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Inverse problems in signal and image processing

Observation model

y ∼ B (Ax?)

• y ∈ RP : degraded observations;
• x? ∈ RN : unknown quantity of interest;
• A : RN → RP : known deformation;
• B: random measurement noise.

Goal: Estimate x?

I ill-conditioned, rank deficient A
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• y ∈ RP : degraded observations;
• x? ∈ RN : unknown quantity of interest;
• A : RN → RP : known deformation;
• B: random measurement noise.

Goal: Estimate x?

I ill-conditioned, rank deficient A

Inpainting

(Guillemot et al., 2013, IEEE Sig.
Process. Mag.)

Super-resolution

(Marquina et al., 2008, J. Sci.
Comput.)

Deblurring

(Pan, 2016, IEEE Trans. Pattern
Anal. Mach. Intell.) 4/20



Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax? + ε with ε ∼ N (0, σ2Id)

=⇒ likelihood function: `y (x) = p(y |x) = C · exp
(
−‖y − Ax‖2

2
2σ2

)

Estimate x? from y : usually ill-conditioned or ill-posed =⇒ maximize `y (x) not enough

5/20



Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax? + ε with ε ∼ N (0, σ2Id)

=⇒ likelihood function: `y (x) = p(y |x) = C · exp
(
−‖y − Ax‖2

2
2σ2

)
Estimate x? from y : usually ill-conditioned or ill-posed =⇒ maximize `y (x) not enough

5/20



Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax? + ε with ε ∼ N (0, σ2Id)

=⇒ likelihood function: `y (x) = p(y |x) = C · exp
(
−‖y − Ax‖2

2
2σ2

)
Estimate x? from y : usually ill-conditioned or ill-posed =⇒ maximize `y (x) not enough

=⇒ prior p(x): informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of x|y

p(x|y) = p(y |x)p(x)
p(y) with p(y) =

∫
Rd

p(y |x)p(x) dx

Bayesian estimators:

• Maximum A Posteriori (MAP): x̂ ∈ Argmax
x

p(x|y)

• Mean A Posteriori (MMSE): x̂ =
∫
Rd

x · p(x|y) dx

• Credibility Region: P [x ∈ Cα] = 1− α

C. P. Robert, The Bayesian choice: a decision-theoretic motivation, 1994

5/20



Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax? + ε with ε ∼ N (0, σ2Id)

=⇒ likelihood function: `y (x) = p(y |x) = C · exp
(
−‖y − Ax‖2

2
2σ2

)
Estimate x? from y : usually ill-conditioned or ill-posed =⇒ maximize `y (x) not enough

=⇒ prior p(x): informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of x|y

p(x|y) = p(y |x)p(x)
p(y) with p(y) =

∫
Rd

p(y |x)p(x) dx

Bayesian estimators:

• Maximum A Posteriori (MAP): x̂ ∈ Argmax
x

p(x|y)

• Mean A Posteriori (MMSE): x̂ =
∫
Rd

x · p(x|y) dx

• Credibility Region: P [x ∈ Cα] = 1− α

C. P. Robert, The Bayesian choice: a decision-theoretic motivation, 1994

5/20



Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax? + ε with ε ∼ N (0, σ2Id)

=⇒ likelihood function: `y (x) = p(y |x) = C · exp
(
−‖y − Ax‖2

2
2σ2

)
Estimate x? from y : usually ill-conditioned or ill-posed =⇒ maximize `y (x) not enough

=⇒ prior p(x): informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of x|y

p(x|y) = p(y |x)p(x)
p(y) with p(y) =

∫
Rd

p(y |x)p(x) dx

Bayesian estimators:

• Maximum A Posteriori (MAP): x̂ ∈ Argmax
x

p(x|y)

• Mean A Posteriori (MMSE): x̂ =
∫
Rd

x · p(x|y) dx

• Credibility Region: P [x ∈ Cα] = 1− α

C. P. Robert, The Bayesian choice: a decision-theoretic motivation, 1994 5/20



Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax? + ε with ε ∼ N (0, σ2Id)

=⇒ likelihood function: `y (x) = p(y |x) = C · exp
(
−‖y − Ax‖2

2
2σ2

)
Estimate x? from y : usually ill-conditioned or ill-posed =⇒ maximize `y (x) not enough

=⇒ prior p(x): informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of x|y

p(x|y) = p(y |x)p(x)
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∫
Rd
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Estimation and uncertainty quantification in a Bayesian framework:

need to sample under the a posteriori distribution π(x) = p(x|y)

which is intractable, in particular in high dimensional problems d � 1.
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Langevin sampling in a nutshell

Target distribution: π(x) = C · exp(−f (x))
• f : Rd → R differentiable
• C a (possibly) intractable normalizing constant

Goal: sample under π, i.e., generate realizations of x ∼ π

Langevin Stochastic Differential Equation (SDE): Bt Wiener process in Rd

X0 ∈ Rd , dXt = ∇ log π(Xt) dt +
√
2dBt

6/20



Langevin sampling in a nutshell

Target distribution: π(x) = C · exp(−f (x))
• f : Rd → R differentiable
• C a (possibly) intractable normalizing constant

Goal: sample under π, i.e., generate realizations of x ∼ π

Langevin Stochastic Differential Equation (SDE): Bt Wiener process in Rd

X0 ∈ Rd , dXt = ∇ log π(Xt) dt +
√
2dBt

6/20



Langevin sampling in a nutshell

Target distribution: π(x) = C · exp(−f (x))
• f : Rd → R differentiable
• C a (possibly) intractable normalizing constant

Goal: sample under π, i.e., generate realizations of x ∼ π

Langevin Stochastic Differential Equation (SDE): Bt Wiener process in Rd

X0 ∈ Rd , dXt = ∇ log π(Xt) dt +
√
2dBt

If π is proper and smooth, with ∇ log π Lipschitz-continuous, i.e., ∃L > 0 such that

∀x, x ′ ∈ Rd , ‖∇ log π(x)−∇ log π(x ′)‖ ≤ L‖x − x ′‖

=⇒ unique solution (Xt)t≥0 with π as unique stationary density: for T � 1, XT ∼ π.

J. Kent, Adv Appl Probab, 1978; G. O. Roberts & R. L. Tweedie, Bernoulli, 1996
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Langevin sampling in a nutshell

Target distribution: π(x) = C · exp(−f (x))
• f : Rd → R differentiable
• C a (possibly) intractable normalizing constant

Goal: sample under π, i.e., generate realizations of x ∼ π

Langevin Stochastic Differential Equation (SDE): Bt Wiener process in Rd

X0 ∈ Rd , dXt = ∇ log π(Xt) dt +
√
2dBt

Example: sampling a Gaussian π(x) = C · exp(−‖x‖2
2/2)

(Ornstein-Ulhenbeck process) X0 ∈ Rd , dXt = −Xtdt +
√
2dBt(Ornstein-Ulhenbeck process)

=⇒ solution: Xt ∼ e−t X0 +
√
1− e−2t Z, where Z ∼ N (0, I).

If X0 ∼ π0, then Xt ∼ πt with πt = π0(·/et) ∗ N (0, 1− e−2t):

Gaussian smoothing with increasing bandwidth.
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Langevin sampling in a nutshell

Target distribution: π(x) = C · exp(−f (x))
• f : Rd → R differentiable
• C a (possibly) intractable normalizing constant

Goal: sample under π, i.e., generate realizations of x ∼ π

Langevin Stochastic Differential Equation (SDE): Bt Wiener process in Rd

X0 ∈ Rd , dXt = ∇ log π(Xt) dt +
√
2dBt

In general, no closed-form solution =⇒ Euler-Maruyama discretization

GaussianXk+1 = Xk + τ∇ log π(Xk) +
√
2τZk , Zk i.i.d. standard Gaussian vectors

Unadjusted Langevin Algorithm (ULA) converges to π up to discretization bias.

MALA removes the bias at the expense of a Metropolis-Hastings correction step.

A. S. Dalalyan, J. R. Stat. Soc. , 2017; G. O. Roberts & R. L. Tweedie, Bernoulli, 1996
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To get started – Summary

Inverse problem: estimate x from observations y = D (A(x))

• likelihood function: `y (x) = p(y |x)
• prior: p(x)

=⇒ a posteriori distribution p(x|y) = p(y |x)p(x)
p(y) , p(y) =

∫
Rd

p(y |x)p(x) dx.

Unadjusted Langevin Algorithm: π(x) = p(x|y)

Xk+1 = Xk + τ∇ log p(y |Xk) + τ∇ log p(Xk) +
√
2τZk

Zk i.i.d. standard Gaussian vectors.

Bayesian estimators:

• Maximum A Posteriori (MAP): x̂ ' Argmax {p(y |Xk)p(Xk), k ≥ Kburnin}
• Mean A Posteriori (MMSE): x̂ ' Mean {Xk , k ≥ Kburnin}

• Credibility Region: Ĉα ∼ Quantilesα {Xk , k ≥ Kburnin}
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To get started - Main bottleneck and a research path

Bayesian framework: aims at sampling under π(x) = p(x|y) from two ingredients

• likelihood `y (x) = p(x|y) observation modeling: deformation and noise 3

• prior p(x): expected characteristics of a“realistic” x? 7

Prior design: key to obtain accurate estimates

• sparsity in transformed domain or piecewise regularity p(x) ∝ e−µ‖Lx‖1

• Markov random fields

• learned patch-based Gaussian or Gaussian mixture models

=⇒ not reflecting the diversity and complexity of true images

Data-driven prior: learn, possibly implicitly, either

• the posterior π(x) = p(x|y) from a set of pairs {(x i , y i )}
N
i=1

• or, the prior π0(x) = p(x) from a collection of training samples {x i}N
i=1
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Denoising Diffusion Probabilistic Models
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Diffusion models

Goal: learn to sample from a distribution π0 with no explicit expression from
a collection of samples {xi}N

i=1, xi ∼ π0
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i=1, xi ∼ π0

Ornstein-Uhlenbeck process in Rd : stochastic differential equation

dXt = −1
2β(t)Xt dt +

√
β(t) dWt

• W: Brownian motion in dimension d

• β: positive weighting function

from X0 ∼ π0 to X∞ ∼ N (0, I)

Backward process in Rd : reversed stochastic differential equation Xt ∼ πt

dXt =
[
−1
2β(t)Xt − β(t)∇ log πt(Xt)

]
dt +

√
β(t) dWt

• W: Brownian motion in dimension d

• t flowing backward from ∞ to t = 0

from X∞ ∼ N (0, I) to X0 ∼ π0
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Diffusion models

Goal: learn to sample from a distribution π0 with no explicit expression from
a collection of samples {xi}N

i=1, xi ∼ π0

How to use a diffusion model:

• learn score functions x 7→ ∇ log πt(x) via score matching from samples {x i}N
i=1,

• draw X∞ ∼ N (0, I), which is easy,

• solve dXt =
[
−1
2β(t)Xt − β(t)∇ log πt(Xt)

]
dt +

√
β(t) dWt from ∞ to 0.

In practice:

• score functions x 7→ ∇ log πt(x) approximated by a neural network sϑ(x, t),

• sample XT ∼ N (0, I) with T “large",

• approximate the solution of the backward SDE by a discrete-time scheme:

Denoising Diffusion Probabilistic Models; Denoising Diffusion Implicit Models.

J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021
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Denoising Diffusion Models

Denoising Diffusion Probabilistic Model (DDPM): discrete time t = 0, 1, . . . ,T

• variance sequence (αt)T
t=1 , 0 ≤ αt < 1

• forward process Xt |Xt−1 ∼ N
(√

1− αtXt−1, αt I
)

• backward process Xt−1 ∼ N (µϑ(Xt , t),Σϑ(Xt , t)) from learned µϑ,Σϑ

Gaussian marginals: Xt =
√
αt X0 +

√
1− αt Z, Z ∼ N (0, I), αt =

t∏
s=1

(1− αs)
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In practice: Σϑ(Xt , t) = σ2
t I fixed, e.g., to σ2

t = αt , not learned.

Let XT ∼ N (0, I)

Xt−1 = µϑ(Xt , t) + σ2
t Zt , Zt ∼ N (0, I)

where µϑ can be learned using score matching techniques following discretization

Xt−1 = Xt + τβt

2 Xt + τβt∇ log πt(Xt) +
√
τβtZt , Zt ∼ N (0, I)

J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021
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• backward process Xt−1 ∼ N (µϑ(Xt , t),Σϑ(Xt , t)) from learned µϑ,Σϑ

Denoising Diffusion Implicit Model (DDIM): discrete time t = 0, 1, . . . ,T

• variance sequences (αt)T
t=1 , 0 ≤ αt < 1 and (σt)T

t=2 , σt ∈ [0,
√
1− αt−1[

• non-Markovian forward process satisfying

Xt−1|Xt ,X0 ∼ N
(
√
αt−1 · X0 +

√
1− αt−1 − σ2

t ·
Xt −

√
αtX0√

1− αt
, σ2

t I
)

• fϑ(x t) learnable predictor of X0 from Xt : backward Xt−1|fϑ(Xt),X0

Gaussian marginals: Xt =
√
αt X0 +

√
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t=1 , 0 ≤ αt < 1 and (σt)T

t=2 , σt ∈ [0,
√
1− αt−1[

• non-Markovian forward process satisfying

Xt−1|Xt ,X0 ∼ N
(
√
αt−1 · X0 +

√
1− αt−1 − σ2

t ·
Xt −

√
αtX0√

1− αt
, σ2

t I
)

• fϑ(x t) learnable predictor of X0 from Xt : backward Xt−1|fϑ(Xt),X0

Gaussian marginals: Xt =
√
αt X0 +

√
1− αt Z, Z ∼ N (0, I), αt =

t∏
s=1

(1− αs)
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Plug & Play principles applied to sampling algorithms
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Plug-and-Play: motivations

Bayesian framework: two ingredients
• likelihood `y (x) = p(x|y) observation modeling: deformation and noise 3

• prior p(x): expected characteristics of a“realistic” x? 7

Prior design: key to obtain accurate estimates
• sparsity in transformed domain or piecewise regularity p(x) ∝ e−µ‖Lx‖1

• Markov random fields
• learned patch-based Gaussian or Gaussian mixture models

=⇒ not reflecting the diversity and complexity of true images

Plug & Play: learn π0(x) = p(x) from a collection of training samples {x i}

then interpret λ∇x log pλ(xk) as a denoising correction Dλ(x)− x

Dλ(x): denoising operator trained to remove Gaussian noise of variance λ.

S. V. Venkatakrishnan et al., IEEE Glob. Conf. Signal Inf. Process., 2013
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Plug & Play sampling schemes

Unadjusted Langevin Algorithm (ULA): to sample p(x|y) ∝ p(y |x)p(x)

Xk+1 = Xk + γ∇x log p(y |Xk) + γ∇x log p(Xk) +
√

2γZk+1

Plug & Play ULA (PnP-ULA): explicit likelihood `y (x) = p(y |x)

Xk+1 = Xk + γ∇x log `y (Xk) + γ∇x log π0(Xk)
?

+
√

2γZk+1

=⇒ π0 is an implicit probability density: might even not be proper!
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Xk+1 = Xk + γ∇x log `y (Xk) + γ∇x log π0(Xk)
?

+
√

2γZk+1

=⇒ π0 is an implicit probability density: might even not be proper!

Instead, marginal regularized density pλ(Xλ) associated to Xλ ∼ N (X, λI), X ∼ π0

Tweedie’s formula: ∇x log pλ(x) ' D?λ(x)− x
λ

,

D?λ the Minimal Mean Squared Error (MMSE) denoiser to find X from Xλ:

D?λ ∈ Argmin
Dλ

EX∼π,Xλ∼N (X,λI) ‖Dλ(Xλ)− X‖2
2
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Plug & Play sampling schemes

Unadjusted Langevin Algorithm (ULA): to sample p(x|y) ∝ p(y |x)p(x)

Xk+1 = Xk + γ∇x log p(y |Xk) + γ∇x log p(Xk) +
√

2γZk+1

Plug & Play ULA (PnP-ULA): explicit likelihood `y (x) = p(y |x)

Xk+1 = Xk + γ∇x log `y (Xk) + γ∇x log π0(Xk)
?

+
√

2γZk+1

=⇒ π0 is an implicit probability density: might even not be proper!

D̂λ an approximate MMSE estimator, e.g., trained neural network, plugged in ULA:

=⇒ Xk+1 = Xk + γ∇x log `y (Xk) + γ
D̂λ(Xk)− Xk

λ
+
√

2γZk+1

ensure convergence by enforcing Lipschitzianity during training

∀x, x ′ ∈ Rd , ‖∇ log D̂λ(x)−∇ log D̂λ(x ′)‖ ≤ L‖x − x ′‖

Laumont et al., SIAM J. Imaging Sci., 2022; E. K. Ryu, Proc. Int. Conf. Mach. Learn., 2019
14/20



Plug-and-Play ULA using Diffusion Models

Plug-and-Play Unadjusted Langevin Algorithm: (PnP-ULA)
• solid convergence guarantees 3

• high-fidelity to the data through explicit likelihood 3

• once stationarity reached, efficient to generate new samples 3

• fine details lost due to Lipschitz regularization during training 7

Idea: Use as denoiser the last layers of a diffusion model

Ψβ(x): Markov kernel associated to a single reversed diffusion step at level β.

Removing additive Gaussian noise of variance λ = βt? from X | X0 ∼ N (X0, λI):

D̃λ(x) = Ψβ0 ◦ . . . ◦Ψβt? (x).

Problem: D̃λ possibly not Lipschitzian =⇒ reconstruction artifacts

cause of divergence of the Plug-and-Play Unadjusted Algorithm.
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Equivariant Plug-and-Play Unadjusted Langevin Algorithm

Plug-and-Play ULA using Diffusion Models: D̃λ(x) = Ψβ0 ◦ . . . ◦Ψβt? (x)

Xk+1 = Xk + γ∇x log `y (Xk) + γ
D̃λ(Xk)− Xk

λ
+
√

2γZk+1

Equivariant Plug-and-Play approach: assume equivariance under the action of G
∀g ∈ G, X0 ∼ π0 ⇔ g · X0 ∼ π0

e.g., group of rotations, small translations, reflections.
In words, “when translated a realistic image is still realistic”.
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In words, “when translated a realistic image is still realistic”.

Original Translated with periodic conditions
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Equivariant Plug-and-Play approach: assume equivariance under the action of G
∀g ∈ G, X0 ∼ π0 ⇔ g · X0 ∼ π0

e.g., group of rotations, small translations, reflections.
In words, “when translated a realistic image is still realistic”.

G-equivariant denoiser Dλ(x) = g−1 ·Ψβ0 ◦ . . . ◦Ψβt? (g · x), g ∼ UG

UG uniform distribution on G =⇒ at each step of PnP-ULA:

random translation – denoising – inverse translation.

M. Terris et al., Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2024.
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Latent space Plug-and-Play Unadjusted Langevin Algorithm

Equivariant Plug-and-Play ULA: Dλ(x) = g−1 ·Ψβ0 ◦ . . . ◦Ψβt? (g · x), g ∼ UG

Xk+1 = Xk + γ∇x log `y (Xk) + γ
Dλ(Xk)− Xk

λ
+
√

2γZk+1

Latent space strategy: ρ > 0 and U and auxiliary random variable so that

X | U ∼ N (U, ρI) and ∇u log p(u) ' Dλ(u)− u
λ

where ρ controls ‖X−U‖2
2 =⇒ accounts for the fact that Dλ is imperfect.

to obtain both high reconstruction accuracy & fast convergence

Latent space equivariant Plug-and-Play ULA: targets U | Y = y

Uk+1 = Uk + γ∇u log p(y |Uk , ρ) + γ
Dλ(Uk)−Uk

λ
+
√

2γZk+1

where u 7→ p(y |u, ρ) is strongly log-concave thanks to ρ > 0.
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Empirical Bayesian Image Restoration

Mean A Posteriori estimators: Mean
{
EX|y,Uk ,ρ ϕ(X), k ≥ Kburnin

}
EX|y,Uk ,ρ ϕ(X) tractable analytically for most ϕ due to Gaussianity

Performance depends on ρ: trade-off between accuracy and convergence speed.

Maximum Marginal Likelihood Estimation of hyperparameters:

ρ̂(y) ∈ Argmax
ρ>0

p(y |ρ), where p(y |ρ) = EX,U|y,ρ [`y (X)]

=⇒ combine optimization of the marginal likelihood and generation of samples

Stochastic Approximation Proximal Gradient: (SAPG) ρ0 > 0 and U0 ∈ Rd ,

Uk+1 = Uk + γ
Uk − Xk

ρk
+ γ

Dλ(Uk)−Uk

λ
+
√

2γZk+1

ρk+1 = max
(
ρk + δk+1∇ρ log p(Xk+1,Uk+1|y , ρk), 0

)
where Xk+1 = ρ−1

k
(
σ−2A>y + Uk+1

)
= EX|Uk+1,y,ρkX
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Summary and conclusion

• Plug-and-Play image restoration methodology to estimate x? from observations

y = Ax? + ε, ε ∼ N (0,Σ)

– particularly suited to Gaussian likelihood,
– leveraging the foundational Denoising Diffusion Probabilistic Model,
– within an empirical Bayesian framework for parameter tuning,

to provide a Mean A Posteriori estimator of x|y .

• Demonstrated performance on deblurring, inpainting and super-resolution

– high PSNR and perceptual metrics performance,
– competitive computational cost.
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Limitations and perspectives

• No convergence guarantee when combining PnP sampling and empirical Bayes.

• Choice of noise level λ is key, but for the moment done by cross-validation

joint marginal likelihood maximization over (ρ, λ).

• MMSE estimator known for missing fine details in the posterior x|y

Bayesian estimators aligned with perceptual criteria.

• Deformation operator A and noise level σ2 assumed known

blind or semi-blind restoration problems.

• Only independent identically distributed Gaussian noise

generalization to Poisson or other low-photon noise.
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