let

f: H = J—o0,+00] : x = (xi)ier = Y_ fi())
i€l
Then,
(VX = (X,'),'e/ € 7'[) 6f(x) = Xaf,(x,)
i€l

Proof: Let x = (xi)jcs € H. We have
t = (ti)ies € XOfi(x;)
iel
< (VieN(Vy; € Hi) fily) > fi(xi) + (ti | yi — xi)
= (V=i €M) D fily) =D filx)+ D (ti | yi—x)

iel icl icl

s (WeH) fly)>f(x)+(tly—x).
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Subdifferential calculus

Let (#H)ies where | C N be Hilbert spaces and let # = @, H,-
For every i € I, let f;: H; — ]—00,+00] be a proper function. Let

f:H = ]—o00,+00] : x = (x)ies = Y fil)
iel
Then,
(VX = (X,‘),'e[ S ’H) af(X) = ><8f,(x,)

i€l

Proof: Conversely,

t= (t’)IEI € 3f(X)

( (yl ,e/EH Zf(}’/ _Z XI)+Z t:|y,— I .

i€l ie iel

Let j € I. By setting (Vi € I'\ {j}) yi = x; € dom f;, we get

(Vy; € Hj) fi(y;) = fi05) +(t [ y; — %) -
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Exercise 1: Huber function

Let p > 0 and set

x2

FROR: )20 =
plx| = &, otherwise.

1. What is the domain of f 7
2. Plot the subdifferential of f.
3. Is f differentiable 7 Prove that f is convex.
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Exercise 2

Let H be a Hilbert space. Let f: H — |—o00,+00] and let C C H such
that dom f N C # @. Give a sufficient condition for x € H to be a global
minimizer of f + ¢tc.
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Exercice 3: Monotony of the subdifferential of a function

Let f: H — ]—o00, +00] be a proper function.
Its subdifferential is a monotone operator, i.e.

(V(x1,%) € H?) (Vur € 0f(x1)) (Yuz € OF(x2)) (u1 — up | x1 — x2) > 0.
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Exercice 3: Monotony of the subdifferential of a function

Let f: H — ]—o00,+00] be a proper function.
Its subdifferential is a monotone operator, i.e.

(V(x1,%) € H?) (Vur € 0f(x1)) (Yuz € OF(x2)) (u1 — up | x1 — x2) > 0.

> Proof: AU
By definition:
<X2 — X1|U1> —+ f(Xl) < f(Xg) Uy ¢
(x1 — x2|u2) + f(x2) < f(xa)
b It results that ‘ (x1 —x2|ug —w) >0 ‘

A\

- — Uy
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Exercice 4: Convexity and monotony

Let f: H — ]—o00,+00] be Gateaux differentiable on dom f, which is con-
Vex.
Then, f is convex if and only if Vf is monotone on dom f, i.e.

(V(x,y) € (domf)?) (VF(y) = VF(x) |y —x) = 0.
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Exercice 4: Convexity and monotony

Let f: H — ]—o00, +00]| be Gateaux differentiable on dom f, which is con-
Vex.
Then, f is convex if and only if Vf is monotone on domf, i.e.

(V(x,y) € (dom f)?) (VF(y) = VF(x) |y —x) > 0.

Proof:
When f is convex, we have seen that its subdifferential is monotone and,
for every x € dom f, 9f (x) = {Vf(x)}.
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Exercice 4: Convexity and monotony

Let f: H — ]—o00,+00] be Gateaux differentiable on dom f, which is con-

vex.
Then, f is convex if and only if V{ is monotone on domf, i.e.

(V(x,y) € (dom )?) (VF(y) = VF(x) | y = x) 2 0.

Proof:
Conversely, assume that Vf is monotone on dom f. For every

(x,y) € (dom )2, let ¢: [0,1] = R: a v f(x + a(y — x)).
¢ is differentiable on [0,1] and

(Vael0.1])  ¢(a)=(VFlx+aly —x))|y—x).
On the other hand, for every a €]0, 1]

(Vilx+aly =x)) = VFf(x) |y =x) 20
& ¢l(a) 2(VF(x) |y —x)

1
= (1) - p(0) = /0 (a)da > (VF(x) |y — x)

& fly) = f(x) 2 (VF(x) |y —x).



