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Describing and interpreting real-world images

Texture as a discriminating feature

Texture is of utmost importance in complex computer vision tasks.
scale-free segmentation
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Formulation of the texture segmentation problem

Purpose: obtaining a partition of the image into x homogeneous regions
Q=011...11.

Q: pixels corresponding to texture k.
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Texture's attributes definition

Piecewise monofractal model

2

Variance o amplitude of variations

Local regularity h scale-free behavior

N

h(x)=h =09 h(x)=h, =03

(0%7 hl) (0%7 hl)

Fit local behavior with power law functions

[f(x) = F(y)] < Clx — y|"™)

Segmentation requires local measurement of o2 and h.
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Multiscale analysis

Textured image  Local supremum of wavelet coefficients: leaders L, .

Scale a=21 a=22

Log-log linear behavior

log (La,.)

log (£,.)~ v +log(a) h
~log(o?) regularity /
(variance)
log(a)
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Texture's attributes estimation

Pointwise linear regression

log(La.)~ v +log(a) h

~log(o?) regularity

o 2
mmvlgnze ; [Nog (L,,.) — v — log(a)h]|

ELR

Textured image

Local power VLR Local regularity
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Texture's attributes estimation

Pointwise linear regression

Elog(L..)~ v +log(a) h

expected value ~log(o?) regularity

Textured image

Pointwise linear regression is an estimation from one sample!
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Texture's attributes estimation

One-step joint and coupled segmentation as a convex minimization
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— fidelity to log-linear model

log (La.)

e
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One-step joint and coupled segmentation as a convex minimization

2 .
E lllog L, — v — log(a)hl| A R(v, h; o)
a least-squares total variation
— fidelity to log-linear model — enforce piecewise constancy
log (£,,)
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8
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One-step joint and coupled segmentation as a convex minimization

mlmmlze Z log £, — v —log(a)h||* + A R(v, h; o)

least-squares total variation
— fidelity to log-linear model — enforce piecewise constancy

Discrete differences Hx (horizontal), Vx (vertical) at each pixel

log (£L,.)

joint: v, h are independently piecewise constant

Ry(v, b; ) Z\/Hv + (Vv)? +azx/Hh + (Vh)?

pixels pixels

coupled: v, h are concomitantly piecewise constant
(v.hia)= > /(Hv) )2 + a2(Hh)2 + a2(Vh)?

pixels
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Texture's attributes estimation

One-step joint and coupled segmentation as a convex minimization

minirl?ize Z log £, — v —log(a)h||* + A R(v, h; o)
’ a

least-squares total variation
— fidelity to log-linear model — enforce piecewise constancy

log (La.)

— D
8

joint: v, h are independently piecewise constant
Ry(v, h;a) =R(v) + aR(h)

coupled: v, h are concomitantly piecewise constant
Rec(v, h;a) = R(v, ah)

7/17



Texture's attributes estimation

Fine tuning of regularization parameters

minirlrrnze Z log £, — v —log(a)h||* + A R(v, h; o)
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least-squares total variation
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minirlrrnze Z log £, — v —log(a)h||* + A R(v, h; o)
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least-squares total variation
— fidelity to log-linear model — enforce piecewise constancy

log (La.)

— D
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Fine tuning of regularization parameters (), o) is necessary ...
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too small optimal too large
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Texture's attributes estimation

Fine tuning of regularization parameters

minirlrrnze Z log £, — v —log(a)h||* + A R(v, h; o)
’ a

least-squares total variation
— fidelity to log-linear model — enforce piecewise constancy

. Y
Fine tuning of regularization parameters (), «) is necessary ... but costly!

L I,

too small optimal too large

log (£,

I

In practice, we explore a log-spaced grid of 15 x 15 = 225 hyperparameters (), «).
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Texture's attributes estimation

Algorithmic scheme for joint and coupled functionals

mmlmlze Z llog £.. — v —log(a)h|®> + X R(v,h;q)

least-squares total variation
— strongly convex — non-smooth

@ is p-strongly convex iff .
" )
@ — /E||H2 is convex. : -\/--

Accelerated primal-dual algorithm (Chambolle, Pock 11")
X = (), Y = (" €)
y"+1 = ProXs II-ll2.1 (y" + O'nV)_(")
X prox gz (7~ 7V )
0, = V 1+ 2#7’,,, Th+1 = 7_n/env Ontl = 00,

)-(n+1 — Xn+1 + 9;1 (xn+1 _ X")
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Strong convexity of data fidelity term

@ is p-strongly convex iff ¢ — %||||2 is convex.

—z 2t —x > exp(|z])

v strictly convex v strictly convex
X not strongly convex v/ 1-strongly convex
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Strong convexity of data fidelity term

@ is p-strongly convex iff ¢ — %||||2 is convex.

—z 2t —x > exp(|z])

v strictly convex v strictly convex
X not strongly convex v/ 1-strongly convex

If ¢ is twice-differentiable with Hessian Hy and u > 0,

@ is p-strongly convex iif Vnj € Sp(Hy), n > p.

[ In particular ¢ is min Sp(H¢)-strongly convex.
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Strong convexity of data fidelity term

dmax

pa(v,h) = Y [log £, — v — log(a)h||* = ||log £ — A(v, h)|

a=3amin

where A : (v, h) — {v +log(a)h}3rs s linear.

a=amij
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Strong convexity of data fidelity term

dmax

oa(v.h) = > |llog £, — v — log(a)h|]* = ||log £ — A(v, h)||?

a=3amin

where A : (v, h) — {v + log(a)h}2mx s linear.

a=3amin

e (Aol Agl e m
Hoa (v, h) = A A_(All Azl),Am_ > (loga)™, vm € {0,1,2}.

a=3amin
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Strong convexity of data fidelity term

dmax

pa(v,h) = Y [log £, — v — log(a)h||* = ||log £ — A(v, h)|

a=3dmin
where A : (v, h) — {v +log(a)h}3rs s linear.
_prp (Aol Axl e m
Hoa (v, h) = A*A = (All Ay) JAm = :Z (loga)™, Vm € {0,1,2}.

Prop: pa(v, h) is p-strongly convex, 1 the smallest eigenvalue of A*A.

Strong-convexity constant

——amin = 1

amin = 2

2 — Quadratic
3
1 /

2 4 6 8 10
Largest scale log(aax)
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Convergence speed and stopping criterion
Duality gap

Primal problem

X = argmin pa(x) + G(Vx)
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Convergence speed and stopping criterion
Duality gap

Primal problem Dual problem

X = argmin pa(x) +G(Vx) y = argmax — @a(—=V*y) —G*(y)
X y

P(x)

min
max
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Convergence speed and stopping criterion
Duality gap

Primal problem Dual problem

X = argmin pa(x) + G(Vx) y = argmax — oa(—V7*y) = G*(y)
X y

P(x)
Duality gap d(x;y)
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Convergence speed and stopping criterion
Duality gap

Primal problem Dual problem

X = argmin pa(x) + G(Vx) y = argmax — oa(—V7*y) = G*(y)
X y

P ()

Duality gap d(x;y)

= oa(x) +G(Vx) + oa(=V7*y) +G*(y)

Characterization of the solution

i(x;y) = 0

prop.
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Computing the duality gap

For Joint penalization

+
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Computing the duality gap

For Joint penalization

d(v,h; ) =pa(v,h)+G(Vv,Vh)+

primal
Data fidelity Penalization
oa(v,h) = |lv+log(a)h — Lo |5 G(u, &) = A(llullzx + af|€]]2.1)
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Computing the duality gap

For Joint penalization

(v, h;u,£) =poa(v,h)+G(Vv,Vh)+oi(-V*u,~V*£) +G*(u,£)

primal dual

Data fidelity Penalization
oa(v, h) = ZHV + log(a)h — L, |I3 G(u, £) = A([lull21 + afl€]]2,1)
oa(v, h) G (u,£) = LBZOO(,\)(U) + LBZ)OC()\Q)(Z)
= %((W h), (A*A) (v, h)) Ba,oo(A): ball of radius A w.r.t. ||.||2,00-
+((S,T), (A"A)" (v, h))
+C

where C constant term only
depending on L, ..
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Computing the duality gap

For Joint penalization

(v, h;u,£) =poa(v,h)+G(Vv,Vh)+oi(-V*u,~V*£) +G*(u,£)

primal dual

— Primal dual
5 — Stong-convexity

0 200 400 600 800
Time (s)

\/ Significant convergence acceleration

Good stopping criterion: 6(v", h"; u", £") < 1073
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State-of-the-art two-step texture segmentation

Factorization-based
segmentation [Yuan et al. 15’]

(i) local spectral histograms

HERENA=N

(ii) matrix factorization

¥

(a)
catierplot of features in subspace. (1)
3-d subspace. (b) Scatterplot after

Thttps ://sites.google.com/site/factorizationsegmentation/

14 /17



State-of-the-art two-step texture segmentation

Factorization-based Threshold-ROF on hF
segmentation [Yuan et al. 15’] [Pustelnik 16°]
. : : PLR |2
(i) local spectral histograms min [h — h=7[1" + AV h|2,1

HEREENA=N Threshold

Lin. .
(ii) matrix factorization
i L.
uu. i‘ d “.A ‘ :

Based on regularity h only.

es in subspac: y< aerp
3-d subspace. by Sea nrpll e

Thttps ://sites.google.com/site/factorizationsegmentation/
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Multiphasic (quasi 2D) flow in a porous media
Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

porous media (solid foam) L = 30cm

liquid injection (homogenous slit)
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Multiphasic (quasi 2D) flow in a porous media

Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

porous media (solid foam) L = 30cm

Normalized image

Textured

?ififiii? gas injectors

liquid injection (homogenous slit)
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Multiphasic (quasi 2D) flow in a porous media
Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Normalized image

porous media (solid foam) L = 30cm

Textured

liquid injection (homogenous slit)

Physical quantities: gas volume & contact surface.
area perimeter

15 /17



Texture segmentation
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Texture segmentation
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Texture segmentation

Purpose: obtaining a partition of the image into two regions
Q=1
Qq: liquid, €2,: gas.

16 /17



Multiphasic ﬂOW Qc = 300mL/min - Q. = 300mL/min: low activity

Zooms Yuan T-ROF Joint Coupled
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I\/Iultiphasic ﬂOW Qc = 400mL/min - Q, = 700mL/min: transition

Joint Coupled
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Multiphasic ﬂOW Qc = 1200mL/min - Q, = 300mL/min: high activity

Joint Coupled
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Conclusion
Comparison of the different methods

Liquid/Gas Clear/Dark bubbles Smooth
(regularity change) (variance change) contours
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Conclusion
Comparison of the different methods

Liquid/Gas Clear/Dark bubbles Smooth
(regularity change) (variance change) contours
Yuan X v v
T-ROF v v/ X
Joint v v
Coupled v v v

Coupled is the most satisfactory in term of segmentation quality ...

... but it is the most time consuming (2100s)
Yuan(1s), T-ROF (12s), Joint (700s)

20 /17



Ongoing work and perspectives

® Video analysis (temporal series of hundreds of images)
Intership of L. Helmlinger
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Ongoing work and perspectives

® Video analysis (temporal series of hundreds of images)
Intership of L. Helmlinger

v Best (), ) tuned on 15t image is sufficiently robust for the entire series.
v/ Time evolution of physical quantities can be assessed.
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Ongoing work and perspectives

® Video analysis (temporal series of hundreds of images)
Intership of L. Helmlinger

v Best (), ) tuned on 15t image is sufficiently robust for the entire series.
v/ Time evolution of physical quantities can be assessed.

Fraction of gas (area) Liquilt(il/gas contact perimeter

—Joimt
—Coupled

—Joint
—Coupled|

0 50 100 0 50 100
Time Time

® Automatic tuning of hyperparameters

Stein’s Unbiased Risk Estimate /Ii()\,a)
Stein Unbiased GrAdient estimator of the Risk V\R(}\, &)
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Thank you for your attention!
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Fully Convolutional Neural Networks'

Flow

T V. Andrearczyk, https://arxiv.org/abs/1703.05230
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Fully Convolutional Neural Networks'

Flow Joint Coupled

e
M.

T V. Andrearczyk, https://arxiv.org/abs/1703.05230

FCN
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Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Mask Texture

Liquid: h; = 0.4, 02 = 1072
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Synthetic textures

Mask Texture
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Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Mask Texture

Liquid: h; = 0.4, 02 = 1072
Gas: | 2=109, 02 = 1072 (dark bubbles)
' h, = 0.9, 0% = 107 (clear bubbles)
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Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Mask Texture

Liquid: h; = 0.4, 02 = 1072
Gas: | 2=109, 02 = 1072 (dark bubbles)
' h, = 0.9, 0% = 107 ¥(clear bubbles)

Segmentation performance

'Gas/Liquid’

Yuan 88% T-ROF 88%  Joint 95% Coupled 95%
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Optimization scheme - Monofractal model and piecewise constancy

minirﬁlize ZHIog L, —v—log(a)h|® + A\R(v, h; a)
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Optimization scheme - Monofractal model and piecewise constancy
s 2 .
minimize ZHIog L, —v—log(a)h||*+ AR(v, h; a)

aim: enforce piecewise behavior of estimate

Discrete difference operator

[} [ ] [ ]
(VX) - Xny,no+1 — Xny,mp o Hx
S Xp4+1,m — Xny,m ) Vx
R (m‘nz) (nl.‘ng-&-l) 1+1,m 1,M2 n1,m
H Total variation penalization
v N—1 N—1
[} [ ] [ ] _ — 2 2
() R(x) = 19x121 = D D \/(HX)3,  + (V3
n1:1 n2:1

Too small Optimal Too large
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Optimization scheme - Monofractal model and piecewise constancy
minirﬁlize ZHIog L, —v—log(a)h|® + A\R(v, h; a)
State-of-the-art - Segmentation on h only
minihmize Ilh — ELRH% + AR(h) mir;'imize [h =Y, wals |3+ AR(h,w;as)
W

v only one parameter A X additional constraints on {w}a
V fast algorithms [Pascal2018] X time and memory consuming

= Primal dual
—- Block-coordinate|
N\ > — Stong-convexity

(S

0 200 400 600 800
Time (s)
X poor segmentation performance \/ very good accuracy [Pustelnik2016]
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Convex conjugate of data fidelity term

alv.h) = _sup (V,v)+ (h,h) —oa(V,h) = (¥,v) + (b, h) — oa(¥, h).
;,FG]RIQ\ (if sup is reached)
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Convex conjugate of data fidelity term

Pa(v.h) = sup (¥,v) + (h,h) — oa(V, h) = (¥,v) + (h, h) — oa(V, ).
V,heRrI®| (if sup is reached)
Euler condition
v—2Y,(v+log(a)h—log£,.) =0
{ h—2%"log(a) (v+ log(a)h — log L£,)=0
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Convex conjugate of data fidelity term

alv.h) = _sup (V,v)+ (h,h) —oa(V,h) = (¥,v) + (b, h) — oa(¥, h).
V,FG]RIQ\ (if sup is reached)

Euler condition

v—2Y,(v+log(a)h—log£,.) =0 e AA W\ (v2+S
{ h 23" log(a) (v +log(a)h —log £, ) =0 (h> (h/2+”r>

S = Z logL,. and T = Zlog(a) log £, _,

_ _ m sp _ (Aol Al
Vm=1{0,1,2}, A = (loga), AA(AII A21>

a

1 * — * —
¥a(v,h) =2 ((v. h),(A"A) Hv, h)) + (8, T), (A"A) Y (v, h)) +C
where C constant term only depending on L£(X).
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