

Proximal schemes for the estimation of the reproduction number of Covid19:

From convex optimization to Monte Carlo sampling

Variational approaches for signal and image processing

SiSyPhe day, ENS Lyon November 18th 2022

Barbara Pascal

Joint work with P. Abry, N. Pustelnik, S. Roux, R. Gribonval, P. Flandrin; G. Fort, H. Artigas; Juliana Du

Outline

• Pandemic study: modeling at the service of monitoring

• Reproduction number estimation from minimization of penalized likelihood

• Bayesian framework for credibility interval estimation

• Conclusion & Perspectives

Counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University \implies number of cases not informative enough: need to capture the **dynamics**

Counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University

 \implies number of cases not informative enough: need to capture the <code>dynamics</code>

Design adapted counter measures and evaluate their effectiveness

 $\begin{array}{ll} \rightarrow & \mbox{efficient monitoring tools} & epidemiological model, \\ \rightarrow & \mbox{robust to low quality of the data} & managing erroneous counts, \\ \rightarrow & \mbox{accompanied by reliable confidence level} & credibility intervals. \end{array}$

Susceptible-Infected-Recovered (SIR), among compartmental models

$$- \underline{ODE:} \quad \frac{\mathrm{dS}_t}{\mathrm{d}t} = -\beta \mathsf{S}_t \mathsf{I}_t, \quad \frac{\mathrm{dI}_t}{\mathrm{d}t} = \beta \mathsf{S}_t \mathsf{I}_t - \gamma \mathsf{I}_t, \quad \frac{\mathrm{dRe}_t}{\mathrm{d}t} = \gamma \mathsf{I}_t$$

- Stochastic model: likelihood maximization to infer β, γ

Susceptible-Infected-Recovered (SIR), among compartmental models

Limitations:

- refinement needed to get socially realistic model
- quadratic increase of the number of parameters
- Bayesian framework: heavy computational burden
- need consolidated and accurate datasets

X not adapted to real-time monitoring of Covid19 pandemic

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Interpretation: at day t

- $R_t > 1$ the virus propagates at exponential speed,
- $R_t < 1$ the epidemic shrinks with an exponential decay,
- $R_t = 1$ the epidemic is stable.

 \Longrightarrow one single indicator accounting for the overall pandemic mechanism

Reproduction number in Cori model

"averaged number of secondary cases generated by a typical infectious individual"

(Cori et al., 2013, Am. Journal of Epidemiology; Liu et al., 2018, PNAS)

Interpretation: at day t

- $R_t > 1$ the virus propagates at exponential speed,
- $R_t < 1$ the epidemic shrinks with an exponential decay,
- $R_t = 1$ the epidemic is stable.

 \implies one single indicator accounting for the overall pandemic mechanism

Principle: Z_t new infections at day t

$$\mathbb{E}\left[\mathsf{Z}_{t}\right] = \mathsf{R}_{t} \Phi_{t}, \quad \Phi_{t} = \sum_{u=1}^{\tau_{\Phi}} \phi_{u} \mathsf{Z}_{t-u}$$

with Φ_t global "infectiousness" in the population

 $\{\phi_u\}_{u=1}^{\tau_{\Phi}}$ distribution of delay between onset of symptoms in primary and secondary cases Gamma distribution truncated at 25 days, of mean 6.6 days and standard deviation 3.5 days

Data: daily counts $\mathbf{Z} = (Z_1, \ldots, Z_T)$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

Data: daily counts
$$\mathbf{Z} = (Z_1, \dots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

Maximum Likelihood Estimate (MLE)

$$\begin{split} &\ln\left(\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t)\right) \\ &= \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \ln(\mathsf{Z}_t!) \\ &\underset{\mathsf{Z}_t \gg 1}{\simeq} \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \mathsf{Z}_t \ln(\mathsf{Z}_t) + \mathsf{Z}_t \\ &= -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_t | \mathsf{R}_t \Phi_t) \quad (\mathsf{Kullback-Leibler}) \\ \end{split}$$

Data: daily counts
$$\mathbf{Z} = (Z_1, \dots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t!}$$

Maximum Likelihood Estimate (MLE)

$$\begin{aligned} &\ln\left(\mathbb{P}(\mathsf{Z}_{t}|\mathsf{Z}_{t-\tau_{\Phi}:t-1},\mathsf{R}_{t})\right) \\ &= \mathsf{Z}_{t}\ln(\mathsf{R}_{t}\Phi_{t}) - \mathsf{R}_{t}\Phi_{t} - \ln(\mathsf{Z}_{t}!) \\ &\simeq \mathsf{Z}_{t} \ge \mathsf{I}_{t}\ln(\mathsf{R}_{t}\Phi_{t}) - \mathsf{R}_{t}\Phi_{t} - \mathsf{Z}_{t}\ln(\mathsf{Z}_{t}) + \mathsf{Z}_{t} \\ &= -\mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_{t}|\mathsf{R}_{t}\Phi_{t}) \quad (\mathsf{Kullback-Leibler}) \\ &\Longrightarrow \widehat{\mathsf{R}}_{t}^{\mathsf{MLE}} = \mathsf{Z}_{t}/\Phi_{t} = \mathsf{Z}_{t}/\sum_{u=1}^{\tau_{\Phi}} \phi_{u}\mathsf{Z}_{t-u} \end{aligned}$$

ratio of moving averages

Data: daily counts
$$\mathbf{Z} = (Z_1, \dots, Z_T)$$

Model: Poisson distribution

$$\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t) = \frac{(\mathsf{R}_t \Phi_t)^{\mathsf{Z}_t} \mathrm{e}^{-\mathsf{R}_t \Phi_t}}{\mathsf{Z}_t !}$$

Maximum Likelihood Estimate (MLE)

$$\begin{split} &\ln\left(\mathbb{P}(\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t)\right) \\ &= \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \ln(\mathsf{Z}_t!) \\ &\simeq \\ & \mathsf{Z}_t \gg_1 \mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t) - \mathsf{R}_t \Phi_t - \mathsf{Z}_t \ln(\mathsf{Z}_t) + \mathsf{Z}_t \\ &= \\ & (\mathsf{def.}) - \mathsf{d}_{\mathsf{KL}}(\mathsf{Z}_t | \mathsf{R}_t \Phi_t) \quad (\mathsf{Kullback-Leibler}) \end{split}$$

$$\implies \widehat{\mathsf{R}}_t^{\mathsf{MLE}} = \mathsf{Z}_t / \Phi_t = \mathsf{Z}_t / \sum_{u=1}^{*} \phi_u \mathsf{Z}_{t-u}$$

ratio of moving averages

- huge variability along time/ no local trend
- not robust to pseudo-periodicity/ misreported counts

Solution 0: (state-of-the-art) smoothing over a temporal window

 $\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$, with s = 7 days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \implies not able to detect rapid surge, nor fast decrease following sanitary restrictions

Solution 0: (state-of-the-art) smoothing over a temporal window

 $\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$, with s = 7 days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \Longrightarrow not able to detect rapid surge, nor fast decrease following sanitary restrictions

Solution 1: regularization through nonlinear filtering

$$\widehat{\mathbf{R}}^{\mathsf{PKL}} = \underset{\mathbf{R} \in \mathbb{R}_{+}^{T}}{\operatorname{argmin}} \sum_{t=1}^{r} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t} \left| \mathsf{R}_{t} \Phi_{t} \right. \right) + \lambda_{\mathsf{R}} \mathcal{P}(\mathbf{R}) \quad \text{(penalized Kullback-Leibler)}$$

with $\mathcal{P}(\mathbf{R})$ favoring some temporal regularity

(Abry et al., 2020, PlosOne)

Solution 0: (state-of-the-art) smoothing over a temporal window

 $\widehat{\mathsf{R}}_{t,s}^{\mathsf{MLE}}$, with s = 7 days

(Cori et al., 2013, Am. Journal of Epidemiology)

 \Longrightarrow not able to detect rapid surge, nor fast decrease following sanitary restrictions

$$\begin{split} \underline{Solution \ 1}: \ \text{regularization through nonlinear filtering} \\ \widehat{\mathbf{R}}^{\mathsf{PKL}} &= \underset{\mathbf{R} \in \mathbb{R}_{+}^{T}}{\operatorname{argmin}} \ \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t} \left| \mathsf{R}_{t} \Phi_{t} \right. \right) + \lambda_{\mathsf{R}} \mathcal{P}(\mathbf{R}) \quad \text{(penalized Kullback-Leibler)} \end{split}$$

with $\mathcal{P}(\mathbf{R})$ favoring some temporal regularity

(Abry et al., 2020, PlosOne)

captures global trend, more regular than MLE, but pseudo-oscillations

New infection counts \mathbf{Z} are corrupted by

- missing samples,
- non meaningful negative counts,
- retrospected cumulated counts,
- pseudo-seasonality effects.

 \implies full parametric modeling out of reach

New infection counts ${\boldsymbol{\mathsf{Z}}}$ are corrupted by

- missing samples,
- non meaningful negative counts,
- retrospected cumulated counts,
- pseudo-seasonality effects.

 \implies full parametric modeling out of reach

<u>Solution 1'</u>: first correct **Z**, then apply penalized Kullback-Leibler on corrected $\mathbf{Z}^{(C)}$

 \Longrightarrow two-step procedure not optimal: accumulates correction & regularization biases

(Abry et al., 2020, Eng. Med. Biol. Conf.)

New infection counts Z are corrupted by

- · missing samples,
- non meaningful negative counts,
- retrospected cumulated counts,
- pseudo-seasonality effects.

 \implies full parametric modeling out of reach

<u>Solution 1'</u>: first correct **Z**, then apply penalized Kullback-Leibler on corrected $\mathbf{Z}^{(C)}$

 \implies two-step procedure not optimal: accumulates correction & regularization biases

(Abry et al., 2020, Eng. Med. Biol. Conf.)

Solution 2: one-step procedure performing jointly

correction of corrupted Z_t & estimation of regularized R_t

(Pascal et al., 2022, Trans. Sig. Process.)

Extended Cori Model: additional latent variable Ot accounting for misreport

$$\mathsf{Z}_t \sim \mathsf{Poiss}\left(\mathsf{R}_t \Phi_t + \mathsf{O}_t\right), \quad \mathsf{R}_t \Phi_t + \mathsf{O}_t \geq 0$$

nonzero values of O_t concentrated on specific days (Sundays, day-offs, ...)

Interpretation:

$$\mathsf{Poiss}\left(\mathsf{R}_t \Phi_t + \mathsf{O}_t\right) \sim \begin{cases} \mathsf{Poiss}\left(\mathsf{R}_t \Phi_t\right) + \mathsf{Poiss}\left(\mathsf{O}_t\right) & \text{if } \mathsf{O}_t \ge 0, \\ \mathsf{Poiss}\left(\alpha_t \mathsf{R}_t \Phi_t\right), \ \alpha_t = 1 - \frac{-\mathsf{O}_t}{\mathsf{R}_t \Phi_t} \in [0, 1] & \text{if } \mathsf{O}_t < 0. \end{cases}$$

Data: reported counts $\mathbf{Z} = (Z_1, \dots, Z_T)$

 $\textbf{Model: corrected Poisson} \quad \mathbb{P}(\mathsf{Z}_t | \textbf{Z}_{t - \tau_{\Phi}: t - 1}, \mathsf{R}_t, \mathsf{O}_t) = \frac{(\mathsf{R}_t \Phi_t + \mathsf{O}_t)^{\mathsf{Z}_t} \mathrm{e}^{-(\mathsf{R}_t \Phi_t + \mathsf{O}_t)}}{\mathsf{Z}_t \mathsf{I}}$

Data: reported counts $\mathbf{Z} = (Z_1, \ldots, Z_T)$

 $\textbf{Model: corrected Poisson} \quad \mathbb{P}(\mathsf{Z}_t | \textbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t, \mathsf{O}_t) = \frac{(\mathsf{R}_t \Phi_t + \mathsf{O}_t)^{\mathsf{Z}_t} \mathrm{e}^{-(\mathsf{R}_t \Phi_t + \mathsf{O}_t)}}{\mathsf{Z}_t!}$

Data: reported counts $\mathbf{Z} = (Z_1, \ldots, Z_T)$

Model: corrected Poisson $\mathbb{P}(Z_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathbf{R}_t, \mathbf{O}_t) = \frac{(\mathbf{R}_t \Phi_t + \mathbf{O}_t)^{Z_t} e^{-(\mathbf{R}_t \Phi_t + \mathbf{O}_t)}}{Z_t!}$

 \implies estimates piecewise linear, non-negative R_t and sparse O_t

properties of the objective function:

- sum of convex functions composed with linear operators \Longrightarrow globally convex;
- feasible domain: $(\forall t, \mathsf{R}_t \ge 0)$ & (if $\mathsf{Z}_t > 0, \mathsf{R}_t \Phi_t + \mathsf{O}_t > 0$, else $\mathsf{R}_t \Phi_t + \mathsf{O}_t \ge 0$);
- $p_t \mapsto d_{KL}(Z_t | p_t)$ is strictly-convex.

Data: reported counts $\mathbf{Z} = (Z_1, \ldots, Z_T)$

Model: corrected Poisson $\mathbb{P}(Z_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathbf{R}_t, \mathbf{O}_t) = \frac{(\mathbf{R}_t \Phi_t + \mathbf{O}_t)^{Z_t} e^{-(\mathbf{R}_t \Phi_t + \mathbf{O}_t)}}{Z_t!}$

 \implies estimates piecewise linear, non-negative R_t and sparse O_t

properties of the objective function:

- sum of convex functions composed with linear operators \Longrightarrow globally convex;
- feasible domain: $(\forall t, \mathsf{R}_t \ge 0)$ & (if $\mathsf{Z}_t > 0, \mathsf{R}_t \Phi_t + \mathsf{O}_t > 0$, else $\mathsf{R}_t \Phi_t + \mathsf{O}_t \ge 0$);
- $p_t \mapsto d_{KL}(Z_t | p_t)$ is strictly-convex.

Theorem (Pascal et al., 2022, Trans. Sig. Process.)

- + The minimization problem has at least one solution (\mathbf{R}, \mathbf{O}) .
- + The estimated time-varying Poisson intensity $\widehat{p}_t = \widehat{R}_t \Phi_t + \widehat{O}_t$ is unique.

$$\underset{(\mathbf{R},\mathbf{O})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t}\Phi_{t}+\mathsf{O}_{t}\,\right) + \lambda_{\mathsf{R}} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}$$

- each term of the functional is convex;
- ℓ_1 -norm and indicative functions \implies nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- linear operator $D_2 \Longrightarrow$ no explicit form for $\text{prox}_{\|D_2 \cdot \|_1}$

✗ gradient descent
 ✗ forward-backward
 ▲ need splitting

$$\underset{(\mathbf{R},\mathbf{O})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t}\Phi_{t}+\mathsf{O}_{t}\,\right) + \lambda_{\mathsf{R}} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}$$

- each term of the functional is convex;
- ℓ_1 -norm and indicative functions \implies nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- linear operator $\mathbf{D}_2 \Longrightarrow$ no explicit form for $\operatorname{prox}_{\|\mathbf{D}_2\cdot\|_1}$

✗ gradient descent
 ✗ forward-backward
 ▲ need splitting

 $\iff \underset{(\mathsf{R},\mathsf{O})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \quad f(\mathsf{R},\mathsf{O}|\mathsf{Z}) + h(\mathsf{A}(\mathsf{R},\mathsf{O})), \quad \mathsf{A} \text{ linear; } f,h \text{ proximable}$

 $\mathbf{A}(\mathbf{R}, \mathbf{O}) = (\lambda_{\mathbf{R}} \mathbf{D}_{2} \mathbf{R}, \mathbf{R}, \lambda_{\mathbf{O}} \mathbf{O}); \quad h(\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}) = \|\mathbf{Q}_{1}\|_{1} + \iota_{\geq 0}(\mathbf{Q}_{2}) + \|\mathbf{Q}_{3}\|_{1}$

$$\underset{(\mathbf{R},\mathbf{O})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t}\Phi_{t}+\mathsf{O}_{t}\,\right) + \lambda_{\mathsf{R}} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}$$

- each term of the functional is convex;
- ℓ_1 -norm and indicative functions \implies nonsmooth;
- gradient of $p_t \mapsto d_{KL}(Z_t | p_t)$ is not Lipschitzian;
- linear operator $\mathbf{D}_2 \Longrightarrow$ no explicit form for $\operatorname{prox}_{\|\mathbf{D}_2\cdot\|_1}$

X gradient descent
 X forward-backward
 A need splitting

 $\iff \underset{(\mathbf{R},\mathbf{0})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \quad f(\mathbf{R},\mathbf{0}|\mathbf{Z}) + h(\mathbf{A}(\mathbf{R},\mathbf{0})), \quad \mathbf{A} \text{ linear; } f,h \text{ proximable}$

 $\mathbf{A}(\mathbf{R}, \mathbf{O}) = (\lambda_{\mathbf{R}} \mathbf{D}_{2} \mathbf{R}, \mathbf{R}, \lambda_{\mathbf{O}} \mathbf{O}); \quad h(\mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3}) = \|\mathbf{Q}_{1}\|_{1} + \iota_{\geq 0}(\mathbf{Q}_{2}) + \|\mathbf{Q}_{3}\|_{1}$

Primal-dual algorithm

(Chambolle et al., 2011, Int. Conf. Comput. Vis.)

for
$$k = 1, 2...$$
 do

$$\mathbf{Q}^{[k+1]} = \operatorname{prox}_{\sigma h^*}(\mathbf{Q}^{[k]} + \sigma \mathbf{A}(\overline{\mathbf{R}}^{[k]}, \overline{\mathbf{O}}^{[k]})) \qquad \text{dual}$$

$$(\mathbf{R}^{[k+1]}, \mathbf{O}^{[k+1]}) = \operatorname{prox}_{\tau f(\cdot|\mathbf{Z})}((\mathbf{R}^{[k+1]}, \mathbf{O}^{[k+1]}) - \tau \mathbf{A}^* \mathbf{Q}^{[k+1]}) \qquad \text{primal}$$

$$(\overline{\mathbf{R}}^{[k+1]}, \overline{\mathbf{O}}^{[k+1]}) = 2(\mathbf{R}^{[k+1]}, \mathbf{O}^{[k+1]}) - (\mathbf{R}^{[k]}, \mathbf{O}^{[k]}) \qquad \text{auxiliary}$$

Corrected infection counts $Z^{(C)}$

 \implies no more pseudo-seasonality, local trends well captured, smooth behavior

Corrected infection counts $Z^{(C)}$

 \implies no more pseudo-seasonality, local trends well captured, smooth behavior

fast numerical scheme: 15 to 30 sec for 70 days to 1 year

New infection counts per county:
$$\mathbf{Z} = \left\{ \mathsf{Z}_t^{(d)}, d \in [1, D], t \in [1, T] \right\}$$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_t^{(d)}$

New infection counts per county:
$$\mathbf{Z} = \left\{ \mathsf{Z}_t^{(d)}, \ d \in [1, D], \ t \in [1, T] \right\}$$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_t^{(d)}$

Multivariate extended penalized Kullback-Leibler

$$\left(\widehat{\mathbf{R}}, \widehat{\mathbf{O}} \right) = \underset{(\mathbf{R}, \mathbf{O}) \in \mathbb{R}_{+}^{D \times T} \times \mathbb{R}^{D \times T}}{\operatorname{argmin}} \sum_{d=1}^{D} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t}^{(d)} \left| \mathsf{R}_{t}^{(d)} \Phi_{t}^{(d)} + \mathsf{O}_{t}^{(d)} \right. \right) \\ + \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\operatorname{space}} \| \mathbf{G} \mathbf{R} \|_{1} + \lambda_{\mathsf{O}} \| \mathbf{O} \|_{1}$$

 \implies $\|\mathbf{GR}\|_1$ favors **piecewise constancy** in space

New infection counts per county:
$$\mathbf{Z} = \left\{ \mathsf{Z}_t^{(d)}, \ d \in [1, D], \ t \in [1, T] \right\}$$

 \Rightarrow multivariate time-varying reproduction number $\mathsf{R}_t^{(d)}$

Multivariate extended penalized Kullback-Leibler

$$\begin{split} \left(\widehat{\mathbf{R}}, \widehat{\mathbf{O}}\right) &= \underset{(\mathbf{R}, \mathbf{O}) \in \mathbb{R}_{+}^{D \times T} \times \mathbb{R}^{D \times T}}{\operatorname{argmin}} \sum_{d=1}^{D} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}} \left(\mathsf{Z}_{t}^{(d)} \left| \mathsf{R}_{t}^{(d)} \Phi_{t}^{(d)} + \mathsf{O}_{t}^{(d)} \right. \right) \\ &+ \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\operatorname{space}} \| \mathbf{G} \mathbf{R} \|_{1} + \lambda_{0} \| \mathbf{O} \|_{1} \end{split}$$

 \implies $\|$ **GR** $\|_1$ favors **piecewise constancy** in space

France (Hospital based data) - R - 15-Nov-2022

13/1

<u>Pointwise estimate</u> of parameter $\theta = (\mathbf{R}, \mathbf{O})$ from observations **Z**

 $\underset{(\mathbf{R},\mathbf{0}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T} }{\text{minimize}} \quad f(\theta | \mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

<u>Pointwise estimate</u> of parameter $\theta = (\mathbf{R}, \mathbf{O})$ from observations **Z**

 $\underset{(\mathbf{R},\mathbf{0}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T} }{\text{minimize}} \quad f(\theta | \mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

Q: what is the value of R today? **A**: solve the minimization problem and output \widehat{R}_{T} .

<u>Pointwise estimate</u> of parameter $\theta = (\mathbf{R}, \mathbf{O})$ from observations **Z**

 $\underset{(\mathbf{R},\mathbf{0}) \in \mathbb{R}_{+}^{T} \times \mathbb{R}^{T} }{\text{minimize}} \quad f(\theta | \mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

Q: what is the value of R today? **A:** solve the minimization problem and output \widehat{R}_{T} .

 $\widehat{\mathsf{R}}_{\mathcal{T}} = 1.2955$

<u>Pointwise estimate</u> of parameter $\theta = (\mathbf{R}, \mathbf{O})$ from observations **Z**

Bayesian reformulation: interpret $(\widehat{\mathbf{R}}, \widehat{\mathbf{O}})$ as the MAP of $\pi(\theta) \propto \exp(-f(\theta|\mathbf{Z}) - h(\mathbf{A}\theta))$

- $\exp(-f(\theta|\mathbf{Z})) \sim \text{likelihood of the observation}$
- $\exp(-h(\mathbf{A}\theta)) \sim$ prior on the parameter of interest
<u>Pointwise estimate</u> of parameter $\theta = (\mathbf{R}, \mathbf{O})$ from observations **Z**

 $\underset{(\mathbf{R},\mathbf{0})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \quad f(\theta|\mathbf{Z}) + h(\mathbf{A}\theta) \quad (\text{Pascal et al., 2022, Trans. Sig. Process.})$

Bayesian reformulation: interpret $(\widehat{\mathbf{R}}, \widehat{\mathbf{O}})$ as the MAP of $\pi(\theta) \propto \exp(-f(\theta|\mathbf{Z}) - h(\mathbf{A}\theta))$

- $\exp(-f(\theta|\mathbf{Z})) \sim \text{likelihood of the observation}$
- $\exp(-h(\mathbf{A}\theta)) \sim$ prior on the parameter of interest

⇒ instead of focusing on \widehat{R}_t , the **pointwise** MAP, probe π to get $R_t \in [\underline{R}_t, \overline{R}_t]$ with 95% probability, i.e., credibility interval estimates

Log-likelihood from Poisson model
$$\mathcal{D} = \{\theta \,|\, \forall t, \, \mathsf{R}_t \Phi_t + \mathsf{O}_t \ge 0\}$$
$$f(\theta \,|\, \mathbf{Z}) := \begin{cases} -\sum_{t=1}^T (\mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t + \mathsf{O}_t) - (\mathsf{R}_t \Phi_t + \mathsf{O}_t) + \mathcal{C}(\mathsf{Z}_t)) & \text{if } \theta \in \mathcal{D}, \\ +\infty & \text{otherwise,} \end{cases}$$

 $\begin{array}{ll} \text{Log-likelihood from Poisson model} & \mathcal{D} = \{ \boldsymbol{\theta} \, | \, \forall t, \ \mathsf{R}_t \Phi_t + \mathsf{O}_t \geq 0 \} \\ f(\boldsymbol{\theta}) & := \left\{ \begin{array}{ll} -\sum_{t=1}^{T} (\mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t + \mathsf{O}_t) - (\mathsf{R}_t \Phi_t + \mathsf{O}_t)) & \text{if } \boldsymbol{\theta} \in \mathcal{D}, \\ +\infty & \text{otherwise,} \end{array} \right. \end{array}$

Prior distribution of $\theta = (\mathbf{R}, \mathbf{O}) = (\mathsf{R}_1, \dots, \mathsf{R}_T, \mathsf{O}_1, \dots, \mathsf{O}_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

• reproduction number: $R_t - 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$

 $\begin{array}{ll} \text{Log-likelihood from Poisson model} & \mathcal{D} = \{\theta \,|\, \forall t, \; \mathsf{R}_t \Phi_t + \mathsf{O}_t \geq 0\} \\ f(\theta) & := \left\{ \begin{array}{ll} -\sum_{t=1}^{T} (\mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t + \mathsf{O}_t) - (\mathsf{R}_t \Phi_t + \mathsf{O}_t)) & \text{if } \theta \in \mathcal{D}, \\ +\infty & \text{otherwise,} \end{array} \right. \end{array}$

Prior distribution of $\theta = (\mathbf{R}, \mathbf{O}) = (\mathsf{R}_1, \dots, \mathsf{R}_T, \mathsf{O}_1, \dots, \mathsf{O}_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

- reproduction number: $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- outliers $O_t \sim Laplace(\lambda_0)$

 $\begin{array}{ll} \text{Log-likelihood from Poisson model} & \mathcal{D} = \{\theta \,|\, \forall t, \ \mathsf{R}_t \Phi_t + \mathsf{O}_t \geq 0\} \\ f(\theta) & := \left\{ \begin{array}{ll} -\sum_{t=1}^{T} (\mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t + \mathsf{O}_t) - (\mathsf{R}_t \Phi_t + \mathsf{O}_t)) & \text{if } \theta \in \mathcal{D}, \\ +\infty & \text{otherwise,} \end{array} \right. \end{array}$

Prior distribution of $\theta = (\mathbf{R}, \mathbf{O}) = (\mathsf{R}_1, \dots, \mathsf{R}_T, \mathsf{O}_1, \dots, \mathsf{O}_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

- reproduction number: $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- outliers $O_t \sim \text{Laplace}(\lambda_0)$ $\Rightarrow g(\theta) = \lambda_R \|\mathbf{D}_2 \mathbf{R}\|_1 + \lambda_0 \|\mathbf{O}\|_1, \quad \mathbf{D}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & & & & & \dots & 0 \\ 0 & \dots & & & 1 & -2 & 1 \end{bmatrix}$

Laplacian

 $\begin{array}{ll} \text{Log-likelihood from Poisson model} & \mathcal{D} = \{ \boldsymbol{\theta} \, | \, \forall t, \ \mathsf{R}_t \Phi_t + \mathsf{O}_t \geq 0 \} \\ f(\boldsymbol{\theta}) & := \left\{ \begin{array}{ll} -\sum_{t=1}^{T} (\mathsf{Z}_t \ln(\mathsf{R}_t \Phi_t + \mathsf{O}_t) - (\mathsf{R}_t \Phi_t + \mathsf{O}_t)) & \text{if } \boldsymbol{\theta} \in \mathcal{D}, \\ +\infty & \text{otherwise,} \end{array} \right. \end{array}$

Prior distribution of $\theta = (\mathbf{R}, \mathbf{O}) = (\mathsf{R}_1, \dots, \mathsf{R}_T, \mathsf{O}_1, \dots, \mathsf{O}_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

• reproduction number: $R_t - 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$

• outliers
$$O_t \sim Laplace(\lambda_0)$$

 $\Rightarrow g(\theta) = \lambda_R \| \mathbf{D}_2 \mathbf{R} \|_1 + \lambda_0 \| \mathbf{O} \|_1, \quad \mathbf{D}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & & & & & \dots \\ 0 & \dots & & & & 1 & -2 & 1 \end{bmatrix}$

Posterior distribution of unknown parameters $\theta = (R, O)$

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(oldsymbol{ heta})
ight) \mathbb{1}_{\mathcal{D}}(oldsymbol{ heta})$$

- f, g convex
- f smooth, g nonsmooth

Markov Chain Monte Carlo sampling

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

 $^{^\}dagger~\pi$ is defined up to a normalizing constant

Markov Chain Monte Carlo sampling

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{ \boldsymbol{\theta}^n, n \in \mathbb{N} \}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n o \infty$, ${m heta}^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

 $^{^\}dagger$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{ \boldsymbol{\theta}^n, n \in \mathbb{N} \}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n o \infty$, ${m heta}^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

State-of-the-art: Hastings-Metropolis random walk

(i) propose a random move according to

$$oldsymbol{ heta}^{n+rac{1}{2}} = oldsymbol{ heta}^n + \sqrt{2\gamma} {\sf \Gamma} \xi^{n+1}, \hspace{1em} \xi^{n+1} \sim \mathcal{N}_{2T}({\sf 0},{\sf I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{2^T \times 2^T}$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Markov Chain Monte Carlo sampling

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{ \boldsymbol{\theta}^n, n \in \mathbb{N} \}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n o \infty$, ${m heta}^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

State-of-the-art: Hastings-Metropolis random walk

(i) propose a random move according to

$$oldsymbol{ heta}^{n+rac{1}{2}} = oldsymbol{ heta}^n + \sqrt{2\gamma} {\sf \Gamma} \xi^{n+1}, \hspace{1em} \xi^{n+1} \sim \mathcal{N}_{2T}(0,{\sf I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{2^T \times 2^T}$

(ii) accept:
$$\theta^{n+1} = \theta^{n+\frac{1}{2}}$$
, with probability $1 \wedge \frac{\pi(\theta^{n+\frac{1}{2}})}{\pi(\theta^n)}$, or reject: $\theta^{n+1} = \theta^n$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, *Adv Appl Probab*) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, *Adv Appl Probab*) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

<u>Case 1:</u> g = 0 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, Bernoulli) $\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$

 \implies move towards areas of higher probability

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, *Adv Appl Probab*) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

<u>Case 1:</u> g = 0 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, Bernoulli) $\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$ \implies move towards areas of higher probability

<u>Case 2:</u> $-\ln \pi = f + g$ is nonsmooth

$$\mu(\boldsymbol{\theta}) = \operatorname{prox}_{\gamma g}^{\Gamma\Gamma^{\top}}(\boldsymbol{\theta} - \gamma \Gamma\Gamma^{\top} \nabla f(\boldsymbol{\theta}))$$

combining Langevin and proximal[†] approaches

[†] prox_{$$\gamma g$$} ^{$\Gamma \Gamma^{\top}$} $(y) = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \left(\frac{1}{2} \|x - y\|_{\Gamma\Gamma^{\top}}^2 + \gamma g(x)\right)$: preconditioned proximity operator of g

17/1

Posterior density of $\theta = (\mathbf{R}, \mathbf{O})$: $\pi(\theta) \propto \exp\left(-f(\theta) - g(\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

• smooth negative log-likelihood

if
$$\boldsymbol{\theta} \in \mathcal{D}, \quad f(\boldsymbol{\theta}) = -\sum_{t=1}^{T} (\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) - \mathsf{p}_t(\boldsymbol{\theta})), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \mathsf{R}_t(\boldsymbol{\Phi}\mathsf{Z})_t + \mathsf{O}_t$$

• nonsmooth convex lower-semicontinuous negative a priori log-distribution

$$g(\theta) = \lambda_{\mathsf{R}} \| \mathbf{D}_2 \mathbf{R} \|_1 + \lambda_{\mathsf{O}} \| \mathbf{O} \|_1 = h(\mathbf{A}\theta)$$

 $A: \theta \mapsto (D_2R, O)$ linear operator, $h(\cdot_1, \cdot_2) = \lambda_R \|\cdot_1\|_1 + \lambda_O \|\cdot_2\|_1$

Posterior density of $\theta = (\mathbf{R}, \mathbf{O})$: $\pi(\theta) \propto \exp\left(-f(\theta) - g(\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

• smooth negative log-likelihood

if
$$\boldsymbol{\theta} \in \mathcal{D}, \quad f(\boldsymbol{\theta}) = -\sum_{t=1}^{T} (\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) - \mathsf{p}_t(\boldsymbol{\theta})), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \mathsf{R}_t(\Phi \mathsf{Z})_t + \mathsf{O}_t$$

nonsmooth convex lower-semicontinuous negative a priori log-distribution

$$g(\boldsymbol{\theta}) = \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \lambda_{\mathsf{O}} \| \mathbf{O} \|_{1} = h(\mathbf{A}\boldsymbol{\theta})$$

 $A: \theta \mapsto (D_2R, O)$ linear operator, $h(\cdot_1, \cdot_2) = \lambda_R \|\cdot_1\|_1 + \lambda_O \|\cdot_2\|_1$

<u>Case 3:</u> $-\ln \pi = f + h(\mathbf{A} \cdot)$ (Fort et al., 2022, *preprint*)

closed-form expression of $prox_{\gamma h}$ but not of $prox_{\gamma h(\mathbf{A})}$

1) extend **A** into invertible $\overline{\mathbf{A}}$, and h in \overline{h} such that $\overline{h}(\overline{\mathbf{A}}\theta) = h(\mathbf{A}\theta)$ 2) reason on the dual variable $\tilde{\theta} = \overline{\mathbf{A}}\theta$

Langevin: drift toward higher probability regions

$$\underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ln \pi(\theta) = \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \bar{h}(\overline{\mathsf{A}}\theta) = \mathsf{A}^{-1} \underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{\mathsf{A}}^{-1}\tilde{\theta}) + \bar{h}(\tilde{\theta})$$

Langevin: drift toward higher probability regions

$$\begin{aligned} \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) &= \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \overline{h}(\overline{\mathbf{A}}\theta) = \mathbf{A}^{-1}\underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{\mathbf{A}}^{-1}\tilde{\theta}) + \overline{h}(\tilde{\theta}) \\ &\implies \mu(\theta) = \underbrace{\overline{\mathbf{A}}^{-1}}_{\operatorname{back to } \theta} \underbrace{\operatorname{prox}_{\gamma \overline{h}} \left(\overline{\mathbf{A}}\theta - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\theta)\right)}_{\operatorname{proximal-gradient on } \tilde{\theta}} \end{aligned}$$

Langevin: drift toward higher probability regions

$$\begin{aligned} \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) &= \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \overline{h}(\overline{\mathbf{A}}\theta) = \mathbf{A}^{-1}\underset{\overline{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{\mathbf{A}}^{-1}\widetilde{\theta}) + \overline{h}(\widetilde{\theta}) \\ &\implies \mu(\theta) = \underbrace{\overline{\mathbf{A}}^{-1}}_{\operatorname{back to } \theta} \underbrace{\operatorname{prox}_{\gamma \overline{h}} \left(\overline{\mathbf{A}}\theta - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\theta) \right)}_{\operatorname{proximal-gradient on } \overline{\theta}} \end{aligned}$$
Two strategies to extend $\mathbf{A} = \begin{pmatrix} \mathbf{D}_{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T}$ into $\overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{2T \times 2T}$

Langevin: drift toward higher probability regions

$$\begin{aligned} \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) &= \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \overline{h}(\overline{\mathbf{A}}\theta) = \mathbf{A}^{-1}\underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{\mathbf{A}}^{-1}\widetilde{\theta}) + \overline{h}(\widetilde{\theta}) \\ &\implies \mu(\theta) = \underbrace{\overline{\mathbf{A}}^{-1}}_{\text{back to } \theta} \underbrace{\operatorname{prox}_{\gamma \overline{h}} \left(\overline{\mathbf{A}}\theta - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\theta) \right)}_{\text{proximal-gradient on } \overline{\theta}} \end{aligned}$$
Two strategies to extend $\mathbf{A} = \begin{pmatrix} \mathbf{D}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T}$ into $\overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{2T \times 2T}$:

Invert

$$\overline{\mathbf{D}}_2 := egin{bmatrix} 1 & 0 & 0 & \cdots & 0 \ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \ & \mathbf{D}_2 & & & \end{bmatrix}$$

Langevin: drift toward higher probability regions

$$\begin{aligned} \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) &= \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \overline{h}(\overline{A}\theta) = \mathbf{A}^{-1} \underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{A}^{-1}\tilde{\theta}) + \overline{h}(\tilde{\theta}) \\ &\implies \mu(\theta) = \frac{\overline{\mathbf{A}}^{-1}}{\underset{\text{back to } \theta}{\mathbf{D}}} \frac{\operatorname{prox}_{\gamma \overline{h}} \left(\overline{A}\theta - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\theta)\right)}{\underset{\text{proximal-gradient on } \tilde{\theta}}{} \end{aligned}$$
Two strategies to extend $\mathbf{A} = \begin{pmatrix} \mathbf{D}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T} \text{ into } \overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{2T \times 2T}$:
Invert
$$\begin{aligned}{\text{Invert}} & \text{Ortho} \\ \overline{\mathbf{D}}_2 := \begin{bmatrix} 1 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ -2/\sqrt{5} & 1/\sqrt{5} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{D}_2 & \mathbf{0} \end{bmatrix} \quad \overline{\mathbf{D}}_o := \begin{bmatrix} \mathbf{v}_1^{\mathsf{T}} \\ \mathbf{v}_2^{\mathsf{T}} \\ \mathbf{D}_2 \end{bmatrix} \underbrace{\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^{2T}}_{\mathbf{v}_1 \perp \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2 \in (\mathbf{D}_2^{\mathsf{T}})^{\perp} \end{aligned}$$

Langevin: drift toward higher probability regions

$$\begin{aligned} \operatorname{argmax}_{\theta \in \mathbb{R}^{2T}} \ln \pi(\theta) &= \operatorname{argmin}_{\theta \in \mathbb{R}^{2T}} f(\theta) + \overline{h}(\overline{A}\theta) = \mathbf{A}^{-1} \operatorname{argmin}_{\tilde{\theta} \in \mathbb{R}^{2T}} f(\overline{A}^{-1}\tilde{\theta}) + \overline{h}(\tilde{\theta}) \\ &\implies \mu(\theta) = \frac{\overline{\mathbf{A}}^{-1}}{\operatorname{back to } \theta} \frac{\operatorname{prox}_{\gamma \overline{h}} \left(\overline{\mathbf{A}}\theta - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\theta)\right)}{\operatorname{proximal-gradient on } \overline{\theta}} \end{aligned}$$
Two strategies to extend $\mathbf{A} = \begin{pmatrix} \mathbf{D}_2 & 0 \\ 0 & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T}$ into $\overline{\mathbf{A}} = \begin{pmatrix} \overline{\mathbf{D}} & 0 \\ 0 & \mathbf{I} \end{pmatrix} \in \mathbb{R}^{2T \times 2T}$:
Invert Ortho
 $\overline{\mathbf{D}}_2 := \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \\ \mathbf{D}_2 & & & \end{bmatrix} \qquad \overline{\mathbf{D}}_o := \begin{bmatrix} \mathbf{v}_1^{\top} \\ \mathbf{v}_2^{\top} \\ \mathbf{D}_2 \end{bmatrix} \begin{array}{c} \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^{2T} \\ \mathbf{v}_1 \perp \mathbf{v}_2, \mathbf{v}_1, \mathbf{v}_2 \in (\mathbf{D}_2^{\top})^{\perp} \end{aligned}$

Proposed PGdual drift terms on $\theta = (\mathbf{R}, \mathbf{O})$:

reproduction numbers
$$\mu_{\mathsf{R}}(\theta) = \overline{\mathbf{D}}^{-1} \operatorname{prox}_{\gamma_{\mathsf{R}}\lambda_{\mathsf{R}} \parallel (\cdot)_{3:T} \parallel_{1}} \left(\overline{\mathbf{D}} \, \mathbf{R} - \gamma_{\mathsf{R}} \overline{\mathbf{D}}^{-\top} \, \nabla_{\mathsf{R}} f(\theta) \right)$$

outliers $\mu_{\mathsf{O}}(\theta) = \operatorname{prox}_{\gamma_{\mathsf{O}}\lambda_{\mathsf{O}} \parallel \cdot \parallel_{1}} \left(\mathbf{O} - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\theta) \right)$

Data: $\overline{\mathbf{D}} = \overline{\mathbf{D}}_2$ (Invert) or $\overline{\mathbf{D}} = \overline{\mathbf{D}}_o$ (Ortho) $\gamma_{\mathsf{R}}, \gamma_{\mathsf{O}} > 0, \ \mathcal{N}_{\max} \in \mathbb{N}_{\star}, \ \boldsymbol{\theta}^{\mathsf{O}} = (\mathsf{R}^{\mathsf{O}}, \mathsf{O}^{\mathsf{O}}) \in \mathcal{D}$ **Result:** A \mathcal{D} -valued sequence $\{\theta^n = (\mathbf{R}^n, \mathbf{O}^n), n \in 0, \dots, N_{\max}\}$ for $n = 0, ..., N_{max} - 1$ do Sample $\xi_{\mathsf{R}}^{n+1} \sim \mathcal{N}_{\mathcal{T}}(0,\mathsf{I})$ and $\xi_{\mathsf{O}}^{n+1} \sim \mathcal{N}_{\mathcal{T}}(0,\mathsf{I})$; Set $\mathbf{R}^{n+\frac{1}{2}} = \mu_{\mathrm{R}}(\boldsymbol{\theta}^{n}) + \sqrt{2\gamma_{\mathrm{R}}}\overline{\mathbf{D}}^{-1}\overline{\mathbf{D}}^{-\top}\boldsymbol{\xi}_{\mathrm{P}}^{n+1}$; $\mathbf{O}^{n+\frac{1}{2}} = \mu_{\mathbf{O}}(\boldsymbol{\theta}^n) + \sqrt{2\gamma_{\mathbf{O}}} \, \boldsymbol{\xi}_{\mathbf{O}}^{n+1}:$ $\theta^{n+\frac{1}{2}} = (\mathbf{R}^{n+\frac{1}{2}}, \mathbf{O}^{n+\frac{1}{2}})$: Set $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability $1 \wedge \frac{\pi(\boldsymbol{\theta}^{n+\frac{1}{2}})}{\pi(\boldsymbol{\theta}^{n})} \frac{q_{\mathsf{R}}(\boldsymbol{\theta}^{n+\frac{1}{2}},\boldsymbol{\theta}_{\mathsf{R}}^{n})}{q_{\mathsf{D}}(\boldsymbol{\theta}^{n},\boldsymbol{\theta}_{-}^{n+\frac{1}{2}})} \frac{q_{\mathsf{D}}(\boldsymbol{\theta}^{n+\frac{1}{2}},\boldsymbol{\theta}_{\mathsf{D}}^{n})}{q_{\mathsf{D}}(\boldsymbol{\theta}^{n},\boldsymbol{\theta}_{-}^{n+\frac{1}{2}})},$ $q_{\rm R/O}$: Gaussian kernel stemming from nonsymmetric proposal and $\theta^{n+1} = \theta^n$ otherwise. Algorithm 1: Proximal-Gradient dual: PGdual Invert and PGdual Ortho

Comparison of MCMC sampling schemes

 $\begin{array}{ll} \textbf{Gaussian proposal:} \quad \boldsymbol{\theta}^{n+\frac{1}{2}} = \boldsymbol{\mu}(\boldsymbol{\theta}^n) + \sqrt{2\gamma} \boldsymbol{\Gamma} \boldsymbol{\xi}^{n+1} \\ \bullet \text{ random walks: } \boldsymbol{\mu}(\boldsymbol{\theta}) = \boldsymbol{\theta} \\ & \\ \textbf{RW: } \boldsymbol{\Gamma} = \boldsymbol{I} \text{ ; RW Invert: } \boldsymbol{\Gamma} = \overline{\mathbf{D}}_2^{-1} \overline{\mathbf{D}}_2^{-\top} \text{ ; RW Ortho: } \boldsymbol{\Gamma} = \overline{\mathbf{D}}_o^{-1} \overline{\mathbf{D}}_o^{-\top} \\ \bullet \text{ Proximal-Gradient dual: } \boldsymbol{\mu}_{\text{R}}(\boldsymbol{\theta}), \, \boldsymbol{\mu}_{\text{O}}(\boldsymbol{\theta}), \, \boldsymbol{\Gamma} = \overline{\mathbf{D}}^{-1} \overline{\mathbf{D}}^{-\top} \\ & \\ \textbf{PGdual Invert: } \overline{\mathbf{D}} = \overline{\mathbf{D}}_2 \text{ ; PGdual Ortho: } \overline{\mathbf{D}} = \overline{\mathbf{D}}_o \\ \end{array}$

Comparison of MCMC sampling schemes

Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma} \Gamma \xi^{n+1}$ • random walks: $\mu(\theta) = \theta$ $\texttt{RW:}\ \Gamma=\texttt{I} \text{ ; RW Invert: } \Gamma=\overline{\textbf{D}}_2^{-1}\overline{\textbf{D}}_2^{-\top} \text{ ; RW Ortho: } \Gamma=\overline{\textbf{D}}_2^{-1}\overline{\textbf{D}}_2^{-\top}$ • Proximal-Gradient dual: $\mu_{\rm R}(\boldsymbol{\theta}), \ \mu_{\rm O}(\boldsymbol{\theta}), \ \Gamma = \overline{\mathbf{D}}^{-1}\overline{\mathbf{D}}^{-\top}$ PGdual Invert: $\overline{\mathbf{D}} = \overline{\mathbf{D}}_2$: PGdual Ortho: $\overline{\mathbf{D}} = \overline{\mathbf{D}}_2$ **Practical settings:** $N_{max} = 10^7$ iterations, 15 independent runs log-density Gelman-Rubin burn in post burn in 100 100 10²

 $\times 10^{6}$

Sanitary situation in France

Worldwide Covid19 monitoring

Why not United Kingdom?

Why not United Kingdom?

rate of erroneous counts: 6/7!

Why not United Kingdom?

And Italy?

rate of erroneous counts: 6/7!

seems to adopt the same reporting rate ...

 \Longrightarrow call for new tools, robust to very scarce data

Conclusion

 \checkmark Extended Cori model handling erroneous reported counts via a latent variable

 $\mathsf{Z}_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t, \mathbf{O}_t \sim \mathsf{Poiss}(\mathsf{R}_t \Phi_t + \mathsf{O}_t)$

Conclusion

✓ Extended Cori model handling erroneous reported counts via a latent variable

$$Z_t | Z_{t-\tau_{\Phi}:t-1}, R_t, O_t \sim \text{Poiss}(R_t \Phi_t + O_t)$$

 \checkmark Estimation of piecewise linear R_t and corrected counts via convex optimization

$$\underset{(\mathbf{R},\mathbf{O})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} d_{\mathsf{KL}} \left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t} \Phi_{t} + \mathsf{O}_{t} \,\right) + \lambda_{\mathsf{R}} \| \mathbf{D}_{2} \mathbf{R} \|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{O}} \| \mathbf{O} \|_{1}$$

(Pascal et al., 2022, Trans. Sig. Process.;

Conclusion

 \checkmark Extended Cori model handling erroneous reported counts via a latent variable

$$Z_t | \mathbf{Z}_{t-\tau_{\mathbf{\Phi}}:t-1}, \mathbf{R}_t, \mathbf{O}_t \sim \mathsf{Poiss}(\mathbf{R}_t \Phi_t + \mathbf{O}_t)$$

 \checkmark Estimation of piecewise linear R_t and corrected counts via convex optimization

$$\underset{(\mathbf{R},\mathbf{0})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t} \Phi_{t} + \mathsf{O}_{t}\,\right) + \lambda_{\mathsf{R}} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}$$

✓ Bayesian credibility interval estimates via proximal Langevin MCMC samplers

(Pascal et al., 2022, Trans. Sig. Process.; Fort et al., 2022, arXiv:2203.09142)

Perspectives

 $\longrightarrow \text{ Avoid mixing errors } O_t \text{ with the pandemic mechanism } R_t \Phi_t \text{: anomaly models} \\ Z_t | \mathbf{Z}_{t-\tau_{\Phi}:t-1}, R_t, O_t \sim \text{Poiss}((1-e_t)R_t \Phi_t + e_t O_t), \quad e_t \in \{0,1\}$

Perspectives

 \longrightarrow Avoid mixing errors O_t with the pandemic mechanism R_t Φ_t : anomaly models

$$\mathsf{Z}_t | \mathsf{Z}_{t-\tau_{\Phi}:t-1}, \mathsf{R}_t, \mathsf{O}_t \sim \mathsf{Poiss}((1-\mathsf{e}_t)\mathsf{R}_t \Phi_t + \mathsf{e}_t \mathsf{O}_t), \quad \mathsf{e}_t \in \{0,1\}$$

 \longrightarrow Selection of regularization parameters λ_{R} , λ_{O}

 $\underset{(\mathbf{R},\mathbf{O})\in\mathbb{R}_{+}^{T}\times\mathbb{R}^{T}}{\text{minimize}} \sum_{t=1}^{T} \mathsf{d}_{\mathsf{KL}}\left(\mathsf{Z}_{t} \,|\, \mathsf{R}_{t}\Phi_{t}+\mathsf{O}_{t}\,\right) + \lambda_{\mathsf{R}} \|\mathbf{D}_{2}\mathbf{R}\|_{1} + \iota_{\geq 0}(\mathbf{R}) + \lambda_{\mathsf{O}} \|\mathbf{O}\|_{1}$

Juliana Du PhD thesis

\longrightarrow Synthetic data

