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Lab session – Estimation of the reproduction number of Covid19

1 Preliminaries : subdifferentiable and proximal operators
Exercise 1. Let f, g : RT → R∪{∞}, two proper, continuous functions. Show that, if dom f ∩dom g 6= ∅, then

∀x ∈ RT , ∂f(x) + ∂g(x) ⊂ ∂(f + g)(x).

In particular, show that if f is continuously differentiable and convex on its domain, then

∀x ∈ RT , ∇f(x) + ∂g(x) ⊂ ∂(f + g)(x). (1)

Remark 1. This property does not require functions f and g to be convex. Its reciprocal does (see [1, Proposition
16.42] for the exact hypotheses required and a demonstration using convex duality, out of the scope of the
present course !). Yet, the above inclusion is enough to interpret mixed proximal-gradient scheme : since, due to
Equation (1), ∇f(x[k]) + u[k], u[k] ∈ ∂g(x[k]) is indeed one subgradient of f + g at x[k].

Exercise 2. Given some y ∈ RT , let

f :

{
RT → R
x 7→ 1

2‖x− y‖22.

compute the proximity operator of γf , for γ > 0. Plot it when T = 1 and comment briefly its behavior.

Exercise 3. Let f : RT → R, x 7→ ‖x‖1, compute the proximity operator of γf , for γ > 0. Comment briefly its
behavior.

2 Context, model and goals
From the very beginning of the Covid19 pandemic National Health Authorities of all countries worldwide are
monitoring the number of new infections each day, denoted by Zt at day t. An example of such daily counts for
five weeks in October and November 2022 in France is provided in Figure 1, as collected and make available by
Johns Hopkins University 1.
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Figure 1 – Daily new infection counts Z in France for 10 weeks.

a. Load the Matlab file data_covid.mat and plot the daily new infections Z with respect to days.

Yet, the number of new infections itself is not informative enough about the dynamics of the pandemic. Thus,
looking only at Zt does not make it possible to detect an epidemic resurgence early enough, and therefore to
react quickly enough to avoid a dramatic explosion in the number of infected people.
This is why we rapidly turn to the monitoring of the standard reproduction number, R0, defined as the average
number of secondary cases generated by a typical infected individual throughout its period of contagiousness [3,
4]. The reproduction number thus quantifies the intensity of the pandemic :

1. https://coronavirus.jhu.edu/map.html
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— when R0 > 1 the virus is spreading at exponential speed ;
— when R0 < 1 the epidemic is vanishing ;
— when R0 = 1 the epidemic is stable.

The standard definition of the reproduction number is relaxed into a time-dependent reproduction number Rt
at day t, which is linked to the number of new infections by Cori’s model [3]. In this epidemiological model the
number of new infections at day t depends on the past daily counts Z1, . . . ,Zt−1 and follow a Poisson distribution

Zt|Z1, . . . ,Zt−1 ∼ Poisson
(
RtΦ

Z
t

)
, withΦZ

t =

τΦ∑
u=1

φ(u)Zt−u (2)

where φ is the serial interval function associated to the pandemic, modeling the random delay between primary
and secondary cases 2.

Reminder 1 (Poisson distribution and likelihood). The Poisson distribution of parameter p ∈ R+ is a probability
distribution on nonnegative integers. A random variable Z follows a Poisson distribution if and only if

∀k ∈ N, P(Z = k|p) = e−p
pk

k!
.

Thus, given an observation Z ∈ N assumed to follow a Poisson model of parameter p, the log-likelihood lnL(Z|p)
writes

ln

(
e−p

pZ

Z!

)
= −p + Z ln(p)− ln(Z!) '

Z�1
−p + Z ln(p)− Z ln(Z) + Z = −

(
Z ln

(
Z

p

)
+ p− Z

)
,

where the approximation ln(Z!) ' Z ln(Z)− Z, valid for Z→∞, can be derived from Stirling formula.

Definition 1. The Kullback-Leibler between a vector Z ∈ RT and a vector p ∈ RT is defined in a fully separable
manner as

dKL(Z|p) =

T∑
t=1

dKL(Zt|pt), where dKL(Zt|pt) =


Zt ln

(
Zt

pt

)
+ pt − Zt ifZt > 0, pt > 0

pt ifZt = 0, pt ≥ 0
∞ otherwise.

If Z ∈ NT is a vector of nonnegative integer observations, it quantifies the discrepancy between Z and a vector
of Poisson random variables of parameters p.

Thus, the opposite log-likelihood associated to Cori’s model (2) expresses in terms of the Kullback-Leibler
divergence as

− lnL(Z|R) = dKL(Z|R�ΦZ) (3)

where R�ΦZ denotes the component-wise vector product,
(
R�ΦZ

)
t

= RtΦ
Z
t .

b. For Zt fixed at Zt ∈ {0, 10, 250} plot the function pt 7→ dKL(Zt|pt).
c. Show that the function pt 7→ dKL(Zt|pt) is convex and differentiable.
d. Is the gradient of pt 7→ dKL(Zt|pt) Lipschitzian ? Justify your answer.

3 Estimation of the reproduction number

3.1 Maximum Likelihood Estimator
a. Given fixed Zt and ΦZ

t =
∑τ

ΦZ

u=1 ΦZ(u)Zt−u, compute the minimum and the minimizer of the function
dKL : Rt 7→ dKL

(
Zt|RtΦZ

t

)
.

b. Deduce the minimum and the minimizer R̂
MLE

of the Kullback-Leibler divergence

DKL :

{
RT → R
R 7→

∑T
t=1 dKL(Zt|RtΦZ

t ).

2. For Covid19 pandemic the serial interval function is modeled by a Gamma distribution with mean 6.6 days and standard
deviation 3.5 days cropped at τΦ = 26 days.
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This minimizer is denoted R̂
MLE

because it is the Maximum Likelihood Estimator of R.
Indeed, as stated in Equation (3), the Kullback-Leibler divergence is the opposite log-likelihood of the Poisson
model, thus minimizing dKL(Z|R�ΦZ) amounts to maximize the likelihood L(Z|R).

c. Compute numerically the Maximum Likelihood Estimate from the data Z, named Z in the file data_covid.mat,
and the global infectiousness ΦZ, named PhiZ in data_covid.mat. Plot it and comment about its tem-
poral behavior.

d. Would you advocate the use of the Maximum Likelihood Estimator to monitor the Covid19 pandemic ?
Explain why.

3.2 Penalized likelihood
In order to enforce some regularity on the temporal behavior of Rt we consider the penalized likelihood estimator

R̂ ∈ Argmin
R

DKL(Z|R�ΦZ) + λ‖D2R‖1, (4)

where D2 : RT → RT−2 is the discrete Laplacian operator acting on RT as

∀t ∈ {1, 2, . . . , T − 2}, (D2R)t = Rt+2 − 2Rt+1 + Rt.

The `1 penalization favors sparsity of the second order derivative of the estimate and thus R̂ is expected to be
piecewise linear, with only a few days at which the slope of t 7→ Rt is changing.
Because of the presence of the `1 norm in the objective function, (4) is a nonsmooth optimization problem.
Thus one has to resort to proximal operators to solve it.

a. Based on Question 1 c. explain why it is not possible to use the forward-backward algorithm.

To circumvent this limitation, we will use only proximity operators.
b. For fixed Zt, compute the proximity operator of pt 7→ dKL(Zt|pt).
c. Given Zt and ΦZ

t =
∑τ

ΦZ

u=1 ΦZ(u)Zt−u, deduce from 1. the expression of the proximity operator of Rt 7→
dKL

(
Zt|RtΦZ

t

)
.

d. Explain how to compute the proximity operator of

DKL :

{
RT → R
R 7→

∑T
t=1 dKL(Zt|RtΦZ

t ).

Because of the linear operator D2 inside the `1 norm in (4), we do not have a closed-form expression of the
proximity operator of the penalization ‖D2R‖1 and hence it is necessary to use a splitting scheme. We will thus
turn to the primal-dual algorithm proposed in [2]. To ensure convergence of Algorithm 1, the descent steps τ > 0
and σ > 0 must be chosen so that στ‖D2‖2op < 1, where ‖D2‖2op denotes the operator norm of D2 defined as

‖D2‖op = sup
R∈RT ,R6=0

‖D2R‖
‖R‖

To compute the operator norm of a matrix D2 ∈ RT−2×T , you can use the Matlab function norm(D2). A
standard choice for the descent steps is σ = τ = 0.99/‖D2‖op. Feel free to explore other choices satisfying the
convergence condition.

e. Compute the proximity operator of the `1 norm multiplied by a scalar λσ−1, that is of λσ−1‖·‖1 : Q ∈
RN 7→

∑N
n=1 λσ

−1|Qn| ∈ R and explain how to compute it in practice.
f. Construct the T − 2× T matrix of the discrete Laplacian D2.
g. Show that by setting Z̃ := Z/α for some α > 0,

DKL(Z̃|R[k] �ΦZ̃) =
1

α
DKL(Z|R[k] �ΦZ). (5)

Justify that running Algorithm 1 with Z and ΦZ as input, with a given λ vs. with Z̃ and ΦZ̃ with
λ̃ := λ/std(Z) give the same reproduction number estimate R̂.

From now on, when running Algorithm 1, replace Z by Z/std(Z) and ΦZ by ΦZ/std(Z). Take into account that
this amounts to replace λ by λ̃ := λ/std(Z). This normalization of input data improve the numerical robustness
of the algorithmic scheme : it is to be seen as a purely numerical trick.
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Algorithm 1 Primal-dual minimization of the penalized Kullback-Leibler (4) for the estimation of reproduction
numbers.
Require: Infection counts : Z ∈ RT and ΦZ ∈ RT
Choose descent parameters : τ, σ > 0 such that στ‖D2‖2op < 1
Max. iterations : kmax

Initialization R[0] = Z/ΦZ

Q[0] = D2R
[0], R

[0]
= R[0]

while k < kmax do

Q[k+1] = Q[k] + σD2R
[k] − σproxλσ−1‖·‖1

(
σ−1Q[k] + D2R

[k]
)

R[k+1] = proxτDKL(Z|·�ΦZ)(R
[k] − τD∗2Q

[k+1])

R
[k+1]

= 2R[k+1] − R[k]

k ← k + 1
end while

h. Implement Algorithm 1 and run it on the data Z. Plot the evolution of the objective function

k 7→ DKL(Z|R[k] �ΦZ) + λ‖D2R
[k]‖1 (6)

along iterations to illustrate convergence of the scheme.
i. Run Algorithm 1 for different values of the regularization parameter λ̃ and comment on its influence. A

possibility is to consider λ̃ ∈ {0.5, 3.5, 15, 50, 150, 250} 3.

3.3 Tikhonov penalization
a. From Exercise 2, deduce the proximity operator of x 7→ ‖x‖22.
b. Replace the `1 penalization, ‖D2R‖1, by an squared `2 penalization ‖D2R‖22, also called Tikhonov regu-

larization. Implement the Chambolle-Pock algorithm replacing ‖·‖1 by ‖·‖22.
Indication : the convergence condition does not change.

c. Plot the two estimates on the same graph and comment.
Indication : the optimal parameter λ, i.e., the one for which the estimate is regular while still reflecting
the pandemic dynamics, might change depending on whether the `1 or `22 penalization is used.
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3. This correspond to non normalized regularization parameters λ ∈ {0.5× std(Z), 3.5× std(Z), 15× std(Z), 50× std(Z), 150×
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