

How scale-free texture segmentation turns out to be a strongly convex optimization problem ?[†].

B. Pascal¹, N. Pustelnik¹, P. Abry¹

Université Catholique de Louvain December, $10^{\rm th}$ 2019

¹ Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France, firstname.lastname@ens-lyon.fr

 † Supported by Defi Imag'in SIROCCO and ANR-16-CE33-0020 MultiFracs, France.

<u>Texture</u> is of utmost importance in complex computer vision tasks.

<u>Texture</u> is of utmost importance in complex <u>computer vision tasks</u>. scale-free <u>segmentation</u>

Formulation of the texture segmentation problem

Formulation of the texture segmentation problem

Purpose: obtaining a partition of the image into κ homogeneous regions $\Omega = \Omega_1 \bigsqcup \ldots \bigsqcup \Omega_{\kappa}$

 Ω_k : pixels corresponding to texture k.

Piecewise monofractal model

Piecewise monofractal model

Variance σ^2

amplitude of variations

Piecewise monofractal model

www.WaldAlahay

<u>Variance σ^2 </u> amplitude of variations

scale-free behavior

 $h(x) \equiv h_1 = 0.9$

Local regularity h

 $h(x) \equiv h_2 = 0.3$

Fit local behavior with power law functions

$$|f(x) - f(y)| \le C|x - y|^{h(x)}$$

Piecewise monofractal model

Variance σ^2 amplitude of variationsLocal regularity hscale-free behavior

 $h(x) \equiv h_1 = 0.9$

 $h(x) \equiv h_2 = 0.3$

Fit local behavior with power law functions

$$|f(x) - f(y)| \le C|x - y|^{h(x)}$$

Segmentation requires <u>local</u> measurement of σ^2 and *h*.

Multiscale analysis

Textured image

Textured image Local supremum of wavelet coefficients: *leaders* $\mathcal{L}_{a,.}$

Textured image Local supremum of wavelet coefficients: *leaders* $\mathcal{L}_{a,.}$

Textured image Local supremum of wavelet coefficients: *leaders* $\mathcal{L}_{a,.}$

Log-log linear behavior

$$\log \left(\boldsymbol{\mathcal{L}}_{\boldsymbol{a},\cdot} \right) \simeq \underbrace{\boldsymbol{\nu}}_{\substack{\sim \log(\boldsymbol{\sigma}^2) \\ (\text{variance})}} + \log(\boldsymbol{a}) \underbrace{\boldsymbol{h}}_{regularity}$$

Textured image Local supremum of wavelet coefficients: *leaders* $\mathcal{L}_{a,.}$

Log-log linear behavior $\log (\mathcal{L}_{a,\cdot}) \simeq \underbrace{\mathbf{v}}_{\substack{\sim \log(\sigma^2) \ (variance)}} + \log(a) \underbrace{\mathbf{h}}_{regularity}$

Textured image Local supremum of wavelet coefficients: *leaders* $\mathcal{L}_{a,.}$

Log-log linear behavior $\log(\mathcal{L}_{a,\cdot}) \simeq \underbrace{\mathbf{v}}_{\substack{\sim \log(\sigma^2) \\ (\text{variance})}} + \log(a) \underbrace{\mathbf{h}}_{regularity}$

Textured image Local supremum of wavelet coefficients: leaders $\mathcal{L}_{a,.}$

Log-log linear behavior $(f_{1}) \sim \mu_{1} + \log(2) - h$

$$\log \left(\mathcal{L}_{a,\cdot}
ight) \simeq rac{oldsymbol{v}}{\sim \log(\sigma^2)} + \log(a) rac{oldsymbol{h}}{regularity}$$
 $(ext{variance})$

Textured image Local supremum of wavelet coefficients: leaders $\mathcal{L}_{a,\cdot}$

Log-log linear behavior $\log(\mathcal{L}_{a,\cdot}) \simeq \underbrace{\underline{v}}_{\substack{\sim \log(\sigma^2) \\ (\text{variance})}} + \log(a) \underbrace{\underline{h}}_{regularity}$

Textured image Local supremum of wavelet coefficients: leaders $\mathcal{L}_{a,.}$

Log-log linear behavior

$$\log \left(\mathcal{L}_{a, \cdot} \right) \simeq \underbrace{\underline{\nu}}_{\substack{\sim \log(\sigma^2) \\ (\text{variance})}} + \log(a) \underbrace{\underline{h}}_{regularity}$$

Textured image Local supremum of wavelet coefficients: leaders $\mathcal{L}_{a,.}$

Log-log linear behavior

$$\log \left(\mathcal{L}_{a, \cdot} \right) \simeq \underbrace{\underline{\nu}}_{\substack{\sim \log(\sigma^2) \\ (\text{variance})}} + \log(a) \underbrace{\underline{h}}_{regularity}$$

Pointwise linear regression

$$\log\left(\mathcal{L}_{a,\cdot}
ight)\simeq rac{oldsymbol{v}}{\sim \log(\sigma^2)} + \log(a) rac{oldsymbol{h}}{regularity}$$

Pointwise linear regression

$$\log\left(\mathcal{L}_{\mathsf{a},\cdot}
ight)\simeq rac{\mathbf{v}}{_{\sim \log\left(\sigma^{2}
ight)}} + \log(a)rac{\mathbf{h}}{_{regularity}}$$

Textured image

Pointwise linear regression

Pointwise linear regression is an estimation from one sample!

One-step joint and coupled segmentation as a convex minimization

One-step joint and coupled segmentation as a convex minimization

$$\lambda \mathcal{R}(\boldsymbol{v}, \boldsymbol{h}; \alpha)$$

total variation \rightarrow enforce piecewise constancy

One-step joint and coupled segmentation as a convex minimization

X

One-step joint and coupled segmentation as a convex minimization

joint: **v**, **h** are **independently** piecewise constant

coupled: v, h are concomitantly piecewise constant

One-step joint and coupled segmentation as a convex minimization

Discrete differences Hx (horizontal), Vx (vertical) at each pixel

joint: v, h are independently piecewise constant

$$\mathcal{R}_{\mathsf{J}}(\boldsymbol{\nu},\boldsymbol{h};\alpha) = \left(\sum_{\mathsf{pixels}} \sqrt{(\mathsf{H}\boldsymbol{\nu})^2 + (\mathsf{V}\boldsymbol{\nu})^2} + \alpha \sum_{\mathsf{pixels}} \sqrt{(\mathsf{H}\boldsymbol{h})^2 + (\mathsf{V}\boldsymbol{h})^2}\right)$$

coupled: v, h are concomitantly piecewise constant

$$\mathcal{R}_{\mathsf{C}}(\boldsymbol{\nu},\boldsymbol{h};\alpha) = \sum_{\mathsf{pixels}} \sqrt{(\mathsf{H}\boldsymbol{\nu})^2 + (\mathsf{V}\boldsymbol{\nu})^2 + \alpha^2(\mathsf{H}\boldsymbol{h})^2 + \alpha^2(\mathsf{V}\boldsymbol{h})^2}$$

One-step joint and coupled segmentation as a convex minimization

joint: \mathbf{v} , \mathbf{h} are **independently** piecewise constant $\mathcal{R}_1(\mathbf{v}, \mathbf{h})$

 $\mathcal{R}_{\mathsf{J}}(\mathbf{v}, \mathbf{h}; \alpha) = \mathcal{R}(\mathbf{v}) + \alpha \mathcal{R}(\mathbf{h})$

<u>coupled</u>: \boldsymbol{v} , \boldsymbol{h} are **concomitantly** piecewise constant

$$\mathcal{R}_{\mathsf{C}}(\mathbf{v}, \mathbf{h}; \alpha) = \mathcal{R}(\mathbf{v}, \alpha \mathbf{h})$$

Fine tuning of regularization parameters

$$\begin{array}{ll} \underset{\boldsymbol{v},\boldsymbol{h}}{\text{minimize}} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \boldsymbol{v} - \log(a)\boldsymbol{h}\|^2}{|\text{east-squares}} & + & \lambda \frac{\mathcal{R}(\boldsymbol{v},\boldsymbol{h};\alpha)}{|\text{total variation}} \\ & \rightarrow \text{ fidelity to log-linear model} & \rightarrow \text{ enforce piecewise constancy} \end{array}$$

Fine tuning of regularization parameters

Fine tuning of regularization parameters (λ, α) is necessary ...

Fine tuning of regularization parameters

Fine tuning of regularization parameters (λ, α) is necessary ... but **costly**!

In practice, we explore a log-spaced grid of $15 \times 15 = 225$ hyperparameters (λ, α) .

Algorithmic scheme for joint and coupled functionals

$$\underset{\boldsymbol{\nu},\boldsymbol{h}}{\text{minimize}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a},.} - \boldsymbol{\nu} - \log(\boldsymbol{a})\boldsymbol{h}\|^2}{\text{least-squares}} + \frac{\lambda}{\text{total variation}} \frac{\mathcal{R}(\boldsymbol{\nu},\boldsymbol{h};\alpha)}{\text{total variation}}$$

Algorithmic scheme for joint and coupled functionals

primal-dual algorithm (Chambolle, Pock 11')
Texture's attributes estimation

Algorithmic scheme for joint and coupled functionals

Accelerated primal-dual algorithm (Chambolle, Pock 11')

Texture's attributes estimation

Algorithmic scheme for joint and coupled functionals

Accelerated primal-dual algorithm (Chambolle, Pock 11') $\mathbf{x}^{n} = (\mathbf{v}^{n}, \mathbf{h}^{n}), \quad \mathbf{y}^{n} = (\mathbf{u}^{n}, \ell^{n})$ $\mathbf{y}^{n+1} = \operatorname{prox}_{\sigma_{n} \parallel \cdot \parallel_{2,1}} (\mathbf{y}^{n} + \sigma_{n} \nabla \bar{\mathbf{x}}^{n})$ $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau_{n} \parallel \mathbf{A} \cdot - \mathbf{b} \parallel_{2}^{2}} (\mathbf{x}^{n} - \tau_{n} \nabla^{*} \mathbf{y}^{n+1})$ $\theta_{n} = \sqrt{1 + 2\mu\tau_{n}}, \quad \tau_{n+1} = \tau_{n}/\theta_{n}, \quad \sigma_{n+1} = \theta_{n}\sigma_{n}$ $\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta_{n}^{-1} (\mathbf{x}^{n+1} - \mathbf{x}^{n})$

If φ is twice-differentiable with Hessian $\pmb{H}\varphi$ and $\mu > 0$,

 φ is μ -strongly convex iif $\forall \eta \in \operatorname{Sp}(\mathcal{H}\varphi), \ \eta \geq \mu$.

In particular φ is min Sp($H\varphi$)-strongly convex.

$$\varphi_{\mathsf{A}}(\boldsymbol{v},\boldsymbol{h}) = \sum_{a=a_{\min}}^{a_{\max}} \|\log \mathcal{L}_{a,.} - \boldsymbol{v} - \log(a)\boldsymbol{h}\|^2 = \|\log \mathcal{L} - \mathsf{A}(\boldsymbol{v},\boldsymbol{h})\|^2$$

where $\mathbf{A} : (\mathbf{v}, \mathbf{h}) \mapsto {\mathbf{v} + \log(a)\mathbf{h}}_{a=a_{\min}}^{a_{\max}}$ is linear.

$$arphi_{\mathsf{A}}(\mathbf{v}, \mathbf{h}) = \sum_{a=a_{\min}}^{a_{\max}} \|\log \mathcal{L}_{a,.} - \mathbf{v} - \log(a)\mathbf{h}\|^2 = \|\log \mathcal{L} - \mathsf{A}(\mathbf{v}, \mathbf{h})\|^2$$

where $\mathbf{A}: (\mathbf{v}, \mathbf{h}) \mapsto \{\mathbf{v} + \log(a)\mathbf{h}\}_{a=a_{\min}}^{a_{\max}}$ is linear.

$$\boldsymbol{H}\varphi_{\boldsymbol{\mathsf{A}}}\left(\boldsymbol{\boldsymbol{v}},\boldsymbol{\boldsymbol{h}}\right) = \boldsymbol{\mathsf{A}}^{*}\boldsymbol{\mathsf{A}} = \begin{pmatrix} \mathrm{A}_{0}\boldsymbol{\boldsymbol{I}} & \mathrm{A}_{1}\boldsymbol{\boldsymbol{I}} \\ \mathrm{A}_{1}\boldsymbol{\boldsymbol{I}} & \mathrm{A}_{2}\boldsymbol{\boldsymbol{I}} \end{pmatrix}, \ \mathrm{A}_{m} = \sum_{\boldsymbol{a}=\boldsymbol{a}_{\min}}^{\boldsymbol{a}_{\max}} (\log \boldsymbol{a})^{m}, \ \forall m \in \{0,1,2\}.$$

$$arphi_{\mathsf{A}}(\mathbf{v}, \mathbf{h}) = \sum_{a=a_{\min}}^{a_{\max}} \|\log \mathcal{L}_{a,.} - \mathbf{v} - \log(a)\mathbf{h}\|^2 = \|\log \mathcal{L} - \mathsf{A}(\mathbf{v}, \mathbf{h})\|^2$$

where $\mathbf{A} : (\mathbf{v}, \mathbf{h}) \mapsto \{\mathbf{v} + \log(a)\mathbf{h}\}_{a=a_{\min}}^{a_{\max}}$ is linear.

$$\boldsymbol{H}\varphi_{\boldsymbol{\mathsf{A}}}\left(\boldsymbol{\boldsymbol{v}},\boldsymbol{\boldsymbol{h}}\right) = \boldsymbol{\mathsf{A}}^{*}\boldsymbol{\mathsf{A}} = \begin{pmatrix} \mathrm{A}_{0}\boldsymbol{\boldsymbol{I}} & \mathrm{A}_{1}\boldsymbol{\boldsymbol{I}} \\ \mathrm{A}_{1}\boldsymbol{\boldsymbol{I}} & \mathrm{A}_{2}\boldsymbol{\boldsymbol{I}} \end{pmatrix}, \ \mathrm{A}_{m} = \sum_{\boldsymbol{a}=\boldsymbol{a}_{\min}}^{\boldsymbol{a}_{\max}} (\log \boldsymbol{a})^{m}, \ \forall m \in \{0,1,2\}.$$

Prop: $\varphi_{\mathbf{A}}(\mathbf{v}, \mathbf{h})$ is μ -strongly convex, μ the smallest eigenvalue of $\mathbf{A}^* \mathbf{A}$.

Primal problem

$$\widehat{x} = \operatorname*{argmin}_{x} \varphi_{\mathsf{A}}(x) + \mathcal{G}(\mathbf{\nabla} x)$$

Primal problem

Dual problem

$$\widehat{x} = \operatorname*{argmin}_{x} \varphi_{\mathsf{A}}(x) + \mathcal{G}(\boldsymbol{\nabla} x) \qquad \widehat{y} = \operatorname*{argmax}_{y} - \varphi_{\mathsf{A}}^{*}(-\boldsymbol{\nabla}^{*} y) - \mathcal{G}^{*}(y)$$

Primal problem

Dual problem

 $\widehat{x} = \operatorname*{argmin}_{x} \varphi_{\mathbf{A}}(x) + \mathcal{G}(\mathbf{\nabla}x) \qquad \widehat{y} = \operatorname*{argmax}_{y} - \varphi_{\mathbf{A}}^{*}(-\mathbf{\nabla}^{*}y) - \mathcal{G}^{*}(y)$

Primal problem

Dual problem

(x)

max

 $\widehat{x} = \operatorname*{argmin}_{x} \varphi_{\mathbf{A}}(x) + \mathcal{G}(\mathbf{\nabla}x) \qquad \widehat{y} = \operatorname*{argmax}_{y} - \varphi_{\mathbf{A}}^{*}(-\mathbf{\nabla}^{*}y) - \mathcal{G}^{*}(y)$

Duality gap $\delta(x; y)$

 $= \varphi_{\mathsf{A}}(x) + \mathcal{G}(\nabla x) + \varphi_{\mathsf{A}}^*(-\nabla^* y) + \mathcal{G}^*(y)$

Characterization of the solution

$$\delta(\widehat{x};\widehat{y}) \underset{\text{prop.}}{=} 0$$

min

 $\delta(;) = +$

$$\delta(\mathbf{v}, \mathbf{h}; \mathbf{v}) = \varphi_{\mathsf{A}}(\mathbf{v}, \mathbf{h}) + \mathcal{G}(\nabla \mathbf{v}, \nabla \mathbf{h}) + \varphi_{\mathsf{Primal}}(\nabla \mathbf{v}, \nabla \mathbf{h}) + \varphi_{\mathsf{Primin}}(\nabla \mathbf{v}, \nabla \mathbf{h}) + \varphi_{\mathsf{Prim}}(\nabla \mathbf{v},$$

Data fidelity

Penalization

 $arphi_{\mathsf{A}}(\mathbf{v}, \mathbf{h}) = \sum_{a} \|\mathbf{v} + \log(a)\mathbf{h} - \mathcal{L}_{a,.}\|_{2}^{2}$

 $\mathcal{G}(\boldsymbol{u},\boldsymbol{\ell}) = \lambda \left(\|\boldsymbol{u}\|_{2,1} + \alpha \|\boldsymbol{\ell}\|_{2,1} \right)$

 $\delta(\mathbf{v}, \mathbf{h}; \mathbf{u}, \mathbf{\ell}) = \varphi_{\mathsf{A}}(\mathbf{v}, \mathbf{h}) + \mathcal{G}(\nabla \mathbf{v}, \nabla \mathbf{h}) + \varphi_{\mathsf{A}}^*(-\nabla^* \mathbf{u}, -\nabla^* \mathbf{\ell}) + \mathcal{G}^*(\mathbf{u}, \mathbf{\ell})$ primal dual

Data fidelity $\varphi_{A}(\mathbf{v}, \mathbf{h}) = \sum_{a} \|\mathbf{v} + \log(a)\mathbf{h} - \mathcal{L}_{a,.}\|_{2}^{2}$

$$\begin{split} \varphi_{\mathsf{A}}^{*}(\boldsymbol{v},\boldsymbol{h}) \\ &= \frac{1}{4} \langle (\boldsymbol{v},\boldsymbol{h}), (\mathsf{A}^{*}\mathsf{A})^{-1}(\boldsymbol{v},\boldsymbol{h}) \rangle \\ &+ \langle (\mathcal{S},\mathcal{T}), (\mathsf{A}^{*}\mathsf{A})^{-1}(\boldsymbol{v},\boldsymbol{h}) \rangle \\ &+ \mathcal{C} \end{split}$$

where C constant term only depending on $\mathcal{L}_{a,..}$

Penalization

 $\mathcal{G}(\boldsymbol{u},\boldsymbol{\ell}) = \lambda \left(\|\boldsymbol{u}\|_{2,1} + \alpha \|\boldsymbol{\ell}\|_{2,1} \right)$

$$\begin{split} \mathcal{G}^*(\boldsymbol{u},\boldsymbol{\ell}) &= \iota_{\mathrm{B}_{2,\infty}(\lambda)}(\boldsymbol{u}) + \iota_{\mathrm{B}_{2,\infty}(\lambda\alpha)}(\boldsymbol{\ell}) \\ \mathrm{B}_{2,\infty}(\lambda): \text{ ball of radius } \lambda \text{ w.r.t. } \|.\|_{2,\infty}. \end{split}$$

 $\delta(\mathbf{v}, \mathbf{h}; \mathbf{u}, \mathbf{\ell}) = \varphi_{\mathsf{A}}(\mathbf{v}, \mathbf{h}) + \mathcal{G}(\nabla \mathbf{v}, \nabla \mathbf{h}) + \varphi_{\mathsf{A}}^*(-\nabla^* \mathbf{u}, -\nabla^* \mathbf{\ell}) + \mathcal{G}^*(\mathbf{u}, \mathbf{\ell})$ primal dual

Significant convergence acceleration Good stopping criterion: $\delta(\mathbf{v}^n, \mathbf{h}^n; \mathbf{u}^n, \ell^n) \le 10^{-3}$ State-of-the-art two-step texture segmentation

Factorization-based segmentation [Yuan *et al.* 15'][†]

(i) local spectral histograms

(ii) matrix factorization

Fig. 2. Scatterplot of features in subspace. (a) Scatterplot of features projected onto the 3-d subspace. (b) Scatterplot after removing features with high edgeness.

[†]https://sites.google.com/site/factorizationsegmentation/

State-of-the-art two-step texture segmentation

Factorization-based segmentation [Yuan *et al.* 15'][†]

(i) local spectral histograms

(ii) matrix factorization

Fig. 2. Scatterplot of features in subspace. (a) Scatterplot of features projected onto the 3-d subspace. (b) Scatterplot after removing features with high edgeness.

Threshold-ROF on \hat{h}^{LR} [Pustelnik 16']

$$\min_{\boldsymbol{h}} \|\boldsymbol{h} - \widehat{\boldsymbol{h}}^{\mathrm{LR}}\|^2 + \lambda \|\boldsymbol{\nabla}\boldsymbol{h}\|_{2,1}$$

Based on regularity \boldsymbol{h} only.

 † https://sites.google.com/site/factorizationsegmentation/

Normalized image

Textured

Physical quantities: gas volume & contact surface.

area

perimeter

Texture segmentation

Texture segmentation

Texture segmentation

Purpose: obtaining a partition of the image into two regions $\Omega=\Omega_1\bigsqcup\Omega_2$ $\Omega_1\text{: liquid, }\Omega_2\text{: gas.}$

 $Multiphasic \ flow. \ \ {\it Q}_{\rm G} = 300 mL/min \ - \ {\it Q}_{\rm L} = 300 mL/min: \ low \ activity$

$Multiphasic \ flow. \ \ {\it Q}_{\rm G} = 400 mL/min \ \ - \ {\it Q}_{\rm L} = 700 mL/min: \ transition$

Multiphasic flow. $\mathit{Q}_{\rm G} = 1200 \textrm{mL}/\textrm{min}$ - $\mathit{Q}_{\rm L} = 300 \textrm{mL}/\textrm{min}$: high activity

Liquid/Gas	Clear/Dark bubbles	Smooth
(regularity change)	(variance change)	contours

	Liquid/Gas	Clear/Dark bubbles	Smooth
	(regularity change)	(variance change)	contours
Yuan	×	✓	 Image: A second s

	Liquid/Gas (regularity change)	Clear/Dark bubbles (variance change)	Smooth contours
Yuan	×	✓	✓
T-ROF	 Image: A second s	✓	×

	Liquid/Gas (regularity change)	Clear/Dark bubbles (variance change)	Smooth contours
Yuan	×	✓	✓
T-ROF	 Image: A second s	✓	×
Joint	 Image: A set of the set of the	✓	~

	Liquid/Gas (regularity change)	Clear/Dark bubbles (variance change)	Smooth contours
Yuan	×	\checkmark	1
T-ROF	 Image: A set of the set of the	\checkmark	×
Joint	✓	\checkmark	~
Coupled	 Image: A second s	\checkmark	 Image: A second s

Comparison of the different methods

	Liquid/Gas (regularity change)	Clear/Dark bubbles (variance change)	Smooth contours
Yuan	×	\checkmark	✓
T-ROF	1	✓	×
Joint	1	✓	~
Coupled	✓	\checkmark	 Image: A second s

Coupled is the most satisfactory in term of segmentation quality ...

Comparison of the different methods

	Liquid/Gas (regularity change)	Clear/Dark bubbles (variance change)	Smooth contours
Yuan	×	\checkmark	1
T-ROF	1	 Image: A second s	X
Joint	✓	✓	~
Coupled	 Image: A start of the start of	✓	1

Coupled is the most satisfactory in term of segmentation quality ...

... but it is the most time consuming (2100s) Yuan(1s), T-ROF (12s), Joint (700s)

Ongoing work and perspectives

• Video analysis (temporal series of hundreds of images)

Intership of L. Helmlinger

Ongoing work and perspectives

• Video analysis (temporal series of hundreds of images)

Intership of L. Helmlinger

✓ Best (λ, α) tuned on 1st image is sufficiently robust for the entire series.
Ongoing work and perspectives

• Video analysis (temporal series of hundreds of images)

```
Intership of L. Helmlinger
```

- ✓ Best (λ, α) tuned on 1st image is sufficiently robust for the entire series.
- Time evolution of physical quantities can be assessed.

Liquid/gas contact perimeter

0

Ongoing work and perspectives

• Video analysis (temporal series of hundreds of images)

```
Intership of L. Helmlinger
```

Best (λ, α) tuned on 1st image is sufficiently robust for the entire series.

Time evolution of physical quantities can be assessed.

Automatic tuning of hyperparameters

Stein's Unbiased Risk Estimate $\widehat{R}(\lambda, \alpha)$ Stein Unbiased GrAdient estimator of the Risk $\nabla_{\lambda}\widehat{R}(\lambda, \alpha)$

Thank you for your attention!

Fully Convolutional Neural Networks[†]

[†] V. Andrearczyk, https://arxiv.org/abs/1703.05230

Fully Convolutional Neural Networks[†]

[†] V. Andrearczyk, https://arxiv.org/abs/1703.05230

Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Liquid: $h_1 = 0.4, \sigma_1^2 = 10^{-2}$

Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Liquid:
$$h_1 = 0.4, \ \sigma_1^2 = 10^{-2}$$

Gas: $\begin{vmatrix} h_2 = 0.9, \ \sigma_1^2 = 10^{-2} \ (dark \ bubbles) \end{vmatrix}$

$\ensuremath{\mathsf{Gas}}\xspace/\ensuremath{\mathsf{Iiquid}}\xspace$ flow modeled by piecewise monofractal textures

Synthetic textures

Liquid:
$$h_1 = 0.4, \ \sigma_1^2 = 10^{-2}$$

Gas: $\begin{vmatrix} h_2 = 0.9, \ \sigma_1^2 = 10^{-2} \ (dark \ bubbles) \\ h_2 = 0.9, \ \sigma_2^2 = 10^{-1} (clear \ bubbles) \end{vmatrix}$

Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Liquid:
$$h_1 = 0.4, \ \sigma_1^2 = 10^{-2}$$

Gas: $\begin{vmatrix} h_2 = 0.9, \ \sigma_1^2 = 10^{-2} \ (dark \ bubbles) \\ h_2 = 0.9, \ \sigma_2^2 = 10^{-1} (clear \ bubbles) \end{vmatrix}$

Segmentation performance

Optimization scheme - Monofractal model and piecewise constancy

$$\underset{\boldsymbol{v},\boldsymbol{h}}{\text{minimize}} \sum_{\boldsymbol{a}} \|\log \mathcal{L}_{\boldsymbol{a},.} - \boldsymbol{v} - \log(\boldsymbol{a})\boldsymbol{h}\|^2 + \lambda \mathcal{R}(\boldsymbol{v},\boldsymbol{h};\alpha)$$

Optimization scheme - Monofractal model and piecewise constancy

$$\underset{\boldsymbol{\nu},\boldsymbol{h}}{\text{minimize}} \sum_{\boldsymbol{a}} \|\log \mathcal{L}_{\boldsymbol{a},.} - \boldsymbol{\nu} - \log(\boldsymbol{a})\boldsymbol{h}\|^2 + \lambda \mathcal{R}(\boldsymbol{\nu},\boldsymbol{h};\alpha)$$

aim: enforce piecewise behavior of estimate

Optimization scheme - Monofractal model and piecewise constancy

$$\underset{\boldsymbol{\nu},\boldsymbol{h}}{\text{minimize}} \sum_{\boldsymbol{a}} \|\log \mathcal{L}_{\boldsymbol{a},.} - \boldsymbol{\nu} - \log(\boldsymbol{a})\boldsymbol{h}\|^2 + \lambda \mathcal{R}(\boldsymbol{\nu},\boldsymbol{h};\alpha)$$

State-of-the-art - Segmentation on h only

$$\min_{\boldsymbol{h}} \min \|\boldsymbol{h} - \hat{\boldsymbol{h}}^{\text{LR}}\|_2^2 + \lambda \mathcal{R}(\boldsymbol{h})$$

only one parameter λ

fast algorithms [Pascal2018]

$$\underset{\boldsymbol{h},\boldsymbol{\omega}}{\text{minimize}} \|\boldsymbol{h} - \sum_{\boldsymbol{a}} \boldsymbol{\omega}_{\boldsymbol{a}} \boldsymbol{\mathcal{L}}_{\boldsymbol{a},\cdot} \|_2^2 + \lambda \mathcal{R}(\boldsymbol{h},\boldsymbol{\omega};\boldsymbol{\alpha}_{\boldsymbol{a}})$$

very good accuracy [Pustelnik2016]

X additional constraints on $\{\omega\}_a$ **X** time and memory consuming

$$\varphi^*_{\mathsf{A}}(\boldsymbol{\textit{v}},\boldsymbol{\textit{h}}) = \sup_{\widetilde{\boldsymbol{\textit{v}}},\widetilde{\boldsymbol{\textit{h}}} \in \mathbb{R}^{|\Omega|}} \langle \widetilde{\boldsymbol{\textit{v}}},\boldsymbol{\textit{v}} \rangle + \langle \widetilde{\boldsymbol{\textit{h}}},\boldsymbol{\textit{h}} \rangle - \varphi_{\mathsf{A}}(\widetilde{\boldsymbol{\textit{v}}},\widetilde{\boldsymbol{\textit{h}}}) = \langle \overline{\boldsymbol{\textit{v}}},\boldsymbol{\textit{v}} \rangle + \langle \overline{\boldsymbol{\textit{h}}},\boldsymbol{\textit{h}} \rangle - \varphi_{\mathsf{A}}(\overline{\boldsymbol{\textit{v}}},\overline{\boldsymbol{\textit{h}}}).$$
(if sup is reached)

$$\varphi_{\mathbf{A}}^{*}(\boldsymbol{\nu},\boldsymbol{h}) = \sup_{\widetilde{\boldsymbol{\nu}},\widetilde{\boldsymbol{h}} \in \mathbb{R}^{|\Omega|}} \langle \widetilde{\boldsymbol{\nu}},\boldsymbol{\nu} \rangle + \langle \widetilde{\boldsymbol{h}},\boldsymbol{h} \rangle - \varphi_{\mathbf{A}}(\widetilde{\boldsymbol{\nu}},\widetilde{\boldsymbol{h}}) = \langle \overline{\boldsymbol{\nu}},\boldsymbol{\nu} \rangle + \langle \overline{\boldsymbol{h}},\boldsymbol{h} \rangle - \varphi_{\mathbf{A}}(\overline{\boldsymbol{\nu}},\overline{\boldsymbol{h}}).$$
(if sup is reached)

Euler condition

$$\begin{pmatrix} \mathbf{v} - 2\sum_{a} \left(\bar{\mathbf{v}} + \log(a)\bar{\mathbf{h}} - \log \mathcal{L}_{a,.} \right) = 0 \\ \mathbf{h} - 2\sum_{a} \log(a) \left(\bar{\mathbf{v}} + \log(a)\bar{\mathbf{h}} - \log \mathcal{L}_{a,.} \right) = 0 \end{cases}$$

$$\varphi^*_{\mathbf{A}}(\boldsymbol{\nu},\boldsymbol{h}) = \sup_{\widetilde{\boldsymbol{\nu}},\widetilde{\boldsymbol{h}} \in \mathbb{R}^{|\Omega|}} \langle \widetilde{\boldsymbol{\nu}},\boldsymbol{\nu} \rangle + \langle \widetilde{\boldsymbol{h}},\boldsymbol{h} \rangle - \varphi_{\mathbf{A}}(\widetilde{\boldsymbol{\nu}},\widetilde{\boldsymbol{h}}) = \langle \overline{\boldsymbol{\nu}},\boldsymbol{\nu} \rangle + \langle \overline{\boldsymbol{h}},\boldsymbol{h} \rangle - \varphi_{\mathbf{A}}(\overline{\boldsymbol{\nu}},\overline{\boldsymbol{h}}).$$
(if sup is reached)

Euler condition

$$\begin{cases} \mathbf{v} - 2\sum_{a} \left(\bar{\mathbf{v}} + \log(a) \bar{\mathbf{h}} - \log \mathcal{L}_{a,.} \right) = 0 \\ \mathbf{h} - 2\sum_{a} \log(a) \left(\bar{\mathbf{v}} + \log(a) \bar{\mathbf{h}} - \log \mathcal{L}_{a,.} \right) = 0 \end{cases} \iff \mathbf{A}^* \mathbf{A} \begin{pmatrix} \bar{\mathbf{v}} \\ \bar{\mathbf{h}} \end{pmatrix} = \begin{pmatrix} \mathbf{v}/2 + \mathcal{S} \\ \mathbf{h}/2 + \mathcal{T} \end{pmatrix} \\ \mathcal{S} = \sum_{a} \log \mathcal{L}_{a,.} \quad \text{and} \quad \mathcal{T} = \sum_{a} \log(a) \log \mathcal{L}_{a,.}, \end{cases}$$

$$arphi^*_{\mathsf{A}}(\mathbf{v},\mathbf{h}) = \sup_{\widetilde{\mathbf{v}},\widetilde{\mathbf{h}}\in\mathbb{R}^{|\Omega|}} \langle \widetilde{\mathbf{v}},\mathbf{v}
angle + \langle \widetilde{\mathbf{h}},\mathbf{h}
angle - arphi_{\mathsf{A}}(\widetilde{\mathbf{v}},\widetilde{\mathbf{h}}) = \langle \overline{\mathbf{v}},\mathbf{v}
angle + \langle \overline{\mathbf{h}},\mathbf{h}
angle - arphi_{\mathsf{A}}(\overline{\mathbf{v}},\overline{\mathbf{h}}).$$
(if sup is reached)

Euler condition

$$arphi^*_{\mathsf{A}}(\mathbf{v},\mathbf{h}) = \sup_{\widetilde{\mathbf{v}},\widetilde{\mathbf{h}}\in\mathbb{R}^{|\Omega|}} \langle \widetilde{\mathbf{v}},\mathbf{v}
angle + \langle \widetilde{\mathbf{h}},\mathbf{h}
angle - arphi_{\mathsf{A}}(\widetilde{\mathbf{v}},\widetilde{\mathbf{h}}) = \langle \overline{\mathbf{v}},\mathbf{v}
angle + \langle \overline{\mathbf{h}},\mathbf{h}
angle - arphi_{\mathsf{A}}(\overline{\mathbf{v}},\overline{\mathbf{h}}).$$
(if sup is reached)

Euler condition

where C constant term only depending on $\mathcal{L}(X)$.