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Inverse problems in signal and image processing

Observation model

y ~ B(Ax")

y € R”: degraded observations;

e x* ¢ R": unknown quantity of interest;

A : RY — R”: known deformation;

B: random measurement noise.
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Inverse problems in signal and image processing

Goal: Estimate x*

Observation model
y ~ B(Ax")

e y c RP: degraded observations;

e x* ¢ R": unknown quantity of interest;

o A:RM - R”: known deformation;

® 3: random measurement noise.
» ill-conditioned, rank deficient A

Inpainting Super-resolution Deblurring

"y

5 2

(Guillemot et al., 2013, /EEE Sig. (Marquina et al., 2008, J. Sci. (Pan, 2016, IEEE Trans. Pattern
Process. Mag.) Comput.) Anal. Mach. Intell.) 4/20



Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax* + ¢ with € ~ N(0,0%14)

_|yAX|§>

= likelihood function: ¢,(x) = p(y|x) = C - exp ( =
o
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Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax* + ¢ with € ~ N(0, 0%14)

— Ax|2
= likelihood function: ¢,(x) = p(y|x) = C - exp <_|y22x2>
ag
Estimate x* from y: usually ill-conditioned or ill-posed = maximize £,(x) not enough

= prior p(x): informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of x|y

man:% with  p(y) = / , p(y|x)p(x) dx
Bayesian estimators:

® Maximum A Posteriori (MAP): x € Argmax p(x|y)

® Mean A Posteriori (MMSE): x = / x - p(x|y)dx
RrRd

® Credibility Region: P[x € Ca] =1—

C. P. Robert, The Bayesian choice: a decision-theoretic motivation, 1994
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Inverse problems in a Bayesian framework

Linear deformation and additive Gaussian noise: y = Ax* + ¢ with € ~ N(0, 0%14)

_|yAX3>

= likelihood function: £,(x) = p(y|x) = C - exp ( 552
o

Estimate x* from y: usually ill-conditioned or ill-posed = maximize £,(x) not enough

= prior p(x): informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of x|y

man:% with  p(y) = / | Plybp(x) dx

Estimation and uncertainty quantification in a Bayesian framework:
need to sample under the a posteriori distribution 7(x) = p(x|y)

which is intractable, in particular in high dimensional problems d > 1.
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Linear deformation and additive Gaussian noise: y = Ax* + ¢ with € ~ N(0, 0%14)
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= likelihood function: £,(x) = p(y|x) = C - exp ( 552
o

Estimate x* from y: usually ill-conditioned or ill-posed = maximize £,(x) not enough

= prior p(x): informative marginal distribution of the random variable x

Bayes theorem: a posteriori distribution of x|y

plt) = 2B i ) = [ plyin(x) o

Estimation and uncertainty quantification in a Bayesian framework:
need to sample under the a posteriori distribution 7(x) = p(x|y)

which is intractable, in particular in high dimensional problems d > 1.
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Langevin sampling in a nutshell

Target distribution: 7(x) = C - exp(—f(x))
* f:R? — R differentiable

® C a (possibly) intractable normalizing constant

Goal: sample under T, i.e., generate realizations of x ~ 7
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Langevin sampling in a nutshell

Target distribution: 7(x) = C - exp(—f(x))
e f: R’ — R differentiable

® C a (possibly) intractable normalizing constant

Goal: sample under T, i.e., generate realizations of x ~ 7

Langevin Stochastic Differential Equation (SDE): B, Wiener process in R

Xo € RY,  dX; = Vlog7(X:)dt + v2dB;

If 7 is proper and smooth, with V log 7 Lipschitz-continuous, i.e., 3L > 0 such that
vx,x' € RY ||[Vlogm(x) — Vlegn(x')|| < L||x — x'||

= unique solution (X;),-, with 7 as unique stationary density: for T > 1, X7 ~ 7.

J. Kent, Adv Appl Probab, 1978; G. O. Roberts & R. L. Tweedie, Bernoulli, 1996
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Langevin sampling in a nutshell

Target distribution: 7(x) = C - exp(—f(x))
e f: R’ — R differentiable

® C a (possibly) intractable normalizing constant

Goal: sample under T, i.e., generate realizations of x ~ 7

Langevin Stochastic Differential Equation (SDE): B, Wiener process in R

Xo € RY,  dX; = Vlog7(X:)dt + v2dB;

Example: sampling a Gaussian 7(x) = C - exp(—||x||3/2)
(Ornstein-Ulhenbeck process) Xq € Rd, dX; = —X.dt + V2dB,
= solution: X; ~ e *Xo+ 1 —e=2Z, where Z ~ N(0,1).

If Xo ~ o, then X; ~ m; with m; = mo(-/e") * N'(0,1 — e~2"):

Gaussian smoothing with increasing bandwidth.
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Langevin sampling in a nutshell

Target distribution: 7(x) = C - exp(—f(x))
e f: R’ — R differentiable

® C a (possibly) intractable normalizing constant

Goal: sample under T, i.e., generate realizations of x ~ 7
Langevin Stochastic Differential Equation (SDE): B, Wiener process in R

Xo € RY,  dX; = Vlog7(X:)dt + v2dB;

In general, no closed-form solution => Euler-Maruyama discretization
Xi+1 = Xk + 7V log m(Xi) + V27Zk, Zj i.i.d. standard Gaussian vectors
Unadjusted Langevin Algorithm (ULA) converges to 7 up to discretization bias.

MALA removes the bias at the expense of a Metropolis-Hastings correction step.

A. S. Dalalyan, J. R. Stat. Soc. , 2017; G. O. Roberts & R. L. Tweedie, Bernoulli, 1996
6/20



To get started — Summary

Inverse problem: estimate x from observations y = D (A(x))
® likelihood function: £,(x) = p(y|x)

® prior: p(x)

= a posteriori distribution p(x|y) = M, p(y) = / p(y|x)p(x) dx.
Rd

p(y)

Unadjusted Langevin Algorithm: 7(x) = p(x|y)

Xii1 = Xk + 7V log p(y|Xk) 4+ 7V log p(Xk) 4+ V27Zs
Z, i.i.d. standard Gaussian vectors.
Bayesian estimators:

® Maximum A Posteriori (MAP): X =~ Argmax {p(y|Xx)p(X«), k > Kournin }
® Mean A Posteriori (MMSE): X =~ Mean {Xk, k > Kburnin}

® Credibility Region: Co ~ Quantiles, {Xk, k > Kpurnin}

7/20



To get started - Main bottleneck and a research path

Bayesian framework: aims at sampling under 7(x) = p(x|y) from two ingredients

¢ likelihood ¢, (x) = p(x|y) observation modeling: deformation and noise v
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To get started - Main bottleneck and a research path

Bayesian framework: aims at sampling under 7(x) = p(x|y) from two ingredients
¢ likelihood ¢, (x) = p(x|y) observation modeling: deformation and noise v

® prior p(x): expected characteristics of a“realistic” x* X

Prior design: key to obtain accurate estimates
® sparsity in transformed domain or piecewise regularity p(x) o e #ltxlh
® Markov random fields

® |earned patch-based Gaussian or Gaussian mixture models

= not reflecting the diversity and complexity of true images

Data-driven prior: learn, possibly implicitly, either
® the posterior m(x) = p(x|y) from a set of pairs {(xi,y,)} ",

e or, the prior m(x) = p(x) from a collection of training samples {x;}Y;

8/20



Denoising Diffusion Probabilistic Models
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Diffusion models

Goal: learn to sample from a distribution 7y with no explicit expression from

; N
a collection of samples {x;},_;, x; ~ o
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Diffusion models

Goal: learn to sample from a distribution 7y with no explicit expression from

a collection of samples {x;},{\il, Xj ~ T
Ornstein-Uhlenbeck process in RY: stochastic differential equation
1 T
® W: Brownian motion in dimension d

® [3: positive weighting function

from Xo ~ 7o to Xoo ~ N(0,1)
Backward process in R?: reversed stochastic differential equation X; ~ m;

1 __
dX; = [—Eﬂ(t)xt - ﬁ(t)VIOgm(Xt)} dt + \/B(t) AW,

¢ W: Brownian motion in dimension d

® t flowing backward from co to t =0

from Xoo ~ N(0,1) to Xo ~ 7o
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Diffusion models

Goal: learn to sample from a distribution 7y with no explicit expression from

a collection of samples {x;},{\il, Xj ~ T
Ornstein-Uhlenbeck process in RY: stochastic differential equation
1 T
® W: Brownian motion in dimension d

® [3: positive weighting function

from Xo ~ 7o to Xoo ~ N(0,1)
Backward process in R?: reversed stochastic differential equation X; ~ m;

1
dX; = [—Eﬁ(t)xt ﬁ(t)Vlogm Xt :| dt + V ﬁ(t th
® W: Brownian motion in dimension d
® t flowing backward from co to t =0

from Xoo ~ N(0,1) to Xo ~ 7o
10/20



Diffusion models

Goal: learn to sample from a distribution 7y with no explicit expression from

; N
a collection of samples {x;},_1, xi ~ 7o

How to use a diffusion model:
. . . N
® learn score functions x — V log m:(x) via score matching from samples {x;}/_;,

® draw Xoo ~ N(0,1), which is easy,

o solve dX, = [—%5(t)xt — B(t)V log m(xt)] dt + /B(t) dW, from oo to 0.
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Diffusion models
Goal: learn to sample from a distribution 7y with no explicit expression from
a collection of samples {x;}"1, x; ~ o

How to use a diffusion model:
. . . N
® learn score functions x — V log m:(x) via score matching from samples {x;}/_;,

® draw Xoo ~ N(0,1), which is easy,

o solve dX, = [—%5(t)xt — B(t)V log m(xt)] dt + /B(t) dW, from oo to 0.

In practice:
® score functions x — V log m:(x) approximated by a neural network sy(x, t),
® sample X1 ~ N(0,1) with T “large",

® approximate the solution of the backward SDE by a discrete-time scheme:

Denoising Diffusion Probabilistic Models; Denoising Diffusion Implicit Models.

J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021
10/20



Denoising Diffusion Models

Denoising Diffusion Probabilistic Model (DDPM): discrete time t =0,1,..., T
® variance sequence (a¢)]_,, 0 < a; <1
® forward process X¢|X¢—1 ~ N (\/1 — e X¢—1, atl)

® backward process Xi—1 ~ N (pry(Xe, t), Zo(Xe, t)) from learned py, Ty
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Denoising Diffusion Probabilistic Model (DDPM): discrete time t =0,1,..., T
® variance sequence (a¢)]_,, 0 < a; <1
® forward process X¢|X¢—1 ~ N (\/1 — e X¢—1, atl)

® backward process Xi—1 ~ N (pry(Xe, t), Zo(Xe, t)) from learned py, Ty

In practice: (X, t) = o2l fixed, e.g., to o7 = a, not learned.

J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021

t
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Denoising Diffusion Models

Denoising Diffusion Probabilistic Model (DDPM): discrete time t =0,1,..., T
® variance sequence (a¢)]_,, 0 < a; <1
® forward process X¢|X;—1 ~ N (\/1 — arXi1, afl)

® backward process Xi—1 ~ N (pry(Xe, t), Zo(Xe, t)) from learned py, Ty

In practice: Xy(X,,t) = ol fixed, e.g., to 07 = ay, not learned. Let X7 ~ A(0,1)
Xi1 = py(Xe, t) +07Zs,  Ze ~ N(0,1)
where p,, can be learned using score matching techniques following discretization
53 i .
xklzxy+2§xt+T&ngw4xg+\Mﬁgb Z. ~N(0,1)
J. Ho et al., Adv Neural Inf Process Syst, 2020; J. Song et al., ICLR, 2021

t

Gaussian marginals: X; = vVa: Xo +vV1—a®Z, Z~N(0,1), @ = H(l —as)
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® forward process X¢|X¢—1 ~ N (\/1 — e X¢—1, atl)

® backward process Xi—1 ~ N (pry(Xe, t), Zo(Xe, t)) from learned py, Ty

Denoising Diffusion Implicit Model (DDIM): discrete time t =0,1,..., T

® variance sequences (o), 0 < a¢ < 1and (0¢).,, oc € [0, /T — ar1]

® non-Markovian forward process satisfying

X: — y/ar X
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Denoising Diffusion Models

Denoising Diffusion Probabilistic Model (DDPM): discrete time t =0,1,..., T
® variance sequence (a¢)]_,, 0 < a; <1
® forward process X¢|X¢—1 ~ N (\/1 — e X¢—1, atl)

® backward process Xi—1 ~ N (pry(Xe, t), Zo(Xe, t)) from learned py, Ty

Denoising Diffusion Implicit Model (DDIM): discrete time t =0,1,..., T

® variance sequences (o), 0 < a¢ < 1and (0¢).,, oc € [0, /T — ar1]
® non-Markovian forward process satisfying
—— Xt —aX
Xt71‘xt,X0 NN<\/Oét1-Xo+ 1C)ét10'?~t\/1_70:to,dfl>
® fy(x:) learnable predictor of Xo from X;: backward X:_1|fs(X¢), Xo

t
Gaussian marginals: X, = va; Xo +v1-a:Z, Z~N(0,l), @ = H(l —as)
=1 11/20



Plug & Play principles applied to sampling algorithms
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Plug-and-Play: motivations

Bayesian framework: two ingredients

® likelihood ¢,(x) = p(x|y) observation modeling: deformation and noise v

13/20



Plug-and-Play: motivations

Bayesian framework: two ingredients
® likelihood ¢,(x) = p(x|y) observation modeling: deformation and noise v

® prior p(x): expected characteristics of a“realistic” x* X

13/20



Plug-and-Play: motivations

Bayesian framework: two ingredients
® likelihood ¢,(x) = p(x|y) observation modeling: deformation and noise

® prior p(x): expected characteristics of a“realistic” x*

Prior design: key to obtain accurate estimates
® sparsity in transformed domain or piecewise regularity p(x) o e #ltxlh
® Markov random fields

® |earned patch-based Gaussian or Gaussian mixture models

= not reflecting the diversity and complexity of true images

13/20



Plug-and-Play: motivations

Bayesian framework: two ingredients
® likelihood ¢,(x) = p(x|y) observation modeling: deformation and noise

® prior p(x): expected characteristics of a“realistic” x*

Prior design: key to obtain accurate estimates
® sparsity in transformed domain or piecewise regularity p(x) o e #ltxlh
® Markov random fields

® |earned patch-based Gaussian or Gaussian mixture models

= not reflecting the diversity and complexity of true images

Plug & Play: learn mo(x) = p(x) from a collection of training samples {x;}
then interpret AV log px(x«) as a denoising correction Dy(x) — x

Da(x): denoising operator trained to remove Gaussian noise of variance \.

S. V. Venkatakrishnan et al., IEEE Glob. Conf. Signal Inf. Process., 2013
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Plug & Play sampling schemes

Unadjusted Langevin Algorithm (ULA): to sample p(x|y) o p(y|x)p(x)
Xi+1 = Xk + 7V log p(y[Xk) + vV log p(Xk) + /27Zk+1
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Unadjusted Langevin Algorithm (ULA): to sample p(x|y) o p(y|x)p(x)
Xi+1 = Xk + 7V log p(y[Xk) + vV log p(Xk) + /27Zk+1
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Plug & Play sampling schemes

Unadjusted Langevin Algorithm (ULA): to sample p(x|y) x p(y|x)p(x)

Xir1 = Xk + 7V log p(y|Xk) + 7V log p(Xk) + \/27Zk+1

Plug & Play ULA (PnP-ULA): explicit likelihood £, (x) = p(y|x)
Xit1 = Xk + Vi log £y (Xi) + vV log mo(Xk) + 1/ 27Z k41
?

= mo is an implicit probability density: might even not be proper!

Instead, marginal regularized density px(X,) associated to X, ~ N(X, Al), X ~ 7o
DA (x) — x

—

D3 the Minimal Mean Squared Error (MMSE) denoiser to find X from Xj:

Tweedie’s formula: V log px(x) ~

D} € Argmin Ex., Xa~A AL [IDA(XN) — XH%
Dx

14/20



Plug & Play sampling schemes

Unadjusted Langevin Algorithm (ULA): to sample p(x|y) x p(y|x)p(x)

Xii1 = Xk + vV log p(y|Xk) + vV log p(Xk) + \/27Zk+1

Plug & Play ULA (PnP-ULA): explicit likelihood £, (x) = p(y|x)
Xir1 = Xk + Vi log €y (Xk) + vV log mo(Xk) + \/27Z k41
?

= mo is an implicit probability density: might even not be proper!
6; an approximate MMSE estimator, e.g., trained neural network, plugged in ULA:
Da(Xk) — X
= Xi1 = Xk + Vi log £, (X)) + ’7% +V/27Zks1

ensure convergence by enforcing Lipschitzianity during training

Vx,x' €RY, ||VlIogDa(x) — Vlog Di(x')|| < L|jx — x|

Laumont et al., SIAM J. Imaging Sci., 2022; E. K. Ryu, Proc. Int. Conf. Mach. Learn., 20112/20



Plug-and-Play ULA using Diffusion Models

Plug-and-Play Unadjusted Langevin Algorithm: (PnP-ULA)
® solid convergence guarantees v/
® high-fidelity to the data through explicit likelihood v/
® once stationarity reached, efficient to generate new samples v/

® fine details lost due to Lipschitz regularization during training X
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® solid convergence guarantees v/
® high-fidelity to the data through explicit likelihood v/
® once stationarity reached, efficient to generate new samples v/

® fine details lost due to Lipschitz regularization during training X

Idea: Use as denoiser the last layers of a diffusion model
W3 (x): Markov kernel associated to a single reversed diffusion step at level 3.

Removing additive Gaussian noise of variance A = 8¢+ from X | Xo ~ N(Xo, A/):

Da(x) = Wg0...0Wg, (x).
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Plug-and-Play ULA using Diffusion Models

Plug-and-Play Unadjusted Langevin Algorithm: (PnP-ULA)
® solid convergence guarantees v/
® high-fidelity to the data through explicit likelihood v/
® once stationarity reached, efficient to generate new samples v/

® fine details lost due to Lipschitz regularization during training X

Idea: Use as denoiser the last layers of a diffusion model
W3 (x): Markov kernel associated to a single reversed diffusion step at level 3.

Removing additive Gaussian noise of variance A = 8¢+ from X | Xo ~ N(Xo, A/):

Da(x) = Wg0...0Wg, (x).

Problem: BA possibly not Lipschitzian = reconstruction artifacts

cause of divergence of the Plug-and-Play Unadjusted Algorithm.
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Equivariant Plug-and-Play Unadjusted Langevin Algorithm

Plug-and-Play ULA using Diffusion Models: BA(X) =Wy o...0Wg,(x)

Dia(Xy) — X
Xer = Xe +yValog by(Xi) + 72X X0 4 /7,
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Equivariant Plug-and-Play Unadjusted Langevin Algorithm

Plug-and-Play ULA using Diffusion Models: BA(X) =Wg 0...0Wg (x)

t

D X
Xi+1 = Xk + Vi log €y (Xy) + A ) +\/ YL 11

Equivariant Plug-and-Play approach: assume equivariance under the action of G
Vgeg, Xo~7r0¢>g-X0~7ro
e.g., group of rotations, small translations, reflections.

In words, “when translated a realistic image is still realistic”.
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Equivariant Plug-and-Play Unadjusted Langevin Algorithm

Plug-and-Play ULA using Diffusion Models: BA(X) =Wgo0...0Wz,(x)

D X
Xip1 = Xk + 7V log £, (Xy) + DA(Xe) = X K+ /27Zkin

Equivariant Plug-and-Play approach: assume equivariance under the action of G
Vgeg, Xo~7r0<=>g-X0N7ro
e.g., group of rotations, small translations, reflections.

In words, “when translated a realistic image is still realistic”.

Original Translated with periodic conditions
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Equivariant Plug-and-Play Unadjusted Langevin Algorithm

Plug-and-Play ULA using Diffusion Models: BA(X) =Wg 0...0Wg (x)

t

D X
Xi+1 = Xk + Vi log €y (Xy) + A ) +\/ YL 11

Equivariant Plug-and-Play approach: assume equivariance under the action of G
Vgeg, Xo~7r0¢>g-X0~7ro
e.g., group of rotations, small translations, reflections.

In words, “when translated a realistic image is still realistic”.

G-equivariant denoiser D (x) =g ' - W, 0. .0 Vs, (g-x), g~Ug
Ug uniform distribution on G = at each step of PnP-ULA:
random translation — denoising — inverse translation.

M. Terris et al., Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2024.
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Latent space Plug-and-Play Unadjusted Langevin Algorithm

Equivariant Plug-and-Play ULA: Dy(x) =g '-Wgo...0W;s (g-x), g ~Ug

Da(Xk) — X
Xer = Xe +yValog ly(Xi) + 7 28 =Xy /7,
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Latent space Plug-and-Play Unadjusted Langevin Algorithm

Equivariant Plug-and-Play ULA: Dy(x) =g '-Wgo...0W;s (g-x), g ~Ug

Da(Xx) — X
Xi+1 = Xk + Vi log /y(Xk) + % + /27241
Latent space strategy: p > 0 and U and auxiliary random variable so that

Di(u) —u

X|U~N(U,pl) and V,logp(u) =~ 5

where p controls || X — U||3 = accounts for the fact that Dy is imperfect.

to obtain both high reconstruction accuracy & fast convergence
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Latent space Plug-and-Play Unadjusted Langevin Algorithm

Equivariant Plug-and-Play ULA: D, (x)=g ' Wz 0...0 Vs, (g-x), g ~Ug

Da(Xk) — X
Xit+1 = Xk + vV log £y (Xk) Jrﬁ»% 4+ \/2vZ 11

Latent space strategy: p > 0 and U and auxiliary random variable so that
D _

X|U~N(U,pl) and V,logp(u) =~ W

where p controls || X — U||3 = accounts for the fact that Dy is imperfect.

to obtain both high reconstruction accuracy & fast convergence

Latent space equivariant Plug-and-Play ULA: targets U | Y =y

Dx(Ux) — U
WH:ﬂh+vvﬂ%puwhm+74&4%“ﬁ+v?ﬂH1

where u — p(y|u, p) is strongly log-concave thanks to p > 0.
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Empirical Bayesian Image Restoration

Mean A Posteriori estimators: Mean {]EX\y,uk,p p(X), k> Kbumin}

Ex|y,u.,p ¢©(X) tractable analytically for most ¢ due to Gaussianity
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Empirical Bayesian Image Restoration

Mean A Posteriori estimators: Mean {Ex‘y,uk,,)ga(X), k> Kbumin}
Ex|y,u,,p ©(X) tractable analytically for most ¢ due to Gaussianity

Performance depends on p: trade-off between accuracy and convergence speed.

Maximum Marginal Likelihood Estimation of hyperparameters:
ply) € Argmax p(y|p),  where - p(ylp) = Exuiy., [£y(X)]
p>

—= combine optimization of the marginal likelihood and generation of samples

Stochastic Approximation Proximal Gradient: (SAPG) po > 0 and U, € R,

U — X Dx(Ugx) — U
Uyt = U+ kpk Kty A k}\) k+ﬁ2k+1

prs1 = max (pk + k1Y log p(Xy1, Uksaly, px), 0)

where ik+1 = p;l (UﬁZATy + Uk+1) = Ex‘uk+17y,pkx
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Summary and conclusion

® Plug-and-Play image restoration methodology to estimate x* from observations
y=Ax"+e, e~N(0,X)

— particularly suited to Gaussian likelihood,
— leveraging the foundational Denoising Diffusion Probabilistic Model,

— within an empirical Bayesian framework for parameter tuning,

to provide a Mean A Posteriori estimator of x|y.
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Summary and conclusion

® Plug-and-Play image restoration methodology to estimate x* from observations
y=Ax"+e, e~N(0,X)

— particularly suited to Gaussian likelihood,
— leveraging the foundational Denoising Diffusion Probabilistic Model,

— within an empirical Bayesian framework for parameter tuning,

to provide a Mean A Posteriori estimator of x|y.
® Demonstrated performance on deblurring, inpainting and super-resolution

— high PSNR and perceptual metrics performance,

— competitive computational cost.
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Limitations and perspectives

® No convergence guarantee when combining PnP sampling and empirical Bayes.
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Limitations and perspectives

® No convergence guarantee when combining PnP sampling and empirical Bayes.

Choice of noise level A is key, but for the moment done by cross-validation

joint marginal likelihood maximization over (p, \).

® MMSE estimator known for missing fine details in the posterior x|y

Bayesian estimators aligned with perceptual criteria.

Deformation operator A and noise level o2 assumed known

blind or semi-blind restoration problems.

Only independent identically distributed Gaussian noise

generalization to Poisson or other low-photon noise.
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