Convex nonsmooth optimization Part I: Moreau subdifferential

Barbara Pascal

LS2N, CNRS, Centrale Nantes, Nantes University, Nantes, France barbara.pascal@cnrs.fr

http://bpascal-fr.github.io

Collaboration

This course is a direct adaptation of the course built by Jean-Christophe Pesquet (CentraleSupélec) and Nelly Pustelnik (LPENSL)

Gradient descent in dimension N

 β -Lipschitz gradient Let $f : \mathbb{R}^N \to \mathbb{R}$ be convex, continuously differentiable on \mathbb{R}^N . f is gradient β -Lipschitz with $\beta > 0$ if

 $(\forall (u, v) \in \mathbb{R}^N \times \mathbb{R}^N) ||\nabla f(u) - \nabla f(v)|| \leq \beta ||u - v||$

Gradient descent in dimension N

Gradient descent

Let $f : \mathbb{R}^N \to \mathbb{R}$ be convex, continuously differentiable on \mathbb{R}^N and with a β -Lipschitz gradient. Let $x_0 \in \mathbb{R}^N$ and $\gamma_n \in]0, 2/\beta[$

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n - \gamma_n \nabla f(x_n).$$

 $(x_n)_{n\in\mathbb{N}}$ converges to a minimizer of f.

▶ Iterative method: build a sequence $(x_n)_{n \in \mathbb{N}}$ s.t., at each iteration n

$$f(x_{n+1}) < f(x_n)$$

- Choose γ_n for fast convergence: Newton method, ...

Convergence proof: fixed point theorem.

Non-smooth convex optimization

$$\|\cdot\|_1: \left\{ egin{array}{ccc} \mathbb{R}^2 & o & \mathbb{R} \\ (x,y) & \mapsto & |x|+|y| \end{array}
ight.$$

not differentiable on $\{0\}\times \mathbb{R}\cup \mathbb{R}\times \{0\}$

Reference books

- D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont, Massachussets, 1995.
- Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer, 2004.
- S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.

Functional analysis: definitions

▶ The domain of f is dom
$$f = \{x \in \mathcal{H} \mid f(x) < +\infty\}.$$

▶ The function *f* is proper if dom $f \neq \emptyset$.

Domains of the functions ?

Functional analysis: definitions

Let
$$f:\mathcal{H} \to]-\infty,+\infty]$$
 where \mathcal{H} is a Hilbert space.

▶ The domain of f is dom
$$f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$$
.

▶ The function *f* is proper if dom $f \neq \emptyset$.

Domains of the functions ?

Functional analysis: definitions

Let
$$f:\mathcal{H} \to]-\infty,+\infty]$$
 where \mathcal{H} is a Hilbert space.

▶ The domain of f is dom
$$f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$$
.

▶ The function *f* is proper if dom $f \neq \emptyset$.

Domains of the functions ?

A pioneer

Jean-Jacques Moreau (1923–2014)

The (Moreau) subdifferential of f, denoted by ∂f ,

Let $f : \mathcal{H} \to]-\infty, +\infty]$ be a proper function. The (Moreau) subdifferential of f, denoted by ∂f ,

Let $f : \mathcal{H} \to]-\infty, +\infty]$ be a proper function. The (Moreau) subdifferential of f, denoted by ∂f , is such that $\partial f : \mathcal{H} \to 2^{\mathcal{H}}$ $x \to \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \langle y - x | u \rangle + f(x) \leq f(y)\}$

Fermat's rule : $0 \in \partial f(x) \Leftrightarrow x \in \text{Argmin } f$

9/25

Let $f : \mathcal{H} \to]-\infty, +\infty]$ be a proper function. The (Moreau) subdifferential of f, denoted ∂f , is such that $\partial f : \mathcal{H} \to 2^{\mathcal{H}}$ $x \to \{u \in \mathcal{H} \mid (\forall y \in \mathcal{H}) \langle y - x | u \rangle + f(x) \leq f(y)\}$

• $u \in \partial f(x)$ is a subgradient of f at x.

If $f: \mathcal{H} \to]-\infty, +\infty]$ is convex and it is Gâteaux differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$

If $f: \mathcal{H} \to [-\infty, +\infty]$ is convex and it is Gâteaux differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$ $(\forall y \in \mathcal{H}) \qquad \langle \nabla f(x) \mid y \rangle = \lim_{\alpha \to 0} \frac{f(x + \alpha y) - f(x)}{\alpha}.$ Proof: For every $\alpha \in [0,1]$ and $y \in \mathcal{H}$, $f(x + \alpha(y - x)) \le (1 - \alpha)f(x) + \alpha f(y)$ $\Rightarrow \quad \langle \nabla f(x) \mid y - x \rangle = \lim_{\substack{\alpha \to 0 \\ \to -\alpha}} \frac{f(x + \alpha(y - x)) - f(x)}{\alpha} \le f(y) - f(x)$

Then $\nabla f(x) \in \partial f(x)$.

If $f: \mathcal{H} \to]-\infty, +\infty]$ is convex and it is Gâteaux differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$

$$(\forall y \in \mathcal{H})$$
 $\langle \nabla f(x) \mid y \rangle = \lim_{\substack{\alpha \to 0 \\ \alpha \neq 0}} \frac{f(x + \alpha y) - f(x)}{\alpha}$

Proof:

Conversely, if $u \in \partial f(x)$, then, for every $\alpha \in [0, +\infty[$ and $y \in \mathcal{H}$,

$$f(x + \alpha y) \ge f(x) + \langle u \mid x + \alpha y - x \rangle$$

$$\Rightarrow \quad \langle \nabla f(x) \mid y \rangle = \lim_{\substack{\alpha \to 0 \\ \alpha \neq 0}} \frac{f(x + \alpha y) - f(x)}{\alpha} \ge \langle u \mid y \rangle$$

By selecting $y = u - \nabla f(x)$, it results that $||u - \nabla f(x)||^2 \le 0$ and then $u = \nabla f(x)$.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be Gâteaux differentiable on dom f, with dom f a convex subset of \mathcal{H} . Then, f is convex if and only if $(\forall (x, y) \in (\operatorname{dom} f)^2) \quad f(y) \ge f(x) + \langle \nabla f(x) \mid y - x \rangle$.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be Gâteaux differentiable on dom f, with dom f a convex subset of \mathcal{H} .

Then, f is convex if and only if

$$(\forall (x,y) \in (\operatorname{dom} f)^2) \quad f(y) \geq f(x) + \langle \nabla f(x) \mid y - x \rangle$$

Proof:

We have already seen that the gradient inequality holds when f is convex and differentiable at $x \in \mathcal{H}$.

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be Gâteaux differentiable on dom f, with dom f a convex subset of \mathcal{H} .

Then, f is convex if and only if

$$(orall (x,y)\in (\mathrm{dom}\, f)^2) \quad f(y)\geq f(x)+\langle
abla f(x)\mid y-x
angle \,.$$

Proof:

Conversely, if the gradient inequality is satisfied, we have, for every $(x, y) \in (\operatorname{dom} f)^2$ and $\alpha \in [0, 1]$, $\alpha x + (1 - \alpha)y \in \operatorname{dom} f$, and $f(x) \ge f(\alpha x + (1 - \alpha)y) + (1 - \alpha) \langle \nabla f(\alpha x + (1 - \alpha)y) | x - y \rangle$ $f(y) \ge f(\alpha x + (1 - \alpha)y) + \alpha \langle \nabla f(\alpha x + (1 - \alpha)y) | y - x \rangle$.

By multiplying the first inequality by α and the second one by $1-\alpha$ and summing them, we get

$$\alpha f(x) + (1-\alpha)f(y) \ge f(\alpha x + (1-\alpha)y).$$

Subdifferential of a convex function: example

Let C be a nonempty subset of \mathcal{H} with indicator function defined as

$$(\forall x \in \mathcal{H})$$
 $\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$

For every $x \in \mathcal{H}$, $\partial \iota_{\mathcal{C}}(x)$ is the normal cone to \mathcal{C} at x defined by

$$N_{C}(x) = \begin{cases} \{u \in \mathcal{H} \mid (\forall y \in C) \ \langle u \mid y - x \rangle \leq 0 \} & \text{if } x \in C \\ \varnothing & \text{otherwise.} \end{cases}$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

▶ Let
$$f: \mathcal{H} \to]-\infty, +\infty]$$
 be proper, then $\forall \lambda \in]0, +\infty[\partial(\lambda f) = \lambda \partial f.$

▶ Let
$$f: \mathcal{H} \to]-\infty, +\infty]$$
, $g: \mathcal{G} \to]-\infty, +\infty]$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Define $g \circ L(x) := g(Lx)$ and L^* the *adjoint* operator of *L*:

$$(\forall (x,y) \in \mathcal{H} \times \mathcal{G}) \quad \langle y \mid Lx \rangle = \langle L^*y \mid x \rangle.$$

If dom $g \cap L(\operatorname{dom} f) \neq \emptyset$, then

 $(\forall x \in \mathcal{H}) \qquad \partial f(x) + L^* \partial g(Lx) \subset \partial (f + g \circ L)(x).$

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

▶ Let $f: \mathcal{H} \to]-\infty, +\infty]$ be proper, then $\forall \lambda \in]0, +\infty[\partial(\lambda f) = \lambda \partial f.$

▶ Let
$$f: \mathcal{H} \to]-\infty, +\infty]$$
, $g: \mathcal{G} \to]-\infty, +\infty]$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Define $g \circ L(x) := g(Lx)$ and L^* the *adjoint* operator of L:

$$\langle \forall (x,y) \in \mathcal{H} \times \mathcal{G} \rangle \quad \langle y \mid Lx \rangle = \langle L^*y \mid x \rangle.$$

If dom $g \cap L(\operatorname{dom} f) \neq \emptyset$, then

 $(\forall x \in \mathcal{H})$ $\partial f(x) + L^* \partial g(Lx) \subset \partial (f + g \circ L)(x).$

<u>Proof</u>: Let $x \in \mathcal{H}$, $u \in \partial f(x)$ and $v \in \partial g(Lx)$. We have: $u + L^*v \in \partial f(x) + L^*\partial g(Lx)$ and

$$\begin{array}{ll} (\forall y \in \mathcal{H}) & f(y) \geq f(x) + \langle y - x \mid u \rangle \\ & g(Ly) \geq g(Lx) + \langle L(y - x) \mid v \rangle \,. \end{array}$$

Therefore, by summing,

$$f(y) + g(Ly) \ge f(x) + g(Lx) + \langle y - x \mid u + L^*v \rangle.$$

We deduce that $u + L^* v \in \partial (f + g \circ L)(x)$.

Subdifferential: the case of discontinuous functions

Epigraph

Let $f : \mathcal{H} \to]-\infty, +\infty]$. The epigraph of f is epi $f = \{(x, \zeta) \in \text{dom } f \times \mathbb{R} \mid f(x) \le \zeta\}$

Epigraph

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on $\mathcal H$ if and only if epi f is closed.

Let $f : \mathcal{H} \to]-\infty, +\infty]$.

f is a lower semi-continuous function on $\mathcal H$ if and only if epi f is closed.

I.s.c. functions ?

Let $f : \mathcal{H} \to]-\infty, +\infty]$.

f is a lower semi-continuous function on $\mathcal H$ if and only if epi f is closed.

I.s.c. functions ?

- Every continuous function on \mathcal{H} is l.s.c.
- Every finite sum of l.s.c. functions is l.s.c.
- Let (f_i)_{i∈I} be a family of l.s.c functions. Then, sup_{i∈I} f_i is l.s.c.

A class of convex functions

- $\Gamma_0(\mathcal{H})$: class of convex, l.s.c., and proper functions from \mathcal{H} to $]-\infty, +\infty]$.
- ► $\iota_C \in \Gamma_0(\mathcal{H}) \Leftrightarrow C$ is a nonempty closed convex set. <u>Proof</u>: $epi_{\iota_C} = C \times [0, +\infty[.$

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. If int $(\operatorname{dom} g) \cap L(\operatorname{dom} f) \neq \emptyset$ or $\operatorname{dom} g \cap \operatorname{int} (L(\operatorname{dom} f)) \neq \emptyset$, then

$$\partial f + L^* \partial g L = \partial (f + g \circ L)$$
.

Particular case:

▶ If $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, and f is finite valued, then $\partial f + \partial g = \partial (f + g)$.

▶ If $g \in \Gamma_0(\mathcal{G})$, $L \in \mathcal{B}(\mathcal{G}, \mathcal{H})$, and $\operatorname{int} (\operatorname{dom} g) \cap \operatorname{ran} L \neq \emptyset$, then $L^* \partial g L = \partial (g \circ L)$.

Let $(\mathcal{H})_{i \in I}$ where $I \subset \mathbb{N}$ be Hilbert spaces and let $\mathcal{H} = \bigoplus_{i \in I} \mathcal{H}_i$. For every $i \in I$, let $f_i : \mathcal{H}_i \to]-\infty, +\infty]$ be a proper function. Let $f : \mathcal{H} \to]-\infty, +\infty] : x = (x_i)_{i \in I} \mapsto \sum_{i \in I} f_i(x_i)$ Then, $(\forall x = (x_i)_{i \in I} \in \mathcal{H}) \qquad \partial f(x) = \bigotimes \partial f_i(x_i).$

Let $(\mathcal{H})_{i \in I}$ where $I \subset \mathbb{N}$ be Hilbert spaces and let $\mathcal{H} = \bigoplus_{i \in I} \mathcal{H}_i$. For every $i \in I$, let $f_i \colon \mathcal{H}_i \to]-\infty, +\infty]$ be a proper function. Let

$$f: \mathcal{H} \to]-\infty, +\infty]: x = (x_i)_{i \in I} \mapsto \sum_{i \in I} f_i(x_i)$$

Then,

$$(\forall x = (x_i)_{i \in I} \in \mathcal{H})$$
 $\partial f(x) = \underset{i \in I}{\times} \partial f_i(x_i).$

<u>Proof</u>: Let $x = (x_i)_{i \in I} \in \mathcal{H}$. We have

$$t = (t_i)_{i \in I} \in \underset{i \in I}{\times} \partial f_i(x_i)$$

 $\Leftrightarrow \quad (\forall i \in I)(\forall y_i \in \mathcal{H}_i) \ f_i(y_i) \geq f_i(x_i) + \langle t_i \mid y_i - x_i \rangle$

$$\Rightarrow \quad \left(\forall y = (y_i)_{i \in I} \in \mathcal{H} \right) \quad \sum_{i \in I} f_i(y_i) \ge \sum_{i \in I} f_i(x_i) + \sum_{i \in I} \langle t_i \mid y_i - x_i \rangle$$
$$\Leftrightarrow \quad \left(\forall y \in \mathcal{H} \right) \quad f(y) \ge f(x) + \langle t \mid y - x \rangle .$$

Let $(\mathcal{H})_{i \in I}$ where $I \subset \mathbb{N}$ be Hilbert spaces and let $\mathcal{H} = \bigoplus_{i \in I} \mathcal{H}_i$. For every $i \in I$, let $f_i : \mathcal{H}_i \to]-\infty, +\infty]$ be a proper function. Let

$$f: \mathcal{H} \to]-\infty, +\infty]: x = (x_i)_{i \in I} \mapsto \sum_{i \in I} f_i(x_i)$$

Then,

$$(\forall x = (x_i)_{i \in I} \in \mathcal{H})$$
 $\partial f(x) = \underset{i \in I}{\times} \partial f_i(x_i).$

Proof: Conversely,

$$\begin{aligned} t &= (t_i)_{i \in I} \in \partial f(x) \\ \Leftrightarrow \quad \left(\forall y = (y_i)_{i \in I} \in \mathcal{H} \right) \quad \sum_{i \in I} f_i(y_i) \geq \sum_{i \in I} f_i(x_i) + \sum_{i \in I} \left\langle t_i \mid y_i - x_i \right\rangle. \end{aligned}$$

Let $j \in I$. By setting $(\forall i \in I \setminus \{j\}) y_i = x_i \in \text{dom } f_i$, we get

$$(\forall y_j \in \mathcal{H}_j) \ f_j(y_j) \geq f_j(x_j) + \langle t_j \mid y_j - x_j \rangle.$$

Exercise 1: Huber function

Let $\rho > {\rm 0}$ and set

$$f: \mathbb{R} \to \mathbb{R}: \mapsto \begin{cases} rac{x^2}{2}, & \text{if } |x| \le \rho \\ \rho |x| - rac{
ho^2}{2}, & \text{otherwise.} \end{cases}$$

- 1. What is the domain of f?
- 2. Plot the subdifferential of f.
- 3. Is f differentiable ? Prove that f is convex.

Exercise 2

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ and let $C \subset \mathcal{H}$ such that dom $f \cap C \neq \emptyset$. Give a sufficient condition for $x \in \mathcal{H}$ to be a global minimizer of $f + \iota_C$.

Exercice 3: Monotony of the subdifferential of a function

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function. Its subdifferential is a monotone operator, i.e.

 $(\forall (x_1, x_2) \in \mathcal{H}^2) (\forall u_1 \in \partial f(x_1)) (\forall u_2 \in \partial f(x_2)) \quad \langle u_1 - u_2 \mid x_1 - x_2 \rangle \ge 0.$

Exercice 3: Monotony of the subdifferential of a function

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper function. Its subdifferential is a monotone operator, i.e.

$$(\forall (x_1, x_2) \in \mathcal{H}^2) (\forall u_1 \in \partial f(x_1)) (\forall u_2 \in \partial f(x_2)) \quad \langle u_1 - u_2 \mid x_1 - x_2 \rangle \geq 0.$$

▶ <u>Proof</u>: By definition: $\langle x_2 - x_1 | u_1 \rangle + f(x_1) \leq f(x_2)$ $\langle x_1 - x_2 | u_2 \rangle + f(x_2) \leq f(x_1)$ ▶ It results that $\langle x_1 - x_2 | u_1 - u_2 \rangle \geq 0$.

Exercice 4: Convexity and monotony

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be Gâteaux differentiable on dom f, which is convex. Then, f is convex if and only if ∇f is monotone on dom f, i.e. $(\forall (x, y) \in (\operatorname{dom} f)^2) \quad \langle \nabla f(y) - \nabla f(x) \mid y - x \rangle \ge 0.$

Exercice 4: Convexity and monotony

Let $f: \mathcal{H} \to]-\infty, +\infty]$ be Gâteaux differentiable on $\operatorname{dom} f$, which is convex.

Then, f is convex if and only if ∇f is monotone on dom f, i.e.

 $(\forall (x,y) \in (\operatorname{dom} f)^2) \quad \langle \nabla f(y) - \nabla f(x) \mid y - x \rangle \geq 0.$

Proof:

When f is convex, we have seen that its subdifferential is monotone and, for every $x \in \text{dom } f$, $\partial f(x) = \{\nabla f(x)\}$.

Exercice 4: Convexity and monotony

Let $f\colon \mathcal{H}\to \left]-\infty,+\infty\right]$ be Gâteaux differentiable on $\mathrm{dom}\,f,$ which is convex.

Then, f is convex if and only if ∇f is monotone on dom f, i.e.

$$(\forall (x,y) \in (\operatorname{dom} f)^2) \quad \langle \nabla f(y) - \nabla f(x) \mid y - x \rangle \ge 0.$$

Proof:

Conversely, assume that ∇f is monotone on dom f. For every $(x, y) \in (\text{dom } f)^2$, let $\varphi: [0, 1] \to \mathbb{R}: \alpha \mapsto f(x + \alpha(y - x))$. φ is differentiable on [0, 1] and

$$(\forall \alpha \in [0,1])$$
 $\varphi'(\alpha) = \langle \nabla f(x + \alpha(y - x)) \mid y - x \rangle.$

On the other hand, for every $\alpha \in]0,1]$

$$\begin{split} & \langle \nabla f(x + \alpha(y - x)) - \nabla f(x) \mid y - x \rangle \ge 0 \\ \Leftrightarrow & \varphi'(\alpha) \ge \langle \nabla f(x) \mid y - x \rangle \\ \Rightarrow & \varphi(1) - \varphi(0) = \int_0^1 \varphi'(\alpha) d\alpha \ge \langle \nabla f(x) \mid y - x \rangle \\ \Leftrightarrow & f(y) - f(x) \ge \langle \nabla f(x) \mid y - x \rangle \,. \end{split}$$