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Collaboration

This course is a direct adaptation of the course built by
Jean-Christophe Pesquet (CentraleSupélec) and Nelly Pustelnik (LPENSL)
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Gradient descent in dimension N

Gradient descent

Let f : R
N → R be convex, continu-

ously differentiable on R
N and with a β-

Lipschitz gradient.
Let x0 ∈ R

N and γn ∈]0, 2/β[

(∀n ∈ N) xn+1 = xn − γn∇f (xn).

(xn)n∈N converges to a minimizer of f .
x1

x2

N = 2

∇f (x [k])

x
[k]
1

x
[k]
2

β-Lipschitz gradient Let f : RN → R be convex, continuously differen-

tiable on R
N . f is gradient β-Lipschitz with β > 0 if

(∀(u, v) ∈ R
N × R

N) ‖∇f (u)−∇f (v)‖ ≤ β‖u − v‖
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◮ Iterative method: build a sequence (xn)n∈N s.t., at each iteration n

f (xn+1) < f (xn)

◮ Choose γn for fast convergence: Newton method, . . .

◮ Convergence proof: fixed point theorem.
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Non-smooth convex optimization

‖·‖1 :

{

R2 → R

(x , y) 7→ |x |+ |y |

not differentiable on
{0} ×R ∪ R× {0}
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Reference books

◮ D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont,
Massachussets, 1995.

◮ Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, Springer, 2004.

◮ S. Boyd and L. Vandenberghe, Convex optimization, Cambridge
University Press, 2004.

◮ H. H. Bauschke and P. L. Combettes, Convex Analysis and
Monotone Operator Theory in Hilbert Spaces, Springer, New York,
2011.



6/25

Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

◮ The domain of f is dom f = {x ∈ H | f (x) < +∞}.

◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

x

f (x)

δ
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Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

◮ The domain of f is dom f = {x ∈ H | f (x) < +∞}.

◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

dom f = R

(proper)

x

f (x)

δ

dom f =]0, δ]
(proper)
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A pioneer

Jean-Jacques Moreau
(1923–2014)
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Subdifferential of function: definition

The (Moreau) subdifferential of f , denoted by ∂f ,
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Subdifferential of function: definition

Let f : H → ]−∞,+∞] be a proper function.

The (Moreau) subdifferential of f , denoted by ∂f , is such that

∂f : H → 2H

x → {u ∈ H | (∀y ∈ H) 〈y − x |u〉+ f (x) ≤ f (y)}

y

f (y) u

x
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Subdifferential of a function: properties

Let f : H → ]−∞,+∞] be a proper function.
The (Moreau) subdifferential of f , denoted by ∂f , is such that

∂f : H → 2H

x → {u ∈ H | (∀y ∈ H) 〈y − x |u〉+ f (x) ≤ f (y)}

y

f (y)

f (x) + 〈y − x | u〉

x

u

x

Fermat’s rule : 0 ∈ ∂f (x) ⇔ x ∈ Argmin f
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Subdifferential of a function: properties

Let f : H → ]−∞,+∞] be a proper function.
The (Moreau) subdifferential of f , denoted ∂f , is such that

∂f : H → 2H

x → {u ∈ H | (∀y ∈ H) 〈y − x |u〉+ f (x) ≤ f (y)}

◮ u ∈ ∂f (x) is a subgradient of f at x .
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Subdifferential of a convex function: properties

If f : H → ]−∞,+∞] is convex and it is Gâteaux differentiable at x , then

∂f (x) = {∇f (x)}
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Subdifferential of a convex function: properties

If f : H → ]−∞,+∞] is convex and it is Gâteaux differentiable at x , then

∂f (x) = {∇f (x)}

(∀y ∈ H) 〈∇f (x) | y〉 = lim
α→0
α 6=0

f (x + αy) − f (x)

α
.

Proof:
For every α ∈ [0, 1] and y ∈ H,

f
(

x + α(y − x)
)

≤ (1− α)f (x) + αf (y)

⇒ 〈∇f (x) | y − x〉 = lim
α→0
α 6=0

f
(

x + α(y − x)
)

− f (x)

α
≤ f (y) − f (x)

Then ∇f (x) ∈ ∂f (x).
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Subdifferential of a convex function: properties

If f : H → ]−∞,+∞] is convex and it is Gâteaux differentiable at x , then

∂f (x) = {∇f (x)}

(∀y ∈ H) 〈∇f (x) | y〉 = lim
α→0
α 6=0

f (x + αy) − f (x)

α
.

Proof:
Conversely, if u ∈ ∂f (x), then, for every α ∈ [0,+∞[ and y ∈ H,

f (x + αy) ≥ f (x) + 〈u | x + αy − x〉

⇒ 〈∇f (x) | y〉 = lim
α→0
α 6=0

f (x + αy) − f (x)

α
≥ 〈u | y〉

By selecting y = u −∇f (x), it results that ‖u −∇f (x)‖2 ≤ 0 and then
u = ∇f (x).
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Subdifferential of a convex function: properties

Let f : H → ]−∞,+∞] be Gâteaux differentiable on dom f , with dom f a
convex subset of H.
Then, f is convex if and only if

(∀(x , y) ∈ (dom f )2) f (y) ≥ f (x) + 〈∇f (x) | y − x〉 .
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Subdifferential of a convex function: properties

Let f : H → ]−∞,+∞] be Gâteaux differentiable on dom f , with dom f a
convex subset of H.
Then, f is convex if and only if

(∀(x , y) ∈ (dom f )2) f (y) ≥ f (x) + 〈∇f (x) | y − x〉 .

Proof:
We have already seen that the gradient inequality holds when f is convex
and differentiable at x ∈ H.
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Subdifferential of a convex function: properties

Let f : H → ]−∞,+∞] be Gâteaux differentiable on dom f , with dom f a
convex subset of H.
Then, f is convex if and only if

(∀(x , y) ∈ (dom f )2) f (y) ≥ f (x) + 〈∇f (x) | y − x〉 .

Proof:
Conversely, if the gradient inequality is satisfied, we have, for every
(x , y) ∈ (dom f )2 and α ∈ [0, 1], αx + (1− α)y ∈ dom f , and

f (x) ≥ f (αx + (1− α)y) + (1− α) 〈∇f (αx + (1− α)y) | x − y〉

f (y) ≥ f (αx + (1− α)y) + α 〈∇f (αx + (1− α)y) | y − x〉 .

By multiplying the first inequality by α and the second one by 1− α and
summing them, we get

αf (x) + (1− α)f (y) ≥ f (αx + (1− α)y).
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Subdifferential of a convex function: example

Let C be a nonempty subset of H with indicator function defined as

(∀x ∈ H) ιC (x) =

{

0 if x ∈ C

+∞ otherwise.

For every x ∈ H, ∂ιC (x) is the normal cone to C at x defined by

NC (x) =

{

{

u ∈ H
∣

∣ (∀y ∈ C ) 〈u | y − x〉 ≤ 0
}

if x ∈ C

∅ otherwise.

C

NC (x)
x

u

C

NC (x)

x

u
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Subdifferential calculus

Let H and G be two real Hilbert spaces.

◮ Let f : H → ]−∞,+∞] be proper, then ∀λ ∈ ]0,+∞[ ∂(λf ) = λ∂f .

◮ Let f : H → ]−∞,+∞], g : G → ]−∞,+∞], and L ∈ B(H,G).

Define g ◦ L(x) := g(Lx) and L∗ the adjoint operator of L:

(∀(x , y) ∈ H× G) 〈y | Lx〉 = 〈L∗y | x〉 .

If dom g ∩ L(dom f ) 6= ∅, then

(∀x ∈ H) ∂f (x) + L∗∂g(Lx) ⊂ ∂(f + g ◦ L)(x).
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Subdifferential calculus

Let H and G be two real Hilbert spaces.

◮ Let f : H → ]−∞,+∞] be proper, then ∀λ ∈ ]0,+∞[ ∂(λf ) = λ∂f .

◮ Let f : H → ]−∞,+∞], g : G → ]−∞,+∞], and L ∈ B(H,G).

Define g ◦ L(x) := g(Lx) and L∗ the adjoint operator of L:

(∀(x , y) ∈ H× G) 〈y | Lx〉 = 〈L∗y | x〉 .

If dom g ∩ L(dom f ) 6= ∅, then

(∀x ∈ H) ∂f (x) + L∗∂g(Lx) ⊂ ∂(f + g ◦ L)(x).

Proof: Let x ∈ H, u ∈ ∂f (x) and v ∈ ∂g(Lx). We have:
u + L∗v ∈ ∂f (x) + L∗∂g(Lx) and

(∀y ∈ H) f (y) ≥ f (x) + 〈y − x | u〉

g(Ly) ≥ g(Lx) + 〈L(y − x) | v〉 .
Therefore, by summing,

f (y) + g(Ly) ≥ f (x) + g(Lx) + 〈y − x | u + L∗v〉 .

We deduce that u + L∗v ∈ ∂(f + g ◦ L)(x).
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Subdifferential: the case of discontinuous functions

x

f (x)
f (x)

-1 1
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Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f =
{

(x , ζ) ∈ dom f × R
∣

∣ f (x) ≤ ζ
}
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Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f =
{

(x , ζ) ∈ dom f × R
∣

∣ f (x) ≤ ζ
}

x

f (x) = |x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif
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Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous function on H if and only if epi f is closed .



17/25

Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous function on H if and only if epi f is closed .

◮ l.s.c. functions ?

x

f (x)

x

f (x)



17/25

Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous function on H if and only if epi f is closed .

◮ l.s.c. functions ?

f (x)

x
x

f (x)
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Lower semi-continuity

◮ Every continuous function on H is l.s.c.

◮ Every finite sum of l.s.c. functions is l.s.c.

◮ Let (fi )i∈I be a family of l.s.c functions.
Then, supi∈I fi is l.s.c.
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A class of convex functions

◮ Γ0(H) : class of convex, l.s.c., and proper functions from H to

]−∞,+∞].

◮ ιC ∈ Γ0(H) ⇔ C is a nonempty closed convex set.

Proof: epi
ιC

= C × [0,+∞[.
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Subdifferential calculus

Let H and G be two real Hilbert spaces.
Let f ∈ Γ0(H), g ∈ Γ0(G), and L ∈ B(H,G).
If int (dom g) ∩ L(dom f ) 6= ∅ or dom g ∩ int

(

L(dom f )
)

6= ∅, then

∂f + L∗∂g L = ∂(f + g ◦ L) .

Particular case:

◮ If f ∈ Γ0(H), g ∈ Γ0(G), and f is finite valued, then
∂f + ∂g = ∂(f + g).

◮ If g ∈ Γ0(G), L ∈ B(G,H), and int (dom g) ∩ ranL 6= ∅, then
L∗∂g L = ∂(g ◦ L).
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Subdifferential calculus

Let (H)i∈I where I ⊂ N be Hilbert spaces and let H =
⊕

i∈I Hi .
For every i ∈ I , let fi : Hi → ]−∞,+∞] be a proper function. Let

f : H → ]−∞,+∞] : x = (xi)i∈I 7→
∑

i∈I

fi(xi )

Then,
(

∀x = (xi )i∈I ∈ H
)

∂f (x) =×
i∈I

∂fi(xi ).
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Subdifferential calculus

Let (H)i∈I where I ⊂ N be Hilbert spaces and let H =
⊕

i∈I Hi .
For every i ∈ I , let fi : Hi → ]−∞,+∞] be a proper function. Let

f : H → ]−∞,+∞] : x = (xi)i∈I 7→
∑

i∈I

fi(xi )

Then,
(

∀x = (xi )i∈I ∈ H
)

∂f (x) =×
i∈I

∂fi(xi ).

Proof: Let x = (xi)i∈I ∈ H. We have

t = (ti )i∈I ∈×
i∈I

∂fi (xi )

⇔ (∀i ∈ I )(∀yi ∈ Hi) fi(yi ) ≥ fi (xi ) + 〈ti | yi − xi 〉

⇒
(

∀y = (yi )i∈I ∈ H
)

∑

i∈I

fi(yi ) ≥
∑

i∈I

fi(xi ) +
∑

i∈I

〈ti | yi − xi 〉

⇔
(

∀y ∈ H
)

f (y) ≥ f (x) + 〈t | y − x〉 .
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Subdifferential calculus

Let (H)i∈I where I ⊂ N be Hilbert spaces and let H =
⊕

i∈I Hi .
For every i ∈ I , let fi : Hi → ]−∞,+∞] be a proper function. Let

f : H → ]−∞,+∞] : x = (xi)i∈I 7→
∑

i∈I

fi(xi )

Then,
(

∀x = (xi )i∈I ∈ H
)

∂f (x) =×
i∈I

∂fi(xi ).

Proof: Conversely,

t = (ti )i∈I ∈ ∂f (x)

⇔
(

∀y = (yi )i∈I ∈ H
)

∑

i∈I

fi(yi ) ≥
∑

i∈I

fi(xi ) +
∑

i∈I

〈ti | yi − xi〉 .

Let j ∈ I . By setting (∀i ∈ I \ {j}) yi = xi ∈ dom fi , we get

(∀yj ∈ Hj) fj(yj) ≥ fj(xj ) + 〈tj | yj − xj〉 .
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Exercise 1: Huber function

Let ρ > 0 and set

f : R → R : 7→

{

x2

2 , if |x | ≤ ρ

ρ|x | − ρ
2

2 , otherwise.

1. What is the domain of f ?

2. Plot the subdifferential of f .

3. Is f differentiable ? Prove that f is convex.
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Exercise 2

Let H be a Hilbert space. Let f : H → ]−∞,+∞] and let C ⊂ H such
that dom f ∩ C 6= ∅. Give a sufficient condition for x ∈ H to be a global
minimizer of f + ιC .
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Exercice 3: Monotony of the subdifferential of a function

Let f : H → ]−∞,+∞] be a proper function.
Its subdifferential is a monotone operator, i.e.

(

∀(x1, x2) ∈ H2
)(

∀u1 ∈ ∂f (x1)
)(

∀u2 ∈ ∂f (x2)
)

〈u1 − u2 | x1 − x2〉 ≥ 0.
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Exercice 3: Monotony of the subdifferential of a function

Let f : H → ]−∞,+∞] be a proper function.
Its subdifferential is a monotone operator, i.e.

(

∀(x1, x2) ∈ H2
)(

∀u1 ∈ ∂f (x1)
)(

∀u2 ∈ ∂f (x2)
)

〈u1 − u2 | x1 − x2〉 ≥ 0.

◮ Proof:
By definition:

〈x2 − x1|u1〉+ f (x1) ≤ f (x2)

〈x1 − x2|u2〉+ f (x2) ≤ f (x1)

◮ It results that 〈x1 − x2 | u1 − u2〉 ≥ 0 .

u

xx2

x1

u1

u2
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Exercice 4: Convexity and monotony

Let f : H → ]−∞,+∞] be Gâteaux differentiable on dom f , which is con-
vex.
Then, f is convex if and only if ∇f is monotone on dom f , i.e.

(∀(x , y) ∈ (dom f )2) 〈∇f (y)−∇f (x) | y − x〉 ≥ 0.



25/25

Exercice 4: Convexity and monotony

Let f : H → ]−∞,+∞] be Gâteaux differentiable on dom f , which is con-
vex.
Then, f is convex if and only if ∇f is monotone on dom f , i.e.

(∀(x , y) ∈ (dom f )2) 〈∇f (y)−∇f (x) | y − x〉 ≥ 0.

Proof:
When f is convex, we have seen that its subdifferential is monotone and,
for every x ∈ dom f , ∂f (x) = {∇f (x)}.
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Exercice 4: Convexity and monotony

Let f : H → ]−∞,+∞] be Gâteaux differentiable on dom f , which is con-
vex.
Then, f is convex if and only if ∇f is monotone on dom f , i.e.

(∀(x , y) ∈ (dom f )2) 〈∇f (y)−∇f (x) | y − x〉 ≥ 0.

Proof:
Conversely, assume that ∇f is monotone on dom f . For every
(x , y) ∈ (dom f )2, let ϕ : [0, 1] → R : α 7→ f (x + α(y − x)).
ϕ is differentiable on [0, 1] and

(∀α ∈ [0, 1]) ϕ′(α) = 〈∇f (x + α(y − x)) | y − x〉 .

On the other hand, for every α ∈]0, 1]

〈∇f (x + α(y − x))−∇f (x) | y − x〉 ≥ 0

⇔ ϕ′(α) ≥ 〈∇f (x) | y − x〉

⇒ ϕ(1) − ϕ(0) =

∫ 1

0
ϕ′(α)dα ≥ 〈∇f (x) | y − x〉

⇔ f (y)− f (x) ≥ 〈∇f (x) | y − x〉 .


