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Université Catholique de Louvain
December, 10th 2019

1 Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS,
Laboratoire de Physique, F-69342 Lyon, France, firstname.lastname@ens-lyon.fr

† Supported by Defi Imag’in SIROCCO and ANR-16-CE33-0020 MultiFracs, France.



Describing and interpreting real-world images
Texture as a discriminating feature

2 / 17



Describing and interpreting real-world images
Texture as a discriminating feature

2 / 17



Describing and interpreting real-world images
Texture as a discriminating feature

2 / 17



Describing and interpreting real-world images
Texture as a discriminating feature

Texture is of utmost importance in complex computer vision tasks.

2 / 17



Describing and interpreting real-world images
Texture as a discriminating feature

Texture
scale-free

is of utmost importance in complex computer vision tasks
segmentation

.

2 / 17



Formulation of the texture segmentation problem

Purpose: obtaining a partition of the image into κ homogeneous regions

Ω = Ω1
⊔
. . .
⊔Ωκ

Ωk : pixels corresponding to texture k.
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Texture’s attributes definition
Piecewise monofractal model

Variance σ2 amplitude of variations

Local regularity h scale-free behavior

h(x) ≡ h1 = 0.9 h(x) ≡ h2 = 0.3

Fit local behavior with power law functions

|f (x)− f (y)| ≤ C |x − y |h(x)

Segmentation requires local measurement of σ2 and h.
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Texture’s attributes estimation
Multiscale analysis

Textured image

Local supremum of wavelet coefficients: leaders La,·
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Texture’s attributes estimation
Pointwise linear regression

log (La,·) ' v
∼log(σ2)

+ log(a) h
regularity

minimize
v,h

∑
a
‖log (La,·)− v − log(a)h‖2

Textured image

Local power v̂LR Local regularity ĥLR

Pointwise linear regression is an estimation from one sample!
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Texture’s attributes estimation
Pointwise linear regression

E log (La,·)
expected value

' v
∼log(σ2)

+ log(a) h
regularity

minimize
v,h

∑
a
‖log (La,·)− v − log(a)h‖2

Textured image Local power v̂LR Local regularity ĥLR
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Texture’s attributes estimation
One-step joint and coupled segmentation as a convex minimization

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares
→ fidelity to log-linear model

+ λ R(v ,h;α)
total variation

→ enforce piecewise constancy

Discrete differences Hx (horizontal), Vx (vertical) at each pixel

joint: v , h are independently piecewise constant

coupled: v , h are concomitantly piecewise constant
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+ λ R(v ,h;α)
total variation

→ enforce piecewise constancy

Discrete differences Hx (horizontal), Vx (vertical) at each pixel

joint: v , h are independently piecewise constant

RJ(v ,h;α) =

∑
pixels

√
(Hv)2 + (Vv)2 + α

∑
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√
(Hh)2 + (Vh)2
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coupled: v , h are concomitantly piecewise constant
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∑
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One-step joint and coupled segmentation as a convex minimization

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares
→ fidelity to log-linear model

+ λ R(v ,h;α)
total variation

→ enforce piecewise constancy

Discrete differences Hx (horizontal), Vx (vertical) at each pixel

joint: v , h are independently piecewise constant
RJ(v ,h;α) = R(v) + αR(h)

coupled: v , h are concomitantly piecewise constant
RC(v ,h;α) = R(v , αh)
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Texture’s attributes estimation
Fine tuning of regularization parameters

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares
→ fidelity to log-linear model

+ λ R(v ,h;α)
total variation

→ enforce piecewise constancy

Fine tuning of regularization parameters (λ, α) is necessary . . . but costly!

too small optimal too large

In practice, we explore a log-spaced grid of 15× 15 = 225 hyperparameters (λ, α).
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Texture’s attributes estimation
Algorithmic scheme for joint and coupled functionals

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares

→ strongly convex

+ λ R(v ,h;α)
total variation

→ non-smooth

ϕ is µ-strongly convex iff
ϕ−

µ

2
‖·‖2 is convex.

Accelerated primal-dual algorithm (Chambolle, Pock 11’)
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Algorithmic scheme for joint and coupled functionals

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares
→ strongly convex

+ λ R(v ,h;α)
total variation
→ non-smooth

ϕ is µ-strongly convex iff
ϕ−

µ

2
‖·‖2 is convex.

Accelerated primal-dual algorithm (Chambolle, Pock 11’)
xn = (vn,hn), yn = (un, `n)

yn+1 = proxσn‖·‖2,1 (yn + σn∇x̄n)
xn+1 = proxτn‖A·−b‖2

2

(
xn − τn∇∗yn+1)

θn =
√

1 + 2µτn, τn+1 = τn/θn, σn+1 = θnσn

x̄n+1 = xn+1 + θ−1
n
(
xn+1 − xn)
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Strong convexity of data fidelity term
ϕ is µ-strongly convex iff ϕ− µ

2 ‖·‖
2 is convex.

3 strictly convex
7 not strongly convex

3 strictly convex
3 1-strongly convex

If ϕ is twice-differentiable with Hessian Hϕ and µ > 0,

ϕ is µ-strongly convex iif ∀η ∈ Sp(Hϕ), η ≥ µ.

In particular ϕ is min Sp(Hϕ)-strongly convex.
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Strong convexity of data fidelity term

ϕA(v ,h) =
amax∑

a=amin

‖log La,. − v − log(a)h‖2 = ‖log L− A(v ,h)‖2

where A : (v ,h) 7→ {v + log(a)h}amax
a=amin

is linear.

HϕA (v ,h) = A∗A =
(

A0I A1I
A1I A2I

)
, Am =

amax∑
a=amin

(log a)m, ∀m ∈ {0, 1, 2}.

Prop: ϕA(v ,h) is µ-strongly convex, µ the smallest eigenvalue of A∗A.

a

a

a
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Convergence speed and stopping criterion
Duality gap

Primal problem

x̂ = argmin
x

ϕA(x) + G(∇x)

Dual problem

ŷ = argmax
y

− ϕ∗A(−∇∗y)− G∗(y)

Duality gap δ(x ; y)

=
def.

ϕA(x) + G(∇x) + ϕ∗A(−∇∗y) + G∗(y)

Characterization of the solution

δ(x̂ ; ŷ) =
prop.

0
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Computing the duality gap
For Joint penalization

δ(

v ,h
primal

;

u, `
dual

) =

ϕA(v ,h) +G(∇v ,∇h)

+

ϕ∗A(−∇∗u,−∇∗`) +G∗(u, `)

Data fidelity

ϕA(v , h) =
∑

a

‖v + log(a)h −La,.‖2
2

Penalization

G(u, `) = λ (‖u‖2,1 + α‖`‖2,1)
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a

‖v + log(a)h −La,.‖2
2

Penalization

G(u, `) = λ (‖u‖2,1 + α‖`‖2,1)

ϕ∗A(v , h)

= 1
4 〈(v , h), (A∗A)−1(v , h)〉

+ 〈(S,T ), (A∗A)−1(v , h)〉
+ C

where C constant term only
depending on La,·.

G∗(u, `) = ιB2,∞(λ)(u) + ιB2,∞(λα)(`)

B2,∞(λ): ball of radius λ w.r.t. ‖.‖2,∞.
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ϕA(v , h) =
∑

a

‖v + log(a)h −La,.‖2
2

Penalization

G(u, `) = λ (‖u‖2,1 + α‖`‖2,1)

3 Significant convergence acceleration
3 Good stopping criterion: δ(vn, hn; un, `n) ≤ 10−3
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State-of-the-art two-step texture segmentation

Factorization-based
segmentation [Yuan et al. 15’]†

(i) local spectral histograms

(ii) matrix factorization

Threshold-ROF on ĥLR

[Pustelnik 16’]

min
h
‖h − ĥLR‖2 + λ‖∇h‖2,1

Lin. reg. ROF Threshold

Based on regularity h only.

†https://sites.google.com/site/factorizationsegmentation/
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Multiphasic (quasi 2D) flow in a porous media
Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)
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Texture segmentation

Purpose: obtaining a partition of the image into two regions

Ω = Ω1
⊔Ω2

Ω1: liquid, Ω2: gas.
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Multiphasic flow. QG = 300mL/min - QL = 300mL/min: low activity

Flow Zooms Yuan T-ROF Joint Coupled
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Multiphasic flow. QG = 400mL/min - QL = 700mL/min: transition

Flow Zooms Yuan T-ROF Joint Coupled
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Multiphasic flow. QG = 1200mL/min - QL = 300mL/min: high activity

Flow Zooms Yuan T-ROF Joint Coupled
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Conclusion
Comparison of the different methods

Liquid/Gas
(regularity change)

Clear/Dark bubbles
(variance change)

Smooth
contours

Yuan 7 3 3

T-ROF 3 3 7

Joint 3 3 ∼∼∼
Coupled 3 3 3

Coupled is the most satisfactory in term of segmentation quality . . .

. . . but it is the most time consuming (2100s)
Yuan(1s), T-ROF (12s), Joint (700s)
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Ongoing work and perspectives

• Video analysis (temporal series of hundreds of images)
Intership of L. Helmlinger

3 Best (λ, α) tuned on 1st image is sufficiently robust for the entire series.
3 Time evolution of physical quantities can be assessed.

Fraction of gas (area) Liquid/gas contact perimeter

• Automatic tuning of hyperparameters
Stein’s Unbiased Risk Estimate R̂(λ, α)

Stein Unbiased GrAdient estimator of the Risk ∇λR̂(λ, α)
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Thank you for your attention!
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Fully Convolutional Neural Networks†

Flow Joint Coupled FCN

† V. Andrearczyk, https://arxiv.org/abs/1703.05230
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Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Liquid: h1 = 0.4, σ2
1 = 10−2

Gas:
∣∣∣∣ h2 = 0.9, σ2

1 = 10−2 (dark bubbles)
h2 = 0.9, σ2

2 = 10−1(clear bubbles)

Mask Texture

Segmentation performance
’Gas/Liquid’ Yuan 88% T-ROF 88% Joint 95% Coupled 95%
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Optimization scheme - Monofractal model and piecewise constancy

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2 + λR(v ,h;α)
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Optimization scheme - Monofractal model and piecewise constancy

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2 + λR(v ,h;α)

aim: enforce piecewise behavior of estimate

Discrete difference operator

(∇x)n1,n2
:=
(

xn1,n2+1 − xn1,n2

xn1+1,n2 − xn1,n2

)
:=
[

Hx
Vx

]
n1,n2

Total variation penalization

R(x) = ‖∇x‖2,1 =
N−1∑
n1=1

N−1∑
n2=1

√
(Hx)2

n1,n2
+ (Vx)2

n1,n2

Too small Optimal Too large
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Optimization scheme - Monofractal model and piecewise constancy

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2 + λR(v ,h;α)

State-of-the-art - Segmentation on h only

minimize
h

‖h − ĥLR‖2
2 + λR(h) minimize

h,ω
‖h −

∑
a ωaLa,.‖2

2 + λR(h,ω;αa)

3 only one parameter λ 7 additional constraints on {ω}a

3 fast algorithms [Pascal2018] 7 time and memory consuming

7 poor segmentation performance 3 very good accuracy [Pustelnik2016]
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Convex conjugate of data fidelity term

ϕ∗A(v ,h) = sup
ṽ ,̃h∈R|Ω|

〈ṽ , v〉+ 〈h̃,h〉 − ϕA(ṽ , h̃) = 〈v̄ , v〉+ 〈h̄
(if sup is reached)

,h〉 − ϕA(v̄ , h̄).

Euler condition v − 2
∑

a
(
v̄ + log(a)h̄ − log La,.

)
= 0

h − 2
∑

a log(a)
(
v̄ + log(a)h̄ − log La,.

)
= 0

⇐⇒ A∗A
(

v̄
h̄

)
=
(

v/2 + S
h/2 + T

)

S =
∑

a
log La,. and T =

∑
a

log(a) log La,.,

∀m = {0, 1, 2}, Am =
∑

a
(log a)m, A∗A =

(
A0I A1I
A1I A2I

)

ϕ∗A(v ,h) = 1
4 〈(v ,h), (A∗A)−1(v ,h)〉+ 〈(S,T ), (A∗A)−1(v ,h)〉+ C

where C constant term only depending on L(X ).
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