

IV Nantes U Université

"Empirical Bayesian image restoration by Langevin sampling with a denoising diffusion implicit prior"

C. K. Mbakam, J.-F. Giovannelli, M. Pereyra, [arXiv:2409.04384](https://arxiv.org/pdf/2409.04384)

DPP Reading Group

December 4, 2024

Barbara Pascal

Outline

• To get started

Inverse problems in a Bayesian framework

Langevin sampling

• Denoising Diffusion Probabilistic Models Principles

Implicit models

• Plug & Play algorithms

Principles

Latent-space PnP-Unadjusted Langevin Algorithm

To get started

Observation model

 $\mathbf{y} \sim \mathcal{B}\left(\mathbf{A}\mathbf{x}^{\star}\right)$

- $\bullet\;\textbf{\textit{y}}\in\mathbb{R}^{P} \colon \text{degraded observation; }$
- $\bullet \; \; \mathbf{x}^{\star} \in \mathbb{R}^N$: unknown quantity of interest;
- \bullet $\mathbf{A}: \mathbb{R}^N \to \mathbb{R}^P$: known deformation;
- \bullet β : random measurement noise.

Inverse problems in signal and image processing

Observation model

 $\mathbf{y} \sim \mathcal{B}\left(\mathbf{A}\mathbf{x}^{\star}\right)$

- $\bullet\;\textbf{\textit{y}}\in\mathbb{R}^{P} \colon \text{degraded observation; }$
- $\bullet \; \; \mathbf{x}^{\star} \in \mathbb{R}^N$: unknown quantity of interest;
- \bullet $\mathbf{A}: \mathbb{R}^N \to \mathbb{R}^P$: known deformation;
- \bullet β : random measurement noise.

Goal: Estimate **x** *?*

Inverse problems in signal and image processing

Observation model

 $\mathbf{y} \sim \mathcal{B}\left(\mathbf{A}\mathbf{x}^{\star}\right)$

- $\bullet\;\textbf{\textit{y}}\in\mathbb{R}^{P} \colon \text{degraded observation; }$
- $\bullet \; \; \mathbf{x}^{\star} \in \mathbb{R}^N$: unknown quantity of interest;
- \bullet $\mathbf{A}: \mathbb{R}^N \to \mathbb{R}^P$: known deformation;
- \bullet β : random measurement noise.

Goal: Estimate **x** *?*

\blacktriangleright ill-conditioned, rank deficient **A**

Inpainting

(Guillemot et al., 2013, IEEE Sig. Process. Mag.)

Super-resolution

(Marquina et al., 2008, J. Sci. Comput.)

Deblurring

(Pan, 2016, IEEE Trans. Pattern Anal. Mach. Intell.) **4/20**

Linear deformation and additive Gaussian noise: $y = Ax^* + \varepsilon$ **with** $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ \implies likelihood function: $\ell_{\mathbf{y}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) = C \cdot \exp \left(-\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{2\sigma^2}\right)$ λ

Linear deformation and additive Gaussian noise: $y = Ax^* + \varepsilon$ **with** $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ \implies likelihood function: $\ell_{\mathbf{y}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) = C \cdot \exp \left(-\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{2\sigma^2}\right)$ λ

Estimate x^* from y : usually ill-conditioned or ill-posed \implies maximize $\ell_y(x)$ not enough

Linear deformation and additive Gaussian noise: $y = Ax^* + \varepsilon$ **with** $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ \implies likelihood function: $\ell_{\mathbf{y}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) = C \cdot \exp \left(-\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{2\sigma^2}\right)$ λ

Estimate x^* from y : usually ill-conditioned or ill-posed \implies maximize $\ell_y(x)$ not enough

prior $p(x)$: informative marginal distribution of the random variable **x**

Linear deformation and additive Gaussian noise: $y = Ax^* + \varepsilon$ **with** $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ \implies likelihood function: $\ell_{\mathbf{y}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) = C \cdot \exp \left(-\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{2\sigma^2}\right)$ λ

Estimate x^* from y : usually ill-conditioned or ill-posed \implies maximize $\ell_y(x)$ not enough prior $p(x)$: informative marginal distribution of the random variable **x**

Bayes theorem: a posteriori distribution of **x**|**y**

$$
p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} \quad \text{with} \quad p(\mathbf{y}) = \int_{\mathbb{R}^d} p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) \, \mathrm{d}\mathbf{x}
$$

Linear deformation and additive Gaussian noise: $y = Ax^* + \varepsilon$ **with** $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ \implies likelihood function: $\ell_{\mathbf{y}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) = C \cdot \exp \left(-\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{2\sigma^2}\right)$ λ

Estimate x^* from y : usually ill-conditioned or ill-posed \implies maximize $\ell_y(x)$ not enough prior $p(x)$: informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of **x**|**y**

$$
p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}
$$
 with $p(\mathbf{y}) = \int_{\mathbb{R}^d} p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$

Bayesian estimators:

- Maximum A Posteriori (MAP): ^b**^x** [∈] Argmax p(**x**|**y**)
- **x** \bullet Mean A Posteriori (MMSE): $\widehat{\mathbf{x}} = \int$ $\int_{\mathbb{R}^d} x \cdot p(x|y) \,dx$
- Credibility Region: $\mathbb{P} [x \in \mathcal{C}_\alpha] = 1 \alpha$

C. P. Robert, The Bayesian choice: a decision-theoretic motivation, 1994 **5/20**

Linear deformation and additive Gaussian noise: $y = Ax^* + \varepsilon$ **with** $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ \implies likelihood function: $\ell_{\mathbf{y}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) = C \cdot \exp \left(-\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{2\sigma^2}\right)$ λ

Estimate x^* from y : usually ill-conditioned or ill-posed \implies maximize $\ell_y(x)$ not enough prior $p(x)$: informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of **x**|**y**

$$
p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} \quad \text{with} \quad p(\mathbf{y}) = \int_{\mathbb{R}^d} p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) \, \mathrm{d}\mathbf{x}
$$

Estimation and uncertainty quantification in a Bayesian framework:

need to sample under the a posteriori distribution $\pi(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})$

which is **intractable**, in particular in high dimensional problems $d \gg 1$.

Linear deformation and additive Gaussian noise: $y = Ax^* + \varepsilon$ **with** $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ \implies likelihood function: $\ell_{\mathbf{y}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}) = C \cdot \exp \left(-\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{2\sigma^2}\right)$ λ

Estimate x^* from y : usually ill-conditioned or ill-posed \implies maximize $\ell_y(x)$ not enough prior $p(x)$: informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of **x**|**y**

$$
p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})} \quad \text{with} \quad p(\mathbf{y}) = \int_{\mathbb{R}^d} p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) \, \mathrm{d}\mathbf{x}
$$

Estimation and uncertainty quantification in a Bayesian framework:

need to sample under the a posteriori distribution $\pi(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})$

which is **intractable**, in particular in high dimensional problems $d \gg 1$.

Target distribution: $\pi(x) = C \cdot \exp(-f(x))$

- $\bullet\;f:\mathbb{R}^d\rightarrow\mathbb{R}$ differentiable
- C a (possibly) intractable normalizing constant

Goal: sample under π , i.e., generate realizations of $\mathbf{x} \sim \pi$

Target distribution: $\pi(x) = C \cdot \exp(-f(x))$

- $\bullet\;f:\mathbb{R}^d\rightarrow\mathbb{R}$ differentiable
- C a (possibly) intractable normalizing constant

Goal: sample under π , i.e., generate realizations of $\mathbf{x} \sim \pi$

Langevin Stochastic Differential Equation (SDE): B_t Wiener process in \mathbb{R}^d

$$
\mathbf{X}_0 \in \mathbb{R}^d, \quad \mathrm{d} \mathbf{X}_t = \nabla \log \pi(\mathbf{X}_t) \, \mathrm{d} t + \sqrt{2} \mathrm{d} \mathbf{B}_t
$$

Target distribution: $\pi(x) = C \cdot \exp(-f(x))$

- $\bullet\;f:\mathbb{R}^d\rightarrow\mathbb{R}$ differentiable
- C a (possibly) intractable normalizing constant

Goal: sample under π , i.e., generate realizations of $\mathbf{x} \sim \pi$

Langevin Stochastic Differential Equation (SDE): B_t Wiener process in \mathbb{R}^d

$$
\mathbf{X}_0 \in \mathbb{R}^d, \quad \mathrm{d} \mathbf{X}_t = \nabla \log \pi(\mathbf{X}_t) \, \mathrm{d} t + \sqrt{2} \mathrm{d} \mathbf{B}_t
$$

If *π* is proper and smooth, with ∇ log *π* Lipschitz-continuous, i.e., ∃L *>* 0 such that

$$
\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^d, \quad \|\nabla \log \pi(\mathbf{x}) - \nabla \log \pi(\mathbf{x}')\| \le L \|\mathbf{x} - \mathbf{x}'\|
$$

 \implies unique solution $(\bm{X}_t)_{t\geq0}$ with π as unique stationary density: for $\mathcal{T}\gg1$, $\bm{\mathsf{X}}_{\mathcal{T}}\sim\pi.$

J. Kent, Adv Appl Probab, 1978; G. O. Roberts & R. L. Tweedie, Bernoulli, 1996

Target distribution: $\pi(x) = C \cdot \exp(-f(x))$

- $\bullet\;f:\mathbb{R}^d\rightarrow\mathbb{R}$ differentiable
- C a (possibly) intractable normalizing constant

Goal: sample under π , i.e., generate realizations of $\mathbf{x} \sim \pi$

Langevin Stochastic Differential Equation (SDE): B_t Wiener process in \mathbb{R}^d

$$
\mathbf{X}_0 \in \mathbb{R}^d, \quad \mathrm{d} \mathbf{X}_t = \nabla \log \pi(\mathbf{X}_t) \, \mathrm{d} t + \sqrt{2} \mathrm{d} \mathbf{B}_t
$$

Example: sampling a Gaussian $\pi(x) = C \cdot \exp(-\|x\|_2^2/2)$

 $(Ornstein-Ulhenbeck process)$ $\mathbf{X}_0 \in \mathbb{R}^d$, $d\mathbf{X}_t = -\mathbf{X}_t dt + \sqrt{2}$ $2d\mathbf{B}_t$

 \implies solution: $\mathbf{X}_t \sim e^{-t} \mathbf{X}_0 + \sqrt{1 - e^{-2t}} \mathbf{Z}$, where $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

If $\mathbf{X}_0 \sim \pi_0$, then $\mathbf{X}_t \sim \pi_t$ with $\pi_t = \pi_0(\cdot/e^t) * \mathcal{N}(\mathbf{0}, 1 - e^{-2t})$:

Gaussian smoothing with increasing bandwidth.

Target distribution: $\pi(x) = C \cdot \exp(-f(x))$

- $\bullet\;f:\mathbb{R}^d\rightarrow\mathbb{R}$ differentiable
- C a (possibly) intractable normalizing constant

Goal: sample under π , i.e., generate realizations of $\mathbf{x} \sim \pi$

Langevin Stochastic Differential Equation (SDE): B_t Wiener process in \mathbb{R}^d

$$
\mathbf{X}_0 \in \mathbb{R}^d, \quad \mathrm{d} \mathbf{X}_t = \nabla \log \pi(\mathbf{X}_t) \, \mathrm{d} t + \sqrt{2} \mathrm{d} \mathbf{B}_t
$$

In general, no closed-form solution \implies Euler-Maruyama discretization

 $\mathbf{X}_{k+1} = \mathbf{X}_k + \tau\nabla\log\pi(\mathbf{X}_k) + \sqrt{2\tau}\mathbf{Z}_k, \quad \mathbf{Z}_k$ i.i.d. standard Gaussian vectors

Unadjusted Langevin Algorithm (ULA) converges to *π* up to **discretization bias**.

MALA removes the bias at the expense of a Metropolis-Hastings correction step.

A. S. Dalalyan, J. R. Stat. Soc. , 2017; G. O. Roberts & R. L. Tweedie, Bernoulli, 1996

To get started – Summary

Inverse problem: estimate **x** from observations $y = D(A(x))$

- likelihood function: $\ell_{\mathbf{v}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x})$
- prior: $p(x)$

$$
\implies \text{ a posteriori distribution } p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})}, \quad p(\mathbf{y}) = \int_{\mathbb{R}^d} p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) \, \mathrm{d}\mathbf{x}.
$$

Unadjusted Langevin Algorithm: $\pi(x) = p(x|y)$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \tau \nabla \log p(\mathbf{y} | \mathbf{X}_k) + \tau \nabla \log p(\mathbf{X}_k) + \sqrt{2\tau} \mathbf{Z}_k
$$

Z^k i.i.d. standard Gaussian vectors.

Bayesian estimators:

- Maximum A Posteriori (MAP): $\hat{\mathbf{x}} \simeq \text{Argmax} \{p(\mathbf{y}|\mathbf{X}_k)p(\mathbf{X}_k), k > K_{\text{burnin}}\}$
- Mean A Posteriori (MMSE): $\hat{\mathbf{x}} \simeq \text{Mean } \{ \mathbf{X}_k, k \geq K_{\text{burnin}} \}$
- Credibility Region: $\widehat{C}_\alpha \sim \text{Quantiles}_{\alpha} \{ \mathbf{X}_k, k \geq K_{\text{burnin}} \}$

Bayesian framework: aims at sampling under $\pi(x) = p(x|y)$ from two ingredients

• likelihood $\ell_y(x) = p(x|y)$ observation modeling: deformation and noise

Bayesian framework: aims at sampling under $\pi(x) = p(x|y)$ from two ingredients

- likelihood $\ell_y(x) = p(x|y)$ observation modeling: deformation and noise
- prior $p(x)$: expected characteristics of a "realistic" x^* *?* ✗

Bayesian framework: aims at sampling under $\pi(x) = p(x|y)$ from two ingredients

- likelihood $\ell_{\bf{y}}({\bf{x}}) = p({\bf{x}}|{\bf{y}})$ observation modeling: deformation and noise \checkmark
- prior $p(x)$: expected characteristics of a "realistic" x^* *?* ✗

Prior design: key to obtain accurate estimates

- \bullet sparsity in transformed domain or piecewise regularity $p(\pmb{x}) \propto \mathrm{e}^{-\mu \| \pmb{\mathsf{L}} \pmb{x} \|_1}$
- Markov random fields
- learned patch-based Gaussian or Gaussian mixture models

 \implies not reflecting the diversity and complexity of true images

Bayesian framework: aims at sampling under $\pi(x) = p(x|y)$ from two ingredients

- likelihood $\ell_{\bf{y}}({\bf{x}}) = p({\bf{x}}|{\bf{y}})$ observation modeling: deformation and noise \checkmark
- prior $p(x)$: expected characteristics of a "realistic" x^* *?* ✗

Prior design: key to obtain accurate estimates

- \bullet sparsity in transformed domain or piecewise regularity $p(\pmb{x}) \propto \mathrm{e}^{-\mu \| \pmb{\mathsf{L}} \pmb{x} \|_1}$
- Markov random fields
- learned patch-based Gaussian or Gaussian mixture models

 \implies not reflecting the diversity and complexity of true images

Data-driven prior: learn, possibly implicitly, either

- \bullet the posterior $\pi(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})$ from a set of pairs $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$
- or, the prior $\pi_0(\mathbf{x}) = p(\mathbf{x})$ from a collection of training samples $\{\mathbf{x}_i\}_{i=1}^N$

Denoising Diffusion Probabilistic Models

Goal: learn to sample from a distribution *π*⁰ with **no explicit expression** from a collection of samples $\{x_i\}_{i=1}^N$, $x_i \sim \pi_0$

Goal: learn to sample from a distribution $π_0$ with **no explicit expression** from a collection of samples $\{x_i\}_{i=1}^N$, $x_i \sim \pi_0$

Ornstein-Uhlenbeck process in \mathbb{R}^d : stochastic differential equation

$$
\mathrm{d} \mathbf{X}_t = -\frac{1}{2}\beta(t)\mathbf{X}_t \,\mathrm{d} t + \sqrt{\beta(t)} \,\mathrm{d} \mathbf{W}_t
$$

- **W**: Brownian motion in dimension d
- *β*: positive weighting function

$$
\text{from } \textbf{X}_0 \sim \pi_0 \text{ to } \textbf{X}_\infty \sim \mathcal{N}(\textbf{0}, \textbf{I})
$$

Goal: learn to sample from a distribution $π_0$ with **no explicit expression** from a collection of samples $\{x_i\}_{i=1}^N$, $x_i \sim \pi_0$

Ornstein-Uhlenbeck process in \mathbb{R}^d : stochastic differential equation

$$
\mathrm{d} \mathbf{X}_t = -\frac{1}{2}\beta(t)\mathbf{X}_t \,\mathrm{d} t + \sqrt{\beta(t)} \,\mathrm{d} \mathbf{W}_t
$$

- **W**: Brownian motion in dimension d
- *β*: positive weighting function

from
$$
\mathbf{X}_0 \sim \pi_0
$$
 to $\mathbf{X}_{\infty} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Backward process in \mathbb{R}^d : reversed stochastic differential equation $\mathbf{X}_t \sim \pi_t$

$$
\mathrm{d} \mathbf{X}_t = \left[-\frac{1}{2} \beta(t) \mathbf{X}_t - \beta(t) \nabla \log \pi_t(\mathbf{X}_t) \right] \, \mathrm{d} t + \sqrt{\beta(t)} \, \mathrm{d} \overline{\mathbf{W}}_t
$$

- **W**: Brownian motion in dimension d
- t flowing backward from ∞ to $t = 0$

$$
\text{from } \textbf{X}_{\infty} \sim \mathcal{N}(\textbf{0}, \textbf{I}) \text{ to } \textbf{X}_0 \sim \pi_0
$$

Goal: learn to sample from a distribution $π_0$ with **no explicit expression** from a collection of samples $\{x_i\}_{i=1}^N$, $x_i \sim \pi_0$

Ornstein-Uhlenbeck process in \mathbb{R}^d : stochastic differential equation

$$
\mathrm{d} \mathbf{X}_t = -\frac{1}{2}\beta(t)\mathbf{X}_t \,\mathrm{d} t + \sqrt{\beta(t)} \,\mathrm{d} \mathbf{W}_t
$$

- **W**: Brownian motion in dimension d
- *β*: positive weighting function

from
$$
\mathbf{X}_0 \sim \pi_0
$$
 to $\mathbf{X}_{\infty} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Backward process in \mathbb{R}^d : reversed stochastic differential equation $\mathbf{X}_t \sim \pi_t$

$$
\mathrm{d} \mathbf{X}_t = \left[-\frac{1}{2} \beta(t) \mathbf{X}_t - \beta(t) \nabla \log \pi_t(\mathbf{X}_t) \right] \, \mathrm{d} t + \sqrt{\beta(t)} \, \mathrm{d} \overline{\mathbf{W}}_t
$$

- **W**: Brownian motion in dimension d
- t flowing backward from ∞ to $t = 0$

$$
\text{from } \textbf{X}_{\infty} \sim \mathcal{N}(\textbf{0}, \textbf{I}) \text{ to } \textbf{X}_0 \sim \pi_0
$$

Goal: learn to sample from a distribution $π_0$ with **no explicit expression** from a collection of samples $\{x_i\}_{i=1}^N$, $x_i \sim \pi_0$

How to use a diffusion model:

- \bullet learn score functions $\pmb{x} \mapsto \nabla \log \pi_t(\pmb{x})$ via score matching from samples $\{\pmb{x}_i\}_{i=1}^N,$
- draw **X**[∞] ∼ N (**0***,* **I**), which is easy,

• solve
$$
d\mathbf{X}_t = \left[-\frac{1}{2}\beta(t)\mathbf{X}_t - \beta(t)\nabla \log \pi_t(\mathbf{X}_t)\right] dt + \sqrt{\beta(t)} d\overline{\mathbf{W}}_t
$$
 from ∞ to 0.

Goal: learn to sample from a distribution $π_0$ with **no explicit expression** from a collection of samples $\{x_i\}_{i=1}^N$, $x_i \sim \pi_0$

How to use a diffusion model:

- \bullet learn score functions $\pmb{x} \mapsto \nabla \log \pi_t(\pmb{x})$ via score matching from samples $\{\pmb{x}_i\}_{i=1}^N,$
- draw **X**[∞] ∼ N (**0***,* **I**), which is easy,

• solve
$$
d\mathbf{X}_t = \left[-\frac{1}{2}\beta(t)\mathbf{X}_t - \beta(t)\nabla \log \pi_t(\mathbf{X}_t)\right] dt + \sqrt{\beta(t)} d\overline{\mathbf{W}}_t
$$
 from ∞ to 0.

In practice:

- score functions $x \mapsto \nabla \log \pi_t(x)$ approximated by a neural network $s_\vartheta(x, t)$,
- sample $X_T \sim \mathcal{N}(0, I)$ with T "large",
- approximate the solution of the backward SDE by a discrete-time scheme:

Denoising Diffusion Probabilistic Models; Denoising Diffusion Implicit Models.

J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, \ldots, T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{\vartheta}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{\vartheta}, \boldsymbol{\Sigma}_{\vartheta}$

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, \ldots, T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{\vartheta}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{\vartheta}, \boldsymbol{\Sigma}_{\vartheta}$

Gaussian marginals:
$$
X_t = \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} Z
$$
, $Z \sim \mathcal{N}(0, I)$, $\overline{\alpha}_t = \prod_{s=1}^t (1 - \alpha_s)$ 11/20

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, \ldots, T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{s}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{s}$, $\boldsymbol{\Sigma}_{\vartheta}$

In practice: $\Sigma_{\vartheta}(\mathbf{X}_t, t) = \sigma_t^2 \mathbf{I}$ fixed, e.g., to $\sigma_t^2 = \alpha_t$, not learned.

J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021

Gaussian marginals:
$$
X_t = \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} Z
$$
, $Z \sim \mathcal{N}(0, I)$, $\overline{\alpha}_t = \prod_{s=1}^t (1 - \alpha_s)$ 11/20

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, \ldots, T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{s}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{s}$, $\boldsymbol{\Sigma}_{\vartheta}$

In practice: $\Sigma_{\vartheta}(\mathbf{X}_t, t) = \sigma_t^2 \mathbf{I}$ fixed, e.g., to $\sigma_t^2 = \alpha_t$, not learned. Let $\mathbf{X}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$
\mathbf{X}_{t-1} = \boldsymbol{\mu}_{\vartheta}(\mathbf{X}_t, t) + \sigma_t^2 \mathbf{Z}_t, \quad \mathbf{Z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

where μ_{θ} can be learned using **score matching** techniques following discretization

$$
\mathbf{X}_{t-1} = \mathbf{X}_t + \frac{\tau \beta_t}{2} \mathbf{X}_t + \tau \beta_t \nabla \log \pi_t(\mathbf{X}_t) + \sqrt{\tau \beta_t} \mathbf{Z}_t, \quad \mathbf{Z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021

 ${\bf G}$ aussian marginals: ${\bf X}_t = \sqrt{\overline \alpha_t} \, {\bf X}_0 + \sqrt{1-\overline \alpha_t} \, {\bf Z}, \quad {\bf Z} \sim \mathcal{N}({\bf 0},{\bf l}), \quad \overline \alpha_t = \prod^t (1-\alpha_s)$ s=1 **11/20**

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, \ldots, T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{\vartheta}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{\vartheta}, \boldsymbol{\Sigma}_{\vartheta}$

Denoising Diffusion Implicit Model (DDIM): discrete time $t = 0, 1, ..., T$

Gaussian marginals:
$$
X_t = \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} Z
$$
, $Z \sim \mathcal{N}(0, I)$, $\overline{\alpha}_t = \prod_{s=1}^t (1 - \alpha_s)$ 11/20

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, ..., T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{s}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{s}$, $\boldsymbol{\Sigma}_{\vartheta}$

Denoising Diffusion Implicit Model (DDIM): discrete time $t = 0, 1, ..., T$

• variance sequences $(\alpha_t)_{t=1}^T$, $0 \leq \alpha_t < 1$ and $(\sigma_t)_{t=2}^T$, $\sigma_t \in [0, \sqrt{1 - \alpha_{t-1}}[$

Gaussian marginals:
$$
X_t = \sqrt{\overline{\alpha}_t} X_0 + \sqrt{1 - \overline{\alpha}_t} Z
$$
, $Z \sim \mathcal{N}(0, I)$, $\overline{\alpha}_t = \prod_{s=1}^t (1 - \alpha_s)$ 11/20

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, ..., T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{\alpha}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{\alpha}$, $\boldsymbol{\Sigma}_{\vartheta}$

Denoising Diffusion Implicit Model (DDIM): discrete time $t = 0, 1, ..., T$

- variance sequences $(\alpha_t)_{t=1}^T$, $0 \leq \alpha_t < 1$ and $(\sigma_t)_{t=2}^T$, $\sigma_t \in [0, \sqrt{1 \alpha_{t-1}}[$
- non-Markovian forward process satisfying

$$
\textbf{X}_{t-1} | \textbf{X}_{t}, \textbf{X}_{0} \sim \mathcal{N}\left(\sqrt{\alpha_{t-1}} \cdot \textbf{X}_{0} + \sqrt{1-\alpha_{t-1}-\sigma_{t}^{2}} \cdot \frac{\textbf{X}_{t} - \sqrt{\alpha_{t}} \textbf{X}_{0}}{\sqrt{1-\alpha_{t}}}, \sigma_{t}^{2} \textbf{I}\right)
$$

 ${\bf G}$ aussian marginals: ${\bf X}_t = \sqrt{\overline{\alpha}_t} \, {\bf X}_0 + \sqrt{1-\overline{\alpha}_t} \, {\bf Z}, \quad {\bf Z} \sim \mathcal{N}({\bf 0},{\bf l}), \quad \overline{\alpha}_t = \prod^t (1-\alpha_s)$ s=1 **11/20**

Denoising Diffusion Probabilistic Model (DDPM): discrete time $t = 0, 1, \ldots, T$

- \bullet variance sequence $(\alpha_t)_{t=1}^{\mathcal{T}},\, 0\leq \alpha_t < 1$
- \bullet forward process $\mathbf{X}_t | \mathbf{X}_{t-1} \sim \mathcal{N}\left(\sqrt{1 \alpha_t} \mathbf{X}_{t-1}, \alpha_t \mathbf{I}\right)$
- \bullet backward process $\mathbf{X}_{t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{\alpha}(\mathbf{X}_t, t), \boldsymbol{\Sigma}_{\vartheta}(\mathbf{X}_t, t))$ from learned $\boldsymbol{\mu}_{\alpha}$, $\boldsymbol{\Sigma}_{\vartheta}$

Denoising Diffusion Implicit Model (DDIM): discrete time $t = 0, 1, ..., T$

- variance sequences $(\alpha_t)_{t=1}^T$, $0 \leq \alpha_t < 1$ and $(\sigma_t)_{t=2}^T$, $\sigma_t \in [0, \sqrt{1 \alpha_{t-1}}[$
- non-Markovian forward process satisfying

$$
\textbf{X}_{t-1} | \textbf{X}_{t}, \textbf{X}_{0} \sim \mathcal{N}\left(\sqrt{\alpha_{t-1}} \cdot \textbf{X}_{0} + \sqrt{1-\alpha_{t-1}-\sigma_{t}^{2}} \cdot \frac{\textbf{X}_{t} - \sqrt{\alpha_{t}} \textbf{X}_{0}}{\sqrt{1-\alpha_{t}}}, \sigma_{t}^{2} \textbf{I}\right)
$$

• f*ϑ*(**x**t) learnable predictor of **X**⁰ from **X**t: backward **X**t−1|f*ϑ*(**X**t)*,* **X**⁰

 ${\bf G}$ aussian marginals: ${\bf X}_t = \sqrt{\overline{\alpha}_t} \, {\bf X}_0 + \sqrt{1-\overline{\alpha}_t} \, {\bf Z}, \quad {\bf Z} \sim \mathcal{N}({\bf 0},{\bf l}), \quad \overline{\alpha}_t = \prod^t (1-\alpha_s)$ s=1 **11/20**

Plug & Play principles applied to sampling algorithms

Bayesian framework: two ingredients

• likelihood $\ell_y(x) = p(x|y)$ observation modeling: deformation and noise

Bayesian framework: two ingredients

• likelihood $\ell_{\bf y}({\bf x}) = p({\bf x}|{\bf y})$ observation modeling: deformation and noise

13/20

• prior $p(x)$: expected characteristics of a "realistic" x^* *?* ✗

Bayesian framework: two ingredients

- likelihood $\ell_{\bf y}({\bf x}) = p({\bf x}|{\bf y})$ observation modeling: deformation and noise
- prior $p(x)$: expected characteristics of a "realistic" x^* *?* ✗

Prior design: key to obtain accurate estimates

- \bullet sparsity in transformed domain or piecewise regularity $p(\pmb{x}) \propto \mathrm{e}^{-\mu \| \pmb{\mathsf{L}} \pmb{x} \|_1}$
- Markov random fields
- learned patch-based Gaussian or Gaussian mixture models

 \implies not reflecting the diversity and complexity of true images

Bayesian framework: two ingredients

- likelihood $\ell_{\bf y}({\bf x}) = p({\bf x}|{\bf y})$ observation modeling: deformation and noise
- prior $p(x)$: expected characteristics of a "realistic" x^* *?* ✗

Prior design: key to obtain accurate estimates

- \bullet sparsity in transformed domain or piecewise regularity $p(\pmb{x}) \propto \mathrm{e}^{-\mu \| \pmb{\mathsf{L}} \pmb{x} \|_1}$
- Markov random fields
- learned patch-based Gaussian or Gaussian mixture models

 \implies not reflecting the diversity and complexity of true images

Plug & Play: learn $\pi_0(x) = p(x)$ from a collection of training samples $\{x_i\}$

then interpret $\lambda \nabla_{\mathbf{x}} \log p_{\lambda}(\mathbf{x}_k)$ as a **denoising** correction $D_{\lambda}(\mathbf{x}) - \mathbf{x}$

D*λ*(**x**): denoising operator trained to remove Gaussian noise of variance *λ*.

S. V. Venkatakrishnan et al., IEEE Glob. Conf. Signal Inf. Process., 2013

Unadjusted Langevin Algorithm (ULA): to sample $p(x|y) \propto p(y|x)p(x)$ $\bm{\mathsf{X}}_{k+1} = \bm{\mathsf{X}}_k + \gamma \nabla_{\bm{\mathsf{x}}} \log p(\bm{\mathsf{y}} | \bm{\mathsf{X}}_k) + \gamma \nabla_{\bm{\mathsf{x}}} \log p(\bm{\mathsf{X}}_k) + \sqrt{2\gamma} \bm{\mathsf{Z}}_{k+1}$

Unadjusted Langevin Algorithm (ULA): to sample $p(x|y) \propto p(y|x)p(x)$ $\bm{\mathsf{X}}_{k+1} = \bm{\mathsf{X}}_k + \gamma \nabla_{\bm{\mathsf{x}}} \log p(\bm{\mathsf{y}} | \bm{\mathsf{X}}_k) + \gamma \nabla_{\bm{\mathsf{x}}} \log p(\bm{\mathsf{X}}_k) + \sqrt{2\gamma} \bm{\mathsf{Z}}_{k+1}$

Plug & Play ULA (PnP-ULA): explicit likelihood $\ell_v(\mathbf{x}) = p(\mathbf{y}|\mathbf{x})$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \nabla_{\mathbf{x}} \log \pi_0(\mathbf{X}_k) + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

 $\implies \pi_0$ is an **implicit** probability density: might even not be proper!

Unadjusted Langevin Algorithm (ULA): to sample $p(x|y) \propto p(y|x)p(x)$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log p(\mathbf{y} | \mathbf{X}_k) + \gamma \nabla_{\mathbf{x}} \log p(\mathbf{X}_k) + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Plug & Play ULA (PnP-ULA): explicit likelihood $\ell_y(x) = p(y|x)$ $\bm{\mathsf{X}}_{k+1} = \bm{\mathsf{X}}_k + \gamma \nabla_{\bm{\mathsf{x}}} \log \ell_{\bm{\mathsf{y}}}(\bm{\mathsf{X}}_k) + \gamma \nabla_{\bm{\mathsf{x}}} \log \pi_0(\bm{\mathsf{X}}_k) + \sqrt{2\gamma} \bm{\mathsf{Z}}_{k+1}$? $\implies \pi_0$ is an **implicit** probability density: might even not be proper!

Instead, marginal regularized density $p_\lambda(\mathbf{X}_\lambda)$ associated to $\mathbf{X}_\lambda \sim \mathcal{N}(\mathbf{X}, \lambda \mathbf{I})$, $\mathbf{X} \sim \pi_0$

Tweedie's formula:
$$
\nabla_x \log p_\lambda(\mathbf{x}) \simeq \frac{D_\lambda^*(\mathbf{x}) - \mathbf{x}}{\lambda}
$$
,

D *? ^λ* the Minimal Mean Squared Error (MMSE) denoiser to find **X** from **X***λ*:

$$
D_\lambda^\star \in \underset{D_\lambda}{\mathrm{Argmin}} \; \mathbb{E}_{\boldsymbol{X}\sim\pi,\boldsymbol{X}_\lambda\sim\mathcal{N}(\boldsymbol{X},\lambda I)} \; \|D_\lambda(\boldsymbol{X}_\lambda) - \boldsymbol{X}\|_2^2
$$

Unadjusted Langevin Algorithm (ULA): to sample $p(x|y) \propto p(y|x)p(x)$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log p(\mathbf{y} | \mathbf{X}_k) + \gamma \nabla_{\mathbf{x}} \log p(\mathbf{X}_k) + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Plug & Play ULA (PnP-ULA): explicit likelihood $\ell_{\mathbf{v}}(\mathbf{x}) = p(\mathbf{y}|\mathbf{x})$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \nabla_{\mathbf{x}} \log \pi_0(\mathbf{X}_k) + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

 $\implies \pi_0$ is an **implicit** probability density: might even not be proper!

 \widehat{D}_{λ} an approximate MMSE estimator, e.g., trained neural network, plugged in ULA:

$$
\implies \mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\widehat{\mathsf{D}}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

ensure convergence by enforcing Lipschitzianity during training

$$
\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^d, \quad \|\nabla \log \widehat{\mathsf{D}}_{\lambda}(\mathbf{x}) - \nabla \log \widehat{\mathsf{D}}_{\lambda}(\mathbf{x}')\| \leq L \|\mathbf{x} - \mathbf{x}'\|
$$

Laumont et al., SIAM J. Imaging Sci., 2022; E. K. Ryu, Proc. Int. Conf. Mach. Learn., 2019 **14/20**

Plug-and-Play ULA using Diffusion Models

Plug-and-Play Unadjusted Langevin Algorithm: (PnP-ULA)

- solid convergence guarantees ✔
- high-fidelity to the data through explicit likelihood √
- once stationarity reached, efficient to generate new samples $√$
- fine details lost due to Lipschitz regularization during training X

Plug-and-Play ULA using Diffusion Models

Plug-and-Play Unadjusted Langevin Algorithm: (PnP-ULA)

- solid convergence guarantees ✓
- high-fidelity to the data through explicit likelihood $√$
- once stationarity reached, efficient to generate new samples ✓
- fine details lost due to Lipschitz regularization during training X

Idea: Use as denoiser the last layers of a **diffusion model**

Ψ*β*(**x**): Markov kernel associated to a single reversed diffusion step at level *β*.

Removing additive Gaussian noise of variance $\lambda = \beta_t$ ^{*} from **X** | **X**₀ ∼ \mathcal{N} (**X**₀, λ *l*):

$$
\widetilde{\mathsf{D}}_{\lambda}(\mathbf{x}) = \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{t^*}}(\mathbf{x}).
$$

Plug-and-Play ULA using Diffusion Models

Plug-and-Play Unadjusted Langevin Algorithm: (PnP-ULA)

- solid convergence guarantees √
- high-fidelity to the data through explicit likelihood √
- once stationarity reached, efficient to generate new samples ✓
- fine details lost due to Lipschitz regularization during training X

Idea: Use as denoiser the last layers of a **diffusion model**

Ψ*β*(**x**): Markov kernel associated to a single reversed diffusion step at level *β*.

Removing additive Gaussian noise of variance $\lambda = \beta_{t^*}$ from **X** | **X**₀ ∼ $\mathcal{N}(\mathbf{X}_0, \lambda I)$:

$$
\widetilde{\mathsf{D}}_{\lambda}(\mathbf{x}) = \mathbf{\Psi}_{\beta_0} \circ \ldots \circ \mathbf{\Psi}_{\beta_{t^*}}(\mathbf{x}).
$$

Problem: \widetilde{D}_λ possibly **not Lipschitzian** \implies reconstruction artifacts cause of **divergence** of the Plug-and-Play Unadjusted Algorithm.

Plug-and-Play ULA using Diffusion Models: $\widetilde{D}_{\lambda}(x) = \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{r*}}(x)$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\widetilde{\mathsf{D}}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Plug-and-Play ULA using Diffusion Models: $\widetilde{D}_{\lambda}(x) = \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{**}}(x)$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\widetilde{\mathsf{D}}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Equivariant Plug-and-Play approach: assume equivariance under the action of G

$$
\forall g \in \mathcal{G}, \quad \textbf{X}_0 \sim \pi_0 \Leftrightarrow g \cdot \textbf{X}_0 \sim \pi_0
$$

e.g., group of rotations, small translations, reflections.

In words, "when translated a realistic image is still realistic".

Plug-and-Play ULA using Diffusion Models: $\widetilde{D}_{\lambda}(x) = \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{**}}(x)$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\widetilde{\mathsf{D}}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Equivariant Plug-and-Play approach: assume equivariance under the action of G

$$
\forall g \in \mathcal{G}, \quad \textbf{X}_0 \sim \pi_0 \Leftrightarrow g \cdot \textbf{X}_0 \sim \pi_0
$$

e.g., group of rotations, small translations, reflections.

In words, "when translated a realistic image is still realistic".

Original Translated with periodic conditions

Plug-and-Play ULA using Diffusion Models: $\widetilde{D}_{\lambda}(x) = \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{\infty}}(x)$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\widetilde{\mathsf{D}}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Equivariant Plug-and-Play approach: assume equivariance under the action of G ∀g ∈ G*,* **X**⁰ ∼ *π*⁰ ⇔ g · **X**⁰ ∼ *π*⁰

e.g., group of rotations, small translations, reflections.

In words, "when translated a realistic image is still realistic".

 \mathcal{G} -equivariant denoiser $D_\lambda(x)=g^{-1}\cdot\Psi_{\beta_0}\circ\ldots\circ\Psi_{\beta_{t^\star}}(g\cdot x),\quad g\sim\mathcal{U}_{\mathcal{G}}$

 $U_{\mathcal{G}}$ uniform distribution on $\mathcal{G} \Longrightarrow$ at each step of PnP-ULA:

random translation – denoising – inverse translation.

M. Terris et al., Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2024.

Latent space Plug-and-Play Unadjusted Langevin Algorithm

Equivariant Plug-and-Play ULA: $D_{\lambda}(x) = g^{-1} \cdot \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{t^*}}(g \cdot x), \ g \sim \mathcal{U}_{\beta_0}$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\mathsf{D}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Latent space Plug-and-Play Unadjusted Langevin Algorithm

Equivariant Plug-and-Play ULA: $D_{\lambda}(x) = g^{-1} \cdot \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{t^*}}(g \cdot x), \ g \sim \mathcal{U}_{\beta_0}$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\mathsf{D}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Latent space strategy: $\rho > 0$ and **U** and auxiliary random variable so that

$$
\mathbf{X} \mid \mathbf{U} \sim \mathcal{N}(\mathbf{U}, \rho \mathbf{I}) \quad \text{and} \quad \nabla_{\mathbf{u}} \log p(\mathbf{u}) \simeq \frac{\mathsf{D}_{\lambda}(\mathbf{u}) - \mathbf{u}}{\lambda}
$$

where ρ controls $\|\mathbf{X}-\mathbf{U}\|_2^2 \Longrightarrow$ accounts for the fact that D_λ is imperfect.

to obtain both high reconstruction accuracy & fast convergence

Latent space Plug-and-Play Unadjusted Langevin Algorithm

Equivariant Plug-and-Play ULA: $D_{\lambda}(x) = g^{-1} \cdot \Psi_{\beta_0} \circ \ldots \circ \Psi_{\beta_{t^*}}(g \cdot x), \ g \sim \mathcal{U}_{\beta_0}$

$$
\mathbf{X}_{k+1} = \mathbf{X}_k + \gamma \nabla_{\mathbf{x}} \log \ell_{\mathbf{y}}(\mathbf{X}_k) + \gamma \frac{\mathsf{D}_{\lambda}(\mathbf{X}_k) - \mathbf{X}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

Latent space strategy: $\rho > 0$ and **U** and auxiliary random variable so that

$$
\mathbf{X} \mid \mathbf{U} \sim \mathcal{N}(\mathbf{U}, \rho \mathbf{I}) \quad \text{and} \quad \nabla_{\mathbf{u}} \log p(\mathbf{u}) \simeq \frac{\mathsf{D}_{\lambda}(\mathbf{u}) - \mathbf{u}}{\lambda}
$$

where ρ controls $\|\mathbf{X}-\mathbf{U}\|_2^2 \Longrightarrow$ accounts for the fact that D_λ is imperfect.

to obtain both high reconstruction accuracy & fast convergence

Latent space equivariant Plug-and-Play ULA: targets **U** | **Y** = **y**

$$
\mathbf{U}_{k+1} = \mathbf{U}_k + \gamma \nabla_{\boldsymbol{u}} \log p(\mathbf{y} | \mathbf{U}_k, \rho) + \gamma \frac{\mathsf{D}_{\lambda}(\mathbf{U}_k) - \mathbf{U}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

where $\mathbf{u} \mapsto p(\mathbf{y}|\mathbf{u}, \rho)$ is strongly log-concave thanks to $\rho > 0$.

 $\mathsf{Mean\; A\; Posteriori\; estimators: }\ \mathrm{Mean}\left\{\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}\ \varphi(\mathbf{X}),k\geq \mathcal{K}_{\text{burnin}}\right\}$

 $\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}$ $\varphi(\mathbf{X})$ tractable analytically for most φ due to Gaussianity

$\mathsf{Mean\; A\; Posteriori\; estimators: }\ \mathrm{Mean}\left\{\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}\ \varphi(\mathbf{X}),k\geq \mathcal{K}_{\text{burnin}}\right\}$

 $\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}$ $\varphi(\mathbf{X})$ tractable analytically for most φ due to Gaussianity

Performance depends on *ρ*: trade-off between accuracy and convergence speed.

$\mathsf{Mean\; A\; Posteriori\; estimators: }\ \mathrm{Mean}\left\{\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}\ \varphi(\mathbf{X}),k\geq \mathcal{K}_{\text{burnin}}\right\}$

 $\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}$ $\varphi(\mathbf{X})$ tractable analytically for most φ due to Gaussianity

Performance depends on *ρ*: trade-off between accuracy and convergence speed.

Maximum Marginal Likelihood Estimation of hyperparameters:

$$
\widehat{\rho}(\mathbf{y}) \in \underset{\rho > 0}{\text{Argmax}} p(\mathbf{y}|\rho), \quad \text{where} \quad p(\mathbf{y}|\rho) = \mathbb{E}_{\mathbf{X}, \mathbf{U}|\mathbf{y}, \rho} [\ell_{\mathbf{y}}(\mathbf{X})]
$$

 \implies **combine** optimization of the marginal likelihood and generation of samples

$\mathsf{Mean\; A\; Posteriori\; estimators: }\ \mathrm{Mean}\left\{\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}\ \varphi(\mathbf{X}),k\geq \mathcal{K}_{\text{burnin}}\right\}$

 $\mathbb{E}_{\mathbf{X}|\mathbf{y},\mathbf{U}_k,\rho}$ $\varphi(\mathbf{X})$ tractable analytically for most φ due to Gaussianity

Performance depends on *ρ*: trade-off between accuracy and convergence speed.

Maximum Marginal Likelihood Estimation of hyperparameters:

$$
\widehat{\rho}(\mathbf{y}) \in \underset{\rho>0}{\text{Argmax}} \ p(\mathbf{y}|\rho), \quad \text{where} \quad p(\mathbf{y}|\rho) = \mathbb{E}_{\mathbf{X}, \mathbf{U}|\mathbf{y}, \rho} \left[\ell_{\mathbf{y}}(\mathbf{X}) \right]
$$

 \implies **combine** optimization of the marginal likelihood and generation of samples

Stochastic Approximation Proximal Gradient: (SAPG) *ρ*⁰ *>* 0 and **U**⁰ ∈ R d ,

$$
\mathbf{U}_{k+1} = \mathbf{U}_k + \gamma \frac{\mathbf{U}_k - \overline{\mathbf{X}}_k}{\rho_k} + \gamma \frac{\mathbf{D}_\lambda(\mathbf{U}_k) - \mathbf{U}_k}{\lambda} + \sqrt{2\gamma} \mathbf{Z}_{k+1}
$$

$$
\rho_{k+1} = \max (\rho_k + \delta_{k+1} \nabla_\rho \log \rho(\overline{\mathbf{X}}_{k+1}, \mathbf{U}_{k+1} | \mathbf{y}, \rho_k), 0)
$$

 \mathbf{w} here $\overline{\mathbf{X}}_{k+1} = \rho_k^{-1} \left(\sigma^{-2} \mathbf{A}^\top \mathbf{y} + \mathbf{U}_{k+1} \right) = \mathbb{E}_{\mathbf{X}|\mathbf{U}_{k+1},\mathbf{y},\rho_k} \mathbf{X}$

Summary and conclusion

● Plug-and-Play image restoration methodology to estimate x^{*} from observations

$$
y = Ax^{\star} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \Sigma)
$$

- particularly suited to **Gaussian** likelihood,
- leveraging the foundational **Denoising Diffusion Probabilistic Model**,
- within an empirical Bayesian framework for **parameter tuning**,

to provide a **Mean A Posteriori estimator of x**|**y**.

Summary and conclusion

● Plug-and-Play image restoration methodology to estimate x^{*} from observations

$$
y = Ax^{\star} + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \Sigma)
$$

- particularly suited to **Gaussian** likelihood,
- leveraging the foundational **Denoising Diffusion Probabilistic Model**,
- within an empirical Bayesian framework for **parameter tuning**,

to provide a **Mean A Posteriori estimator of x**|**y**.

- Demonstrated performance on deblurring, inpainting and super-resolution
	- high PSNR and perceptual metrics performance,
	- competitive computational cost.

• No **convergence guarantee** when combining PnP sampling and empirical Bayes.

- No **convergence guarantee** when combining PnP sampling and empirical Bayes.
- Choice of noise level *λ* is key, but for the moment done by **cross-validation joint** marginal likelihood maximization over (*ρ, λ*).

- No **convergence guarantee** when combining PnP sampling and empirical Bayes.
- Choice of noise level *λ* is key, but for the moment done by **cross-validation joint** marginal likelihood maximization over (*ρ, λ*).
- MMSE estimator known for **missing fine details** in the posterior **x**|**y** Bayesian estimators aligned with **perceptual** criteria.

- No **convergence guarantee** when combining PnP sampling and empirical Bayes.
- Choice of noise level *λ* is key, but for the moment done by **cross-validation joint** marginal likelihood maximization over (*ρ, λ*).
- MMSE estimator known for **missing fine details** in the posterior **x**|**y** Bayesian estimators aligned with **perceptual** criteria.
- \bullet Deformation operator $\mathbf A$ and noise level σ^2 assumed known

blind or **semi-blind** restoration problems.

- No **convergence guarantee** when combining PnP sampling and empirical Bayes.
- Choice of noise level *λ* is key, but for the moment done by **cross-validation joint** marginal likelihood maximization over (*ρ, λ*).
- MMSE estimator known for **missing fine details** in the posterior **x**|**y** Bayesian estimators aligned with **perceptual** criteria.
- \bullet Deformation operator $\mathbf A$ and noise level σ^2 assumed known **blind** or **semi-blind** restoration problems.
- Only independent identically distributed **Gaussian** noise generalization to **Poisson** or other **low-photon** noise.