

Proximal-Langevin samplers for nonsmooth composite posteriors: Application to the estimation of Covid19 reproduction number

P. Abry $^{1,\dagger},~G.~Fort^{2,\ddagger},~\underline{B.~Pascal}^{3,\dagger},~N.~Pustelnik^1$

EUSIPCO 2023, Helsinki, Finland

- 1. CNRS, ENS de Lyon, Laboratoire de Physique, France,
- 2. CNRS, Institut de Mathématiques de Toulouse, France,
- 3. CNRS, LS2N, Nantes, France
- † Supported by ANR-23-CE48-0009 " OptiMoCSI"
- [‡] Partly funded by Fondation Simone et Cino Del Duca, Institut de France

Main challenges of epidemic surveillance

Main challenges of epidemic surveillance

data collected by Johns Hopkins University from Public Health Agencies

Design of adapted sanitary measures and impact evaluation requires:

- $\rightarrow\,$ efficient monitoring tools
- $\rightarrow\,$ robustness to low quality of the data
- ightarrow reliable confidence levels

epidemiological model, handle outlier values, credibility intervals.

Main challenges of epidemic surveillance

data collected by Johns Hopkins University from Public Health Agencies

Design of adapted sanitary measures and impact evaluation requires:

- $\rightarrow\,$ efficient monitoring tools
- ightarrow robustness to low quality of the data
- ightarrow reliable confidence levels

epidemiological model, handle outlier values, credibility intervals.

Key indicator: reproduction number R₀ (Liu et al., 2018, PNAS)

"averaged number of secondary cases generated by a typical contagious individual"

 \implies relaxed into an effective time-varying reproduction number R_t at day t

(Cori et al., 2013, Am Journal of Epidemiology)

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-1}, \mathsf{Z}_{t-2}, \ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- $\Phi:$ serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_T)$ reproduction numbers at day $t = 1, \dots, T$
- $\mathbf{O} = (\mathsf{O}_1, \cdots, \mathsf{O}_T)$ errors at day $t = 1, \dots, T$

(Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-1}, \mathsf{Z}_{t-2}, \ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\theta)\right), \quad \mathsf{p}_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- $\Phi:$ serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_{\mathcal{T}})$ reproduction numbers at day $t = 1, \ldots, \mathcal{T}$
- $\mathbf{O} = (\mathsf{O}_1, \cdots, \mathsf{O}_T)$ errors at day $t = 1, \dots, T$
- ► $\theta = (\mathbf{R}, \mathbf{O})$ to be estimated from $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_T)$ conditionally to $\mathbf{Z}_0, \mathbf{Z}_{-1}, \dots$ (Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-1}, \mathsf{Z}_{t-2}, \ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\theta)\right), \quad \mathsf{p}_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- $\Phi:$ serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_T)$ reproduction numbers at day $t = 1, \dots, T$
- $\mathbf{O} = (\mathsf{O}_1, \cdots, \mathsf{O}_T)$ errors at day $t = 1, \ldots, T$
- ► $\theta = (\mathbf{R}, \mathbf{O})$ to be estimated from $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_T)$ conditionally to $\mathbf{Z}_0, \mathbf{Z}_{-1}, \dots$ (Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(\boldsymbol{ heta}) \propto \exp\left(-f(\boldsymbol{ heta}) - g(\mathsf{A}\boldsymbol{ heta})\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{ heta})$$

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-1}, \mathsf{Z}_{t-2}, \ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\boldsymbol{\theta})\right), \quad \mathsf{p}_t(\boldsymbol{\theta}) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- $\Phi:$ serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_{\mathcal{T}})$ reproduction numbers at day $t = 1, \ldots, \mathcal{T}$
- $\mathbf{O} = (\mathsf{O}_1, \cdots, \mathsf{O}_T)$ errors at day $t = 1, \dots, T$
- ▶ θ = (R, 0) to be estimated from Z = (Z₁,...,Z_T) conditionally to Z₀, Z₋₁,... (Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

• $\mathcal{D} = \{ \theta \mid \forall t \colon \mathsf{R}_t \geq 0 \text{ and, if } \mathsf{Z}_t > 0, \mathsf{p}_t(\theta) > 0; \text{ else if } \mathsf{Z}_t = 0, \mathsf{p}_t(\theta) \geq 0 \}$

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-1}, \mathsf{Z}_{t-2}, \ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\theta)\right), \quad \mathsf{p}_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- $\Phi:$ serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_T)$ reproduction numbers at day $t = 1, \ldots, T$
- $\mathbf{O} = (\mathsf{O}_1, \cdots, \mathsf{O}_T)$ errors at day $t = 1, \dots, T$
- ► $\theta = (\mathbf{R}, \mathbf{O})$ to be estimated from $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_T)$ conditionally to $\mathbf{Z}_0, \mathbf{Z}_{-1}, \dots$ (Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

• $\mathcal{D} = \{ \boldsymbol{\theta} \mid \forall t \colon \mathsf{R}_t \geq 0 \text{ and, if } \mathsf{Z}_t > 0, \mathsf{p}_t(\boldsymbol{\theta}) > 0; \text{ else if } \mathsf{Z}_t = 0, \mathsf{p}_t(\boldsymbol{\theta}) \geq 0 \}$

•
$$f(\theta) := \begin{cases} \sum_{t=1}^{T} (-Z_t \ln p_t(\theta) + p_t(\theta)) & \text{if } \theta \in \mathcal{D}, \text{ with } 0 \cdot \ln(0) \stackrel{!}{=} 0\\ \infty & \text{else} \end{cases}$$

 Z_t : number of new infections at day t,

$$\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_{t-1}, \mathsf{Z}_{t-2}, \ldots) = \mathsf{Poisson}\left(\mathsf{p}_t(\theta)\right), \quad \mathsf{p}_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

- $\Phi:$ serial interval function, i.e., infection delay distribution
- $\mathbf{R} = (\mathsf{R}_1, \cdots, \mathsf{R}_T)$ reproduction numbers at day $t = 1, \ldots, T$
- $\mathbf{O} = (\mathsf{O}_1, \cdots, \mathsf{O}_T)$ errors at day $t = 1, \dots, T$
- ► $\theta = (\mathbf{R}, \mathbf{O})$ to be estimated from $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_T)$ conditionally to $\mathbf{Z}_0, \mathbf{Z}_{-1}, \dots$ (Cori et al., 2013, Am Journal of Epidemiology; Pascal et al., 2022, IEEE Trans Sig Process)

Probability distribution of unknown parameters

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

• $\mathcal{D} = \{ \boldsymbol{\theta} \mid \forall t \colon \mathsf{R}_t \geq 0 \text{ and, if } \mathsf{Z}_t > 0, \mathsf{p}_t(\boldsymbol{\theta}) > 0; \text{ else if } \mathsf{Z}_t = 0, \mathsf{p}_t(\boldsymbol{\theta}) \geq 0 \}$

•
$$f(\theta) := \begin{cases} \sum_{t=1}^{T} (-\mathsf{Z}_t \ln \mathsf{p}_t(\theta) + \mathsf{p}_t(\theta)) & \text{if } \theta \in \mathcal{D}, \text{ with } 0 \cdot \ln(0) \stackrel{!}{=} 0\\ \infty & \text{else} \end{cases}$$

• $g(A\theta) = \lambda_R \|D_2 \mathbf{R}\|_1 + \lambda_0 \|\mathbf{0}\|_1$, $D_2 \in \mathbb{R}^{(T-2) \times T}$: discrete Laplacian matrix

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Pandemic monitoring

Two quantities of interest:

- reproduction number $\boldsymbol{\mathsf{R}}=(\mathsf{R}_1,\ldots,\mathsf{R}_{\mathsf{T}})$
- corrected number of new infections $\boldsymbol{Z}^{(D)} = \boldsymbol{Z} \boldsymbol{O} = (Z_1 O_1, \dots, Z_{\mathcal{T}} O_{\mathcal{T}})$

Pandemic monitoring

Two quantities of interest:

- reproduction number $\mathbf{R} = (R_1, \dots, R_T)$
- corrected number of new infections $\boldsymbol{Z}^{(D)} = \boldsymbol{Z} \boldsymbol{O} = (Z_1 O_1, \dots, Z_{\mathcal{T}} O_{\mathcal{T}})$

Level of confidence required to support high impact sanitary decisions:

 \Longrightarrow estimate credibility intervals at level 95% under the statistical model

$$\boldsymbol{\theta} = (\mathbf{R}, \mathbf{O}) \sim \pi, \quad \text{with} \quad \pi(\boldsymbol{\theta}) \propto \exp\left(-f(\boldsymbol{\theta}) - g(\mathsf{A}\boldsymbol{\theta})\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$

Pandemic monitoring

Two quantities of interest:

- reproduction number $\mathbf{R} = (R_1, \dots, R_T)$
- corrected number of new infections $\mathbf{Z}^{(D)} = \mathbf{Z} \mathbf{O} = (Z_1 O_1, \dots, Z_T O_T)$

Level of confidence required to support high impact sanitary decisions:

 \implies estimate credibility intervals at level 95% under the statistical model

$$oldsymbol{ heta} = (\mathbf{R}, \mathbf{O}) \sim \pi, \quad ext{with} \quad \pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(oldsymbol{ heta})$$

 $\mathsf{R}_{\mathcal{T}} \in [0.70, 0.71] \quad \Longrightarrow \quad \mathsf{R}_{\mathcal{T}} < 1 \quad \text{with probability at least } 0.95$

Credibility interval estimation of

 $heta\equiv$ sample from a distribution[†] of the form:

 $\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

[†] π is defined up to a normalizing constant.

Credibility interval estimation of

 $heta\equiv$ sample from a distribution † of the form:

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

- $\boldsymbol{ heta} \in \mathbb{R}^d$ vector of parameters,
- f differentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

- g convex, non-smooth,
- $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Credibility interval estimation of

 $heta\equiv$ sample from a distribution † of the form:

$$\pi(\boldsymbol{ heta}) \propto \exp\left(-f(\boldsymbol{ heta}) - g(\mathsf{A}\boldsymbol{ heta})\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{ heta})$$

- $\boldsymbol{ heta} \in \mathbb{R}^d$ vector of parameters,
- f differentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

- g convex, non-smooth,
- $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Markov Chain Monte Carlo method

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Credibility interval estimation of

 $heta\equiv$ sample from a distribution † of the form:

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

- $\boldsymbol{ heta} \in \mathbb{R}^d$ vector of parameters,
- f differentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

- g convex, non-smooth,
- $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Markov Chain Monte Carlo method

- 1) generate a Markov chain $\{ \boldsymbol{\theta}^n, n \in \mathbb{N} \}$ such that
 - θ^{n+1} depends only on θ^n ,
 - at convergence, i.e., as $n \to \infty$, $\boldsymbol{\theta}^n \stackrel{\text{(in law)}}{\longrightarrow} \pi$,

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Credibility interval estimation of

 $heta\equiv$ sample from a distribution † of the form:

$$\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$$

- $\boldsymbol{ heta} \in \mathbb{R}^d$ vector of parameters,
- f differentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ admissible domain,

- g convex, non-smooth,
- $A \in \mathbb{R}^{d \times d}$ invertible linear operator.

(Artigas et al., 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Markov Chain Monte Carlo method

- 1) generate a Markov chain $\{ oldsymbol{ heta}^n, \ n \in \mathbb{N} \}$ such that
 - θ^{n+1} depends only on θ^n ,
 - at convergence, i.e., as $n \to \infty$, $\theta^n \stackrel{\text{(in law)}}{\longrightarrow} \pi$,

2) compute credibility interval estimates from samples $\{\theta^n, n \ge N\}$ for $N \gg 1$.

 $^{^{\}dagger}$ π is defined up to a normalizing constant.

Hastings-Metropolis type algorithm $C \in \mathbb{R}^{d \times d}$ symmetric positive definite; $\gamma > 0$ 1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, C);$
freed from the constraint $\theta \in \mathcal{D}$;

Monte Carlo Samplers

Hastings-Metropolis type algorithm $C \in \mathbb{R}^{d \times d}$ symmetric positive definite; $\gamma > 0$ 1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, C);$
freed from the constraint $\theta \in \mathcal{D};$ 2) accept-reject:if $\theta^{n+\frac{1}{2}} \notin \mathcal{D}, \quad \theta^{n+1} = \theta^n$ (systematic reject);
else $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability depending on $\theta^{n+\frac{1}{2}}$ and $\theta^n,$
 $\theta^{n+1} = \theta^n$ otherwise.

Monte Carlo Samplers

Hastings-Metropolis type algorithm $C \in \mathbb{R}^{d \times d}$ symmetric positive definite; $\gamma > 0$ 1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, $\xi^{n+1} \sim \mathcal{N}_d(0, C)$;
freed from the constraint $\theta \in \mathcal{D}$;2) accept-reject:if $\theta^{n+\frac{1}{2}} \notin \mathcal{D}$, $\theta^{n+1} = \theta^n$ (systematic reject);
else $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability depending on $\theta^{n+\frac{1}{2}}$ and θ^n ,
 $\theta^{n+1} = \theta^n$ otherwise.Case of smooth π :Tempered Langevin dynamics
 $\mu(\theta) = \theta + \gamma\sqrt{C} \nabla \ln \pi(\theta)$

 \implies move toward regions of high probability

Monte Carlo Samplers

Hastings-Metropolis type algorithm $C \in \mathbb{R}^{d \times d}$ symmetric positive definite; $\gamma > 0$ 1) Gaussian proposal: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C});$ freed from the constraint $\theta \in \mathcal{D}$: **2)** accept-reject: if $\theta^{n+\frac{1}{2}} \notin D$, $\theta^{n+1} = \theta^n$ (systematic reject); else $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability depending on $\theta^{n+\frac{1}{2}}$ and θ^{n} , $\theta^{n+1} = \theta^n$ otherwise. (Kent, 1978, Adv Appl Probab) Case of smooth π : Tempered Langevin dynamics (Roberts & Tweedie, 1996, Bernoulli) $\mu(\boldsymbol{\theta}) = \boldsymbol{\theta} + \gamma \sqrt{\mathsf{C}} \nabla \ln \pi(\boldsymbol{\theta})$ \implies move toward regions of high probability $\pi \propto \exp\left(-f - g(\mathbf{A} \cdot)\right) \mathbb{1}_{\mathcal{D}}$ Case of non-smooth π : proximal Langevin • f differentiable with gradient ∇f .

• g non-smooth, convex,

with closed-form proximal operator $\operatorname{prox}_{\rho g} = (I + \rho \partial g)^{-1}$, $\rho > 0$.

Purpose: compare different proximal design of the drift μ .

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\operatorname{prox}_{\gamma g(\mathsf{A} \cdot)}(\boldsymbol{\theta}) = \operatorname{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \| \boldsymbol{\theta} - \boldsymbol{\varphi} \|_2^2 + \gamma g(\mathsf{A} \boldsymbol{\varphi}) \right)$$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(oldsymbol{ heta}) = \operatorname*{argmin}_{oldsymbol{arphi} \in \mathbb{R}^d} \left(rac{1}{2} \| oldsymbol{ heta} - oldsymbol{arphi} \|_2^2 + \gamma g(\mathsf{A}oldsymbol{arphi})
ight)$$

Primal methods:

$$oldsymbol{ heta}^{n+rac{1}{2}}=\mu(oldsymbol{ heta}^n)+\sqrt{2\gamma}\xi^{n+1},\ \ \xi^{n+1}\sim\mathcal{N}_d(0,\mathsf{I})$$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(oldsymbol{ heta}) = \operatorname*{argmin}_{arphi \in \mathbb{R}^d} \left(rac{1}{2} \| oldsymbol{ heta} - arphi \|_2^2 + \gamma g(\mathsf{A}arphi)
ight)$$

Primal methods:

$$\boldsymbol{\theta}^{n+rac{1}{2}} = \mu(\boldsymbol{\theta}^n) + \sqrt{2\gamma}\xi^{n+1}, \hspace{0.2cm} \xi^{n+1} \sim \mathcal{N}_d(0, \mathsf{I})$$

• Moreau drift: smooth approximation of g by its Moreau envelop

$$\mu^{\mathsf{M}}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathsf{A}^{\top} (\mathsf{I} - \mathsf{prox}_{\rho g}) \mathsf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$

(Durmus et al., 2018, SIAM J Imaging Sci; Luu et al., 2020, Methodol Comput Appl Probab)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$ext{prox}_{\gamma g(\mathsf{A}\cdot)}(oldsymbol{ heta}) = \operatorname*{argmin}_{oldsymbol{arphi} \in \mathbb{R}^d} \left(rac{1}{2} \|oldsymbol{ heta} - oldsymbol{arphi}\|_2^2 + \gamma g(\mathsf{A}oldsymbol{arphi})
ight)$$

Primal methods:

$$oldsymbol{ heta}^{n+rac{1}{2}}=\mu(oldsymbol{ heta}^n)+\sqrt{2\gamma}\xi^{n+1},\ \ \xi^{n+1}\sim\mathcal{N}_d(0,\mathsf{I})$$

• Moreau drift: smooth approximation of g by its Moreau envelop

$$\mu^{\mathbb{M}}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathsf{A}^{\top} (\mathsf{I} - \mathsf{prox}_{\rho g}) \mathsf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$

(Durmus et al., 2018, SIAM J Imaging Sci; Luu et al., 2020, Methodol Comput Appl Probab)

• <u>PGdec drift:</u> if $AA^{\top} = \nu I$, with $\nu > 0 \implies$ closed-form expression of $\operatorname{prox}_{\gamma g(A \cdot)} \mu^{\operatorname{PGdec}}(\theta) = \operatorname{prox}_{\gamma g(A \cdot)}(\theta - \gamma \nabla f(\theta))$ extended to $g(A \cdot) = \sum_{i=1}^{I} g_i(A_i \cdot)$, with $A_i A_i^{\top} = \nu_i I$, $\nu_i > 0$ (Fort et al., 2023, IEEE Trans Sig Process)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(oldsymbol{ heta}) = \operatorname*{argmin}_{arphi \in \mathbb{R}^d} \left(rac{1}{2} \| oldsymbol{ heta} - arphi \|_2^2 + \gamma g(\mathsf{A}arphi)
ight)$$

Primal methods:

$$oldsymbol{ heta}^{n+rac{1}{2}}=\mu(oldsymbol{ heta}^n)+\sqrt{2\gamma}\xi^{n+1},\ \ \xi^{n+1}\sim\mathcal{N}_d(0,\mathsf{I})$$

• Moreau drift: smooth approximation of g by its Moreau envelop

$$\mu^{\mathbb{M}}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathsf{A}^{\top} (\mathsf{I} - \mathsf{prox}_{\rho g}) \mathsf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$

(Durmus et al., 2018, SIAM J Imaging Sci; Luu et al., 2020, Methodol Comput Appl Probab)

• <u>PGdec drift</u>: if $AA^{\top} = \nu I$, with $\nu > 0 \Longrightarrow$ closed-form expression of $\operatorname{prox}_{\gamma g(A \cdot)}$ $\mu^{\operatorname{PGdec}}(\theta) = \operatorname{prox}_{\gamma g(A \cdot)}(\theta - \gamma \nabla f(\theta))$

extended to $g(A \cdot) = \sum_{i=1}^{l} g_i(A_i \cdot)$, with $A_i A_i^{\top} = \nu_i I$, $\nu_i > 0$ (Fort et al., 2023, IEEE Trans Sig Process)

• <u>Random Walk drift:</u> $\mu^{\mathbb{R}M}(\theta) = \theta$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

 $A \in \mathbb{R}^{d \times d}$ invertible

dual drift term $\tilde{\mu}(\tilde{\theta}), \ \tilde{\theta} = A\theta$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right) \mathbb{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is full rank, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

(Artigas, 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

 $\mathsf{A} \in \mathbb{R}^{d \times d}$ invertible

dual drift term $\tilde{\mu}(\tilde{\theta}), \ \tilde{\theta} = \mathsf{A}\theta$, adapted to $\tilde{\pi} \propto \exp\left(-f(\mathsf{A}^{-1}\cdot) - g\right) \mathbb{1}_{\mathcal{D}}(\mathsf{A}^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is full rank, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

 $\boldsymbol{\theta}^{n+\frac{1}{2}} = \mathsf{A}^{-1} \tilde{\mu}(\tilde{\boldsymbol{\theta}}^n) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_d(\mathbf{0}, \mathsf{A}^{-1} \mathsf{A}^{-\top})$ **Dual methods:**

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

 $A \in \mathbb{R}^{d \times d}$ invertible

dual drift term $\tilde{\mu}(\tilde{\theta}), \ \tilde{\theta} = A\theta$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right) \mathbb{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is full rank, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

Dual methods: $\theta^{n+\frac{1}{2}} = A^{-1} \tilde{\mu}(\tilde{\theta}^{n}) + \sqrt{2\gamma} \xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_{d}(0, A^{-1}A^{-\top})$ • <u>Dual Moreau drift:</u> $\tilde{\mu}^{\mathtt{M}}(\tilde{\theta}) = \tilde{\theta} - \gamma A^{-\top} \nabla f(A^{-1}\tilde{\theta}) - \frac{\gamma}{\rho} (\mathsf{I} - \mathsf{prox}_{\rho g}) \tilde{\theta}, \quad \rho = \gamma$

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

 $A \in \mathbb{R}^{d \times d}$ invertible

dual drift term $\tilde{\mu}(\tilde{\theta}), \ \tilde{\theta} = A\theta$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right) \mathbb{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is full rank, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

Dual methods: $\theta^{n+\frac{1}{2}} = A^{-1}\tilde{\mu}(\tilde{\theta}^{n}) + \sqrt{2\gamma}\xi^{n+1}, \quad \xi^{n+1} \sim \mathcal{N}_{d}(0, A^{-1}A^{-\top})$ • <u>Dual Moreau drift:</u> $\tilde{\mu}^{\mathbb{M}}(\tilde{\theta}) = \tilde{\theta} - \gamma A^{-\top} \nabla f(A^{-1}\tilde{\theta}) - \frac{\gamma}{\rho}(I - \operatorname{prox}_{\rho g})\tilde{\theta}, \quad \rho = \gamma$ • <u>PGdual drift:</u> $\tilde{\mu}^{\text{PG}}(\tilde{\theta}) = \operatorname{prox}_{\gamma g} \left(\tilde{\theta} - \gamma A^{-\top} \nabla f(A^{-1}\tilde{\theta})\right)$

(Artigas, 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

Purpose: drift term $\mu(\theta)$ adapted to $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non-smooth.

 $A \in \mathbb{R}^{d \times d}$ invertible

dual drift term $\tilde{\mu}(\tilde{\theta}), \ \tilde{\theta} = A\theta$, adapted to $\tilde{\pi} \propto \exp\left(-f(A^{-1}\cdot) - g\right) \mathbb{1}_{\mathcal{D}}(A^{-1}\cdot)$

If $A \in \mathbb{R}^{c \times d}$ with $c \leq d$ is full rank, consider invertible extension $\overline{A} \in \mathbb{R}^{d \times d}$.

 $\begin{array}{ll} \textbf{Dual methods:} & \boldsymbol{\theta}^{n+\frac{1}{2}} = \mathsf{A}^{-1} \tilde{\mu}(\tilde{\boldsymbol{\theta}}^{n}) + \sqrt{2\gamma} \xi^{n+1}, \ \xi^{n+1} \sim \mathcal{N}_{d}(\mathbf{0}, \mathsf{A}^{-1} \mathsf{A}^{-\top}) \\ \bullet & \underline{\mathsf{Dual Moreau drift:}} \\ & \tilde{\mu}^{\mathtt{M}}(\tilde{\boldsymbol{\theta}}) = \tilde{\boldsymbol{\theta}} - \gamma \mathsf{A}^{-\top} \nabla f(\mathsf{A}^{-1} \tilde{\boldsymbol{\theta}}) - \frac{\gamma}{\rho} (\mathsf{I} - \mathsf{prox}_{\rho g}) \tilde{\boldsymbol{\theta}}, \quad \rho = \gamma \\ \bullet & \underline{\mathsf{PGdual drift:}} \\ & \tilde{\mu}^{\mathtt{PG}}(\tilde{\boldsymbol{\theta}}) = \mathsf{prox}_{\gamma g} \left(\tilde{\boldsymbol{\theta}} - \gamma \, \mathsf{A}^{-\top} \nabla f(\mathsf{A}^{-1} \tilde{\boldsymbol{\theta}}) \right) \end{array}$

(Artigas, 2022, EUSIPCO; Fort et al., 2023, IEEE Trans Sig Process)

• Dual Random Walk drift: $\tilde{\mu}^{\text{RM}}(\tilde{\theta}) = \tilde{\theta}$

- $\begin{array}{lll} \mbox{Model} & \bullet & X \in \mathbb{R}^{N \times d} & : \mbox{ covariates matrix,} \\ \bullet & \theta^* \in \mathbb{R}^d & : \mbox{ piecewise constant regression vector,} \\ \bullet & Y \in \{0,1\}^N & : \mbox{ binary response vector} \end{array}$

 $\mathsf{Y}_i \sim \mathsf{Bernoulli}\left((1 + \exp(-(\mathsf{X} {oldsymbol{ heta}}^*)_j))^{-1}
ight), \quad \mathsf{independent}.$

- $\begin{array}{lll} \mbox{Model} & \bullet & X \in \mathbb{R}^{N \times d} & : \mbox{ covariates matrix,} \\ \bullet & \theta^* \in \mathbb{R}^d & : \mbox{ piecewise constant regression vector,} \\ \bullet & Y \in \{0,1\}^N & : \mbox{ binary response vector} \end{array}$

 $\mathsf{Y}_i \sim \mathsf{Bernoulli}\left((1 + \exp(-(\mathsf{X}\boldsymbol{\theta}^*)_j))^{-1}\right), \quad \mathsf{independent.}$

A posteriori log-distribution

 $D_1 \in \mathbb{R}^{d-1 \times d}$: discrete gradient

$$\|\mathbf{n} \, \pi_{\mathrm{t}}(oldsymbol{ heta}) = \mathbf{Y}^{ op} \mathbf{X} oldsymbol{ heta} - \sum_{j=1}^{N} \ln\left(1 + \exp((\mathbf{X} oldsymbol{ heta})_j)\right) - \lambda \|\mathbf{D}_1 oldsymbol{ heta}\|_1$$

- $\textbf{Model} \quad \bullet \quad \mathsf{X} \in \mathbb{R}^{N \times d} \qquad : \text{ covariates matrix,}$

 $Y_i \sim \text{Bernoulli} \left((1 + \exp(-(X\theta^*)_i))^{-1} \right), \text{ independent.}$

A posteriori log-distribution

 $D_1 \in \mathbb{R}^{d-1 \times d}$: discrete gradient

 $D_{1e}D_{1e}^{\top} = D_{1e}D_{1e}^{\top} = I$:

$$\mathsf{n}\,\pi_{\mathsf{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top}\mathsf{X}\boldsymbol{\theta} - \sum_{j=1}^{N}\mathsf{ln}\,(1 + \exp((\mathsf{X}\boldsymbol{\theta})_{j})) - \lambda \|\mathsf{D}_{1}\boldsymbol{\theta}\|_{1}$$

PGdec : $\|D_1\theta\|_1 = \|D_{1,e}\theta\|_1 + \|D_{1,o}\theta\|_1$, even rows odd rows

- $\begin{array}{lll} \mbox{Model} & \bullet & X \in \mathbb{R}^{N \times d} & : \mbox{ covariates matrix,} \\ \bullet & \pmb{\theta}^* \in \mathbb{R}^d & : \mbox{ piecewise constant regression vector,} \\ \bullet & Y \in \{0,1\}^N & : \mbox{ binary response vector} \end{array}$

 $\mathsf{Y}_i \sim \mathsf{Bernoulli}\left((1 + \exp(-(\mathsf{X}\boldsymbol{\theta}^*)_j))^{-1}\right), \quad \mathsf{independent.}$

A posteriori log-distribution

 $D_1 \in \mathbb{R}^{d-1 \times d}$: discrete gradient

$$\mathsf{n}\,\pi_{\mathsf{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top}\mathsf{X}\boldsymbol{\theta} - \sum_{j=1}^{N}\mathsf{ln}\,(1 + \exp((\mathsf{X}\boldsymbol{\theta})_{j})) - \lambda \|\mathsf{D}_{1}\boldsymbol{\theta}\|_{1}$$

$$\begin{split} & \text{PGdec}: \quad \|D_1 \theta\|_1 = \underbrace{\|D_{1,e} \theta\|_1}_{\text{even rows}} + \underbrace{\|D_{1,o} \theta\|_1}_{\text{odd rows}}, \qquad D_{1,e} D_{1,e}^\top = D_{1,o} D_{1,o}^\top = I; \\ & \text{*dual}: \quad \overline{D}_1 = \begin{pmatrix} -1 & 0 \dots 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \implies \text{invertible extension of } D_1. \end{split}$$

- $\begin{array}{lll} \mbox{Model} & \bullet & X \in \mathbb{R}^{N \times d} & : \mbox{ covariates matrix,} \\ \bullet & \pmb{\theta}^* \in \mathbb{R}^d & : \mbox{ piecewise constant regression vector,} \\ \bullet & Y \in \{0,1\}^N & : \mbox{ binary response vector} \end{array}$

 $Y_i \sim \text{Bernoulli} \left((1 + \exp(-(X\theta^*)_i))^{-1} \right), \text{ independent.}$

A posteriori log-distribution

 $D_1 \in \mathbb{R}^{d-1 \times d}$: discrete gradient

$$\mathsf{n}\,\pi_{\mathsf{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top}\mathsf{X}\boldsymbol{\theta} - \sum_{j=1}^{N}\mathsf{ln}\,(1 + \exp((\mathsf{X}\boldsymbol{\theta})_{j})) - \lambda \|\mathsf{D}_{1}\boldsymbol{\theta}\|_{1}$$

Data $N = 2.10^3$, d = 20X: independent Rademacher r.v., rows normalized to 1.

Toy example: Markov chain speed of convergence

Convergence indicator:

$$\operatorname{Log} \pi = \frac{\ln \pi_t(\theta^n) - \ln \pi_t^*}{\ln \pi_t(\theta^1) - \ln \pi_t^*}, \quad \ln \pi_t^* = \max_{\theta \in \mathbb{R}} \ln \pi_t(\theta)$$

high probability regions

Comparaison of the MCMC samplers

- gain to use 1st order information vs. RW;
- primal samplers: the fastest at small λ ;
- dual samplers: the fastest for medium to large λ , good for small λ .

 \implies Mdual and PGdual fast convergence; robust to the choice of λ

Covid19 propagation model: $\theta = (\mathbf{R}, \mathbf{O})$ of probability distribution

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) + \mathsf{p}_t(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_2 \mathsf{R}\|_1 - \lambda_{\mathsf{O}} \|\mathsf{O}\|_1\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$
$$\mathsf{D}_2 \in \mathbb{R}^{(T-2) \times T} \text{ full rank} \implies \overline{\mathsf{D}}_2 \in \mathbb{R}^{T \times T} \text{ invertible extension}$$

Covid19 propagation model: $\theta = (\mathbf{R}, \mathbf{O})$ of probability distribution

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) + \mathsf{p}_t(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_2 \mathsf{R}\|_1 - \lambda_{\mathsf{O}} \|\mathsf{O}\|_1\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$
$$\mathsf{D}_2 \in \mathbb{R}^{(T-2) \times T} \text{ full rank} \implies \overline{\mathsf{D}}_2 \in \mathbb{R}^{T \times T} \text{ invertible extension}$$

MCMC dual samplers:

1

[RWdual] random walk in the dual space [Mdual] Moreau drift in the dual space [PGdual] proximal-gradient type drift in the dual space

$$\mathbf{R}^{n+\frac{1}{2}} = \begin{cases} \mathbf{R} \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{cases} + \sqrt{2\gamma_{\mathsf{R}}} \xi_{\mathsf{R}}^{n+1}; \quad \mathbf{O}^{n+\frac{1}{2}} = \begin{cases} \mathbf{O}^{n} \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{cases} + \sqrt{2\gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1}.$$

Covid19 propagation model: $\theta = (\mathbf{R}, \mathbf{O})$ of probability distribution

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) + \mathsf{p}_t(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_2 \mathsf{R}\|_1 - \lambda_{\mathsf{O}} \|\mathsf{O}\|_1\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$
$$\mathsf{D}_2 \in \mathbb{R}^{(T-2) \times T} \text{ full rank} \implies \overline{\mathsf{D}}_2 \in \mathbb{R}^{T \times T} \text{ invertible extension}$$

MCMC dual samplers:

[RWdual] random walk in the dual space [Mdual] Moreau drift in the dual space [PGdual] proximal-gradient type drift in the dual space

$$\mathbf{R}^{n+\frac{1}{2}} = \begin{cases} \mathbf{R}^{n} \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\theta}(\tilde{\boldsymbol{\theta}}^{n}) \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{cases} + \sqrt{2\gamma_{\mathsf{R}}} \xi_{\mathsf{R}}^{n+1}; \quad \mathbf{O}^{n+\frac{1}{2}} = \begin{cases} \mathbf{O}^{n} \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{cases} + \sqrt{2\gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1}. \end{cases}$$

Gaussian perturbation:

$$\begin{split} &-\xi_{\mathrm{R}}^{n+1}\sim\mathcal{N}(\mathbf{0},\overline{\mathrm{D}}_{2}^{-1}\overline{\mathrm{D}}_{2}^{-\top}),\\ &-\xi_{\mathrm{O}}^{n+1}\sim\mathcal{N}(\mathbf{0},\mathsf{I}); \end{split}$$

Hyperparameters:

$$-(\lambda_{\rm R},\lambda_{\rm O}) = (3.5 \,\sigma_{\rm Z} \sqrt{6}/4, 0.05),$$

$$-\gamma_{\rm O}=\gamma(\lambda_{\rm R}/\lambda_{\rm O})^2,$$

– γ adjusted to reach 25% acceptance rate.

Covid19 propagation model: $\theta = (\mathbf{R}, \mathbf{O})$ of probability distribution

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) + \mathsf{p}_t(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_2 \mathsf{R}\|_1 - \lambda_{\mathsf{O}} \|\mathsf{O}\|_1\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$
$$\mathsf{D}_2 \in \mathbb{R}^{(T-2) \times T} \text{ full rank} \implies \overline{\mathsf{D}}_2 \in \mathbb{R}^{T \times T} \text{ invertible extension}$$

MCMC dual samplers:

[RWdual] random walk in the dual space [Mdual] Moreau drift in the dual space [PGdual] proximal-gradient type drift in the dual space

$$\mathbf{R}^{n+\frac{1}{2}} = \begin{cases} \mathbf{R}^{n} \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \overline{\mathbf{D}}_{2}^{-1} \tilde{\mu}_{\mathsf{R}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{cases} + \sqrt{2\gamma_{\mathsf{R}}} \xi_{\mathsf{R}}^{n+1}; \quad \mathbf{O}^{n+\frac{1}{2}} = \begin{cases} \mathbf{O}^{n} \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{M}}(\tilde{\boldsymbol{\theta}}^{n}) \\ \tilde{\mu}_{\mathsf{O}}^{\mathsf{PG}}(\tilde{\boldsymbol{\theta}}^{n}) \end{cases} + \sqrt{2\gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1}. \end{cases}$$

Gaussian perturbation:

$$\begin{split} &-\xi_{\mathrm{R}}^{n+1}\sim\mathcal{N}(\mathbf{0},\overline{\mathsf{D}}_{2}^{-1}\overline{\mathsf{D}}_{2}^{-\top}),\\ &-\xi_{\mathrm{O}}^{n+1}\sim\mathcal{N}(\mathbf{0},\mathsf{I}); \end{split}$$

Hyperparameters:

$$- (\lambda_{\rm R}, \lambda_{\rm O}) = (3.5 \,\sigma_{\rm Z} \sqrt{6}/4, 0.05),$$
$$- \gamma_{\rm O} = \gamma (\lambda_{\rm R}/\lambda_{\rm O})^2.$$

$$-\gamma$$
 adjusted to reach 25% acceptance rate.

Convergence of the Markov chains

Results and extension

Credibility intervals of regularized reproduction number and corrected counts

CI estimates of R_t and $Z_t^{(D)}$ published daily for 200+ countries during ~2 years https://perso.ens-lyon.fr/patrice.abry/ https://perso.math.univ-toulouse.fr/gfort/project/opsimore-2/

Results and extension

Credibility intervals of regularized reproduction number and corrected counts

 $\pi(\boldsymbol{\theta}) \propto \exp\left(-\sum_{t=1}^{T} \left(-\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) + \mathsf{p}_t(\boldsymbol{\theta})\right) - \lambda_{\mathsf{R}} \|\mathsf{D}_2 \mathbf{R}\|_1 - \lambda_{\mathsf{O}} \|\mathbf{O}\|_1\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta});$

Results and extension

Credibility intervals of regularized reproduction number and corrected counts

 $\lambda_0 = 0.05$

 $\lambda_{\rm R} = 0.5 \times {
m std}({\sf Z})$

Expert choice: somehow arbitrary, subjective and costly

Expert choice: somehow arbitrary, subjective and costly

$$\ln \pi(\boldsymbol{\theta}|\boldsymbol{\lambda}) = \sum_{t=1}^{T} \left(\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) - \mathsf{p}_t(\boldsymbol{\theta}) \right) - \lambda_{\mathsf{R}} \|\mathsf{D}_2 \mathbf{R}\|_1 - \lambda_{\mathsf{O}} \|\mathbf{O}\|_1 + T \ln \lambda_{\mathsf{R}} + T \ln \lambda_{\mathsf{O}} + \mathsf{C}$$

Expert choice: somehow arbitrary, subjective and costly

$$\ln \pi(\boldsymbol{\theta}|\boldsymbol{\lambda}) = \sum_{t=1}^{T} \left(\mathsf{Z}_t \ln \mathsf{p}_t(\boldsymbol{\theta}) - \mathsf{p}_t(\boldsymbol{\theta}) \right) - \lambda_{\mathsf{R}} \|\mathsf{D}_2 \mathbf{R}\|_1 - \lambda_{\mathsf{O}} \|\mathbf{O}\|_1 + T \ln \lambda_{\mathsf{R}} + T \ln \lambda_{\mathsf{O}} + \mathsf{C}$$

Purpose: account for uncertainty in the choice of the priors $\lambda := (\lambda_R, \lambda_O)$

Expert choice: somehow arbitrary, subjective and costly

$$\begin{aligned} &\ln \pi(\theta|\lambda) = \sum_{t=1}^{T} \left(Z_t \ln p_t(\theta) - p_t(\theta) \right) - \lambda_R \|D_2 \mathbf{R}\|_1 - \lambda_0 \|\mathbf{O}\|_1 + T \ln \lambda_R + T \ln \lambda_0 + C \end{aligned}$$

$$\begin{aligned} &\text{Purpose: account for uncertainty in the choice of the priors } \lambda := (\lambda_R, \lambda_0) \\ &\implies \text{Conjugate Gamma hyperpriors: } \lambda_R \sim \Gamma(\alpha_R, \beta_R), \ \lambda_0 \sim \Gamma(\alpha_0, \beta_0) \\ &\lambda_R \mid \mathbf{R}, \mathbf{O} \sim \Gamma(T + \alpha_R, \|D_2 \mathbf{R}\|_1 + \beta_R), \quad \lambda_0 \mid \mathbf{R}, \mathbf{O} \sim \Gamma(T + \alpha_0, \|\mathbf{O}\|_1 + \beta_0) \\ &\text{closed-form expression with direct sampling: Gibbs sampler alternating PGdual and } \Gamma\end{aligned}$$

Principle: explore jointly the distribution of $(\mathbf{R}, \mathbf{O}, \lambda_{\mathsf{R}}, \lambda_{\mathsf{O}})$

 \implies let λ adapt to data by varying around $(3.5 imes {
m std}(Z), 0.05)$

Area covered by the credibility intervals of \mathbf{R} :

- PGdual targeting $\pi(\theta|\lambda)$ by sampling (R,O) : 0.46 \pm 0.01
- Gibbs targeting $\pi(\theta, \lambda)$ by sampling $(\mathsf{R}, \mathsf{O}, \lambda_{\mathsf{R}}, \lambda_{\mathsf{O}})$: 1.35 \pm 0.07

Hierarchical distribution $\pi(\theta, \lambda)$: more flexible, captures better intrinsic data variability

Take home messages:

• Proximal Langevin based MCMC sampler for

$$\pi(\boldsymbol{ heta}) \propto \exp\left(-f(\boldsymbol{ heta}) - g(\mathsf{A}\boldsymbol{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(\boldsymbol{ heta})$$

 $\boldsymbol{\pi}$ composite distributions with constrained support

Take home messages:

• Proximal Langevin based MCMC sampler for

 $\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbbm{1}_{\mathcal{D}}(\theta)$

 $\boldsymbol{\pi}$ composite distributions with constrained support

- Speed of convergence on a toy example: faster when
 - taking into account first order information on $\ln\pi$
 - using adequate covariance in the Gaussian proposal

Take home messages:

• Proximal Langevin based MCMC sampler for

 $\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

 $\boldsymbol{\pi}$ composite distributions with constrained support

- Speed of convergence on a toy example: faster when
 - taking into account first order information on $\ln\pi$
 - using adequate covariance in the Gaussian proposal
- Robust hierarchical Bayesian estimate: account better for uncertainty

Abry et al., EUSIPCO (2023); Fort et al., IEEE Trans. Signal Process. (2023); Abry et al., CAMSAP (2023); Abry et al., Preprint (2024) with codes bpascal-fr.github.io & github.com/gfort-lab

Take home messages:

• Proximal Langevin based MCMC sampler for

 $\pi(\theta) \propto \exp\left(-f(\theta) - g(\mathsf{A}\theta)\right) \mathbb{1}_{\mathcal{D}}(\theta)$

 $\boldsymbol{\pi}$ composite distributions with constrained support

- Speed of convergence on a toy example: faster when
 - taking into account first order information on $\ln\pi$
 - using adequate covariance in the Gaussian proposal
- Robust hierarchical Bayesian estimate: account better for uncertainty

Abry et al., EUSIPCO (2023); Fort et al., IEEE Trans. Signal Process. (2023); Abry et al., CAMSAP (2023); Abry et al., Preprint (2024) with codes

bpascal-fr.github.io & github.com/gfort-lab

Ongoing work:

- Online estimation scheme to process new counts on the fly
- New epidemiological models for low quality data: π not log-concave
- Monitoring different territories: spatiotemporal dynamics through graph inference