

Estimation et intervalles de crédibilité pour le taux de reproduction de la Covid19 par échantillonnage Monte Carlo Langevin proximal

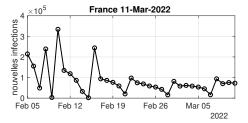
P. Abry^{1,†}, G. Fort^{2,‡}, <u>B. Pascal</u>³, N. Pustelnik^{1,4}

Colloque GRETSI 2022, Nancy

- 1. CNRS, ENS de Lyon, Laboratoire de Physique, France,
- 2. CNRS, Institut de Mathématique de Toulouse, France,
- 3. CNRS, Université de Lille, CRIStAL, France
- 4. UC Louvain, Belgium
- † Soutenu partiellement par la bourse 80PRIME-2021 CNRS
- [‡] Financé en partie par la Fondation Simone et Cino Del Duca, Institut de France

Enjeux principaux de la surveillance épidémiologique

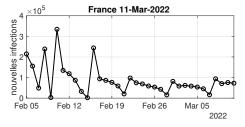
Décompte quotidien du nombre de nouveaux cas



données collectées par l'Université Johns Hopkins auprès des Agences de Santé Publique

Enjeux principaux de la surveillance épidémiologique

Décompte quotidien du nombre de nouveaux cas



données collectées par l'Université Johns Hopkins auprès des Agences de Santé Publique

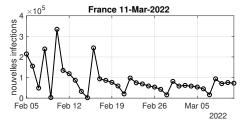
Élaborer des mesures sanitaires adaptées et évaluer leur efficacité nécessite :

- ightarrow des outils de surveillance performants
- → robustes à la mauvaise qualité des données
- ightarrow accompagnés de niveaux de confiance fiables

modèle épidémiologique, gérer les valeurs aberrantes, intervalles de crédibilité.

Enjeux principaux de la surveillance épidémiologique

Décompte quotidien du nombre de nouveaux cas



données collectées par l'Université Johns Hopkins auprès des Agences de Santé Publique

Élaborer des mesures sanitaires adaptées et évaluer leur efficacité nécessite :

- \rightarrow des outils de surveillance performants
- ightarrow robustes à la mauvaise qualité des données
- $\rightarrow\,$ accompagnés de niveaux de confiance fiables

modèle épidémiologique, gérer les valeurs aberrantes,

intervalles de crédibilité.

Indicateur clé : taux de reproduction Ro

(Liu et col, 2018, *PNAS*)

"nombre moyen de cas secondaires générés par une personne contagieuse typique"

 \Longrightarrow relaxé en un **taux de reproduction effectif** R_t au jour t

(Cori et col, 2013, Am Journal of Epidemiology)

 Z_t : nouvelles infections au jour t

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_1,\ldots,\mathsf{Z}_{t-1}) = \mathsf{Poisson}\left(p_t(\theta)\right), \quad p_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

 $\Phi \Rightarrow$ délai aléatoire entre infections primaire et secondaire

Paramètres à estimer $\theta = (R, O)$

- $\mathbf{R} = (R_1, \cdots, R_T)$ les taux de reproduction ;
- $\mathbf{O} = (O_1, \cdots, O_T)$ valeurs aberrantes.

(Pascal et col, 2022, IEEE Trans Sig Process; Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

 Z_t : nouvelles infections au jour t

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_1,\ldots,\mathsf{Z}_{t-1}) = \mathsf{Poisson}\left(p_t(\theta)\right), \quad p_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

 $\Phi \Rightarrow$ délai aléatoire entre infections primaire et secondaire

Paramètres à estimer $\theta = (R, O)$

- $\mathbf{R} = (R_1, \dots, R_T)$ les taux de reproduction;
- $\mathbf{O} = (O_1, \cdots, O_T)$ valeurs aberrantes.

(Pascal et col, 2022, IEEE Trans Sig Process; Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

Log-vraisemblance du modèle de Poisson

$$-f(\boldsymbol{\theta}) := \left\{ \begin{array}{l} \sum_{t=1}^{T} \left(\mathsf{Z}_t \ln p_t(\boldsymbol{\theta}) - p_t(\boldsymbol{\theta}) \right) \quad \text{si } \boldsymbol{\theta} \in \mathcal{D} = \{\boldsymbol{\theta} \,|\, \forall t, \ p_t(\boldsymbol{\theta}) \geq 0\}, \\ \text{sinon.} \end{array} \right.$$

 Z_t : nouvelles infections au jour t

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_1,\ldots,\mathsf{Z}_{t-1}) = \mathsf{Poisson}\left(p_t(\theta)\right), \quad p_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \mathsf{\Phi}_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

 $\Phi \Rightarrow$ délai aléatoire entre infections primaire et secondaire

Paramètres à estimer $\theta = (R, O)$

- $\mathbf{R} = (R_1, \dots, R_T)$ les taux de reproduction;
- $\mathbf{O} = (O_1, \cdots, O_T)$ valeurs aberrantes.

(Pascal et col, 2022, IEEE Trans Sig Process; Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

Log-vraisemblance du modèle de Poisson

Log-distribution a priori

- $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- $O_t \sim Laplace(\lambda_O)$

$$\Rightarrow -g(A\theta) = -\lambda_R \|D_2 \mathbf{R}\|_1 - \lambda_O \|\mathbf{O}\|_1, \quad D_2 \in \mathbb{R}^{T-2 \times T} : \mathsf{matrice} \ \mathsf{du} \ \mathsf{laplacien}$$

 Z_t : nouvelles infections au jour t

$$\mathbb{P}(\mathsf{Z}_t|\mathsf{Z}_1,\ldots,\mathsf{Z}_{t-1}) = \mathsf{Poisson}\left(p_t(\theta)\right), \quad p_t(\theta) = \mathsf{R}_t \sum_{u=1}^{\tau_\phi} \Phi_u \mathsf{Z}_{t-u} + \mathsf{O}_t$$

 $\Phi \Rightarrow$ délai aléatoire entre infections primaire et secondaire

Paramètres à estimer $\theta = (R, O)$

- $\mathbf{R} = (R_1, \dots, R_T)$ les taux de reproduction;

- $\mathbf{O} = (O_1, \cdots, O_T)$ valeurs aberrantes.

(Pascal et col, 2022, IEEE Trans Sig Process; Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

Log-vraisemblance du modèle de Poisson

$$-f(oldsymbol{ heta}) := \left\{ egin{array}{l} \sum_{t=1}^T \left(\mathsf{Z}_t \ln p_t(oldsymbol{ heta}) - p_t(oldsymbol{ heta})
ight) & ext{si} \ oldsymbol{ heta} \in \mathcal{D} = \{ oldsymbol{ heta} \, | \, orall t, \ p_t(oldsymbol{ heta}) \geq 0 \}, \ & ext{sinon}. \end{array}
ight.$$

Log-distribution a priori

- $R_t 2R_{t-1} + R_{t-2} \sim \mathsf{Laplace}(\lambda_R)$
- $O_t \sim Laplace(\lambda_{\Omega})$

$$\implies$$
 $-g(\mathsf{A}\pmb{ heta}) = -\lambda_{\mathrm{R}} \|\mathsf{D}_2 \mathbf{R}\|_1 - \lambda_{\mathrm{O}} \|\mathbf{O}\|_1, \qquad \mathsf{D}_2 \in \mathbb{R}^{T-2 \times T}$: matrice du laplacien

$$\mathsf{A} = \begin{pmatrix} \mathsf{D}_2 & \mathsf{0} \\ \mathsf{0} & \mathsf{I} \end{pmatrix} \in \mathbb{R}^{(2T-2)\times 2T} \ \Rightarrow \ \overline{\mathsf{A}} = \begin{pmatrix} \overline{\mathsf{D}}_2 & \mathsf{0} \\ \mathsf{0} & \mathsf{I} \end{pmatrix} \in \mathbb{R}^{2T\times 2T}, \ \text{inversible}$$
 (Fort et col, 2022, preprint)

Formalisme bayésien pour la propagation de la Covid19

estimer $\{\mathsf{R}_t,\,t=1,\ldots,T\}\equiv$ échantillonner sous une loi a posteriori † de la forme :

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(oldsymbol{ heta})$$

(Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

 $^{^{\}dagger}$ π est définie à une constante de normalisation près.

Formalisme bayésien pour la propagation de la Covid19

estimer $\{\mathsf{R}_t,\,t=1,\ldots,T\}\equiv$ échantillonner sous une loi a posteriori † de la forme :

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(oldsymbol{ heta})$$

- $oldsymbol{ heta} oldsymbol{ heta} \in \mathbb{R}^d$ vecteur des paramètres,
- f différentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ domaine admissible,

- g convexe, non différentiable,
- A ∈ ℝ^{c×d} opérateur linéaire,
 c < d, A de rang plein.

(Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

 $^{^{\}dagger}$ π est définie à une constante de normalisation près.

Formalisme bayésien pour la propagation de la Covid19

estimer $\{\mathsf{R}_t,\,t=1,\ldots,T\}\equiv$ échantillonner sous une loi a posteriori † de la forme :

$$\pi(oldsymbol{ heta}) \propto \exp\left(-f(oldsymbol{ heta}) - g(\mathsf{A}oldsymbol{ heta})
ight) \mathbbm{1}_{\mathcal{D}}(oldsymbol{ heta})$$

- $\theta \in \mathbb{R}^d$ vecteur des paramètres,
- f différentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ domaine admissible,

- g convexe, non différentiable,
- A ∈ ℝ^{c×d} opérateur linéaire,
 c < d, A de rang plein.

(Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

Méthode de Monte Carlo par chaîne de Markov

 $^{^{\}dagger}$ π est définie à une constante de normalisation près.

Formalisme bayésien pour la propagation de la Covid19

estimer $\{\mathsf{R}_t,\,t=1,\ldots,T\}\equiv$ échantillonner sous une loi a posteriori † de la forme :

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-f(\boldsymbol{\theta}) - g(\mathsf{A}\boldsymbol{\theta})\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$

- $\theta \in \mathbb{R}^d$ vecteur des paramètres,
- f différentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ domaine admissible,

- g convexe, non différentiable,
- A ∈ ℝ^{c×d} opérateur linéaire,
 c < d, A de rang plein.

(Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

Méthode de Monte Carlo par chaîne de Markov

- 1) générer une suite aléatoire $\{\theta^n, n \in \mathbb{N}\}$ telle que
 - θ^{n+1} ne dépend que de θ^n ,
 - à convergence, i.e., lorsque $n \to +\infty$, $\theta^n \sim \pi$,

 $^{^{\}dagger}$ π est définie à une constante de normalisation près.

Formalisme bayésien pour la propagation de la Covid19

estimer $\{\mathsf{R}_t,\,t=1,\ldots,T\}\equiv$ échantillonner sous une loi a posteriori † de la forme :

$$\pi(\boldsymbol{\theta}) \propto \exp\left(-f(\boldsymbol{\theta}) - g(\mathsf{A}\boldsymbol{\theta})\right) \mathbb{1}_{\mathcal{D}}(\boldsymbol{\theta})$$

- $\theta \in \mathbb{R}^d$ vecteur des paramètres,
- f différentiable,
- $\mathcal{D} \subset \mathbb{R}^d$ domaine admissible,

- g convexe, non différentiable,
- A ∈ ℝ^{c×d} opérateur linéaire,
 c < d, A de rang plein.

(Artigas et col, 2022, EUSIPCO; Fort et col, 2022, preprint)

Méthode de Monte Carlo par chaîne de Markov

- 1) générer une suite aléatoire $\{\theta^n, n \in \mathbb{N}\}$ telle que
 - θ^{n+1} ne dépend que de θ^n .
 - à convergence, i.e., lorsque $n \to +\infty$, $\theta^n \sim \pi$,
- 2) calculer les estimateurs bayésiens, e.g., les intervalles de crédibilité,
 - à partir des échantillons $\{\theta^n, n \geq N\}$ pour $N \gg 1$

 $[\]dagger$ π est définie à une constante de normalisation près.

Algorithme de type Hastings-Metropolis

1) proposition gaussienne : $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, $\xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C})$;

affranchie de la contrainte $oldsymbol{ heta} \in \mathcal{D}$;

Algorithme de type Hastings-Metropolis

- 1) <u>proposition gaussienne</u> : $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, $\xi^{n+1} \sim \mathcal{N}_d(0,\mathsf{C})$;
 - affranchie de la contrainte $oldsymbol{ heta} \in \mathcal{D}$;
- 2) <u>acceptation-rejet</u> : $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ aléatoirement, et seulement si $\theta^{n+\frac{1}{2}} \in \mathcal{D}$;
 - $\theta^{n+1} = \theta^n$, sinon. (Kent, 1978, Adv Appl Probab)

2) acceptation-rejet :

Algorithme de type Hastings-Metropolis

- 1) proposition gaussienne : $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, $\xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C})$;
 - affranchie de la contrainte $oldsymbol{ heta} \in \mathcal{D}$;
 - $m{ heta}^{n+1} = m{ heta}^{n+rac{1}{2}}$ aléatoirement, et seulement si $m{ heta}^{n+rac{1}{2}} \in \mathcal{D}$;
 - $\boldsymbol{\theta}^{n+1} = \boldsymbol{\theta}^n$, sinon. (Kent, 1978, Adv Appl Probab)

Cas
$$\pi$$
 régulière: dynamique de Langevin (Roberts & Tweedie, 1996, *Bernoulli*)
$$\mu(\theta) = \theta + \gamma \nabla \ln \pi(\theta), \ \gamma > 0$$

⇒ déplacement vers les régions de forte probabilité

Algorithme de type Hastings-Metropolis

- 1) proposition gaussienne : $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, $\xi^{n+1} \sim \mathcal{N}_d(0, \mathbb{C})$;
- **2)** acceptation-rejet : $heta^{n+1}= heta^{n+\frac{1}{2}}$ aléatoirement, et seulement si $heta^{n+\frac{1}{2}}\in\mathcal{D}$;

affranchie de la contrainte $\theta \in \mathcal{D}$;

 $\boldsymbol{\theta}^{n+1} = \boldsymbol{\theta}^n$. sinon. (Kent, 1978, Adv Appl Probab)

Cas
$$\pi$$
 régulière: dynamique de Langevin (Roberts & Tweedie, 1996, *Bernoulli*)
$$\mu(\theta) = \theta + \gamma \nabla \ln \pi(\theta), \ \gamma > 0$$

⇒ déplacement vers les régions de forte probabilité

Cas π non différentiable : Langevin proximal π

$$\pi \propto \exp\left(-f - g(\mathsf{A} \cdot)\right) \mathbb{1}_{\mathcal{D}}$$

- f différentiable de gradient ∇f ,
- g non-différentiable, convexe, d'opérateur proximal $\operatorname{prox}_{\rho\sigma} = (\mathsf{I} + \rho \partial g)^{-1}, \ \rho > 0$ connu explicitement.

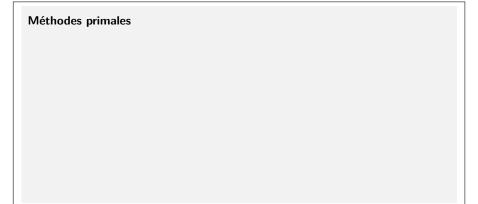
But : comparaison de différentes approches proximales pour la construction de $\mu.$

Objectif: terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbbm{1}_{\mathcal{D}}$, g non régulière.

$$\mathrm{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Objectif: terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbbm{1}_{\mathcal{D}}$, g non régulière.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$



Objectif: terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non régulière.

$$\mathsf{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Méthodes primales

• <u>Dérive de Moreau :</u> approximation régulière de g par son enveloppe de Moreau

$$\boldsymbol{\mu}^{\mathtt{M}}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \boldsymbol{\mathsf{A}}^{\top} (\mathsf{I} - \mathsf{prox}_{\rho_{\mathcal{B}}}) \boldsymbol{\mathsf{A}} \boldsymbol{\theta}, \quad \rho = \gamma$$

(Durmus et col, 2018, SIAM J Imaging Sci; Luu et col, 2020, Methodol Comput Appl Probab)

Objectif: terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non régulière.

$$\mathrm{prox}_{\gamma g(\mathsf{A}\cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathsf{A}\boldsymbol{\varphi}) \right)$$

Méthodes primales

• <u>Dérive de Moreau</u> : approximation régulière de g par son enveloppe de Moreau

$$\mu^{\rm M}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathbf{A}^{\top} (\mathbf{I} - \mathbf{prox}_{\rho g}) \mathbf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$
 (Durmus et col, 2018, SIAM J Imaging Sci; Luu et col, 2020, Methodol Comput Appl Probab)

• <u>Dérive PGdec</u> : si $AA^{\top} = \nu I$, avec $\nu > 0 \Longrightarrow$ forme explicite de $\text{prox}_{\gamma g(A \cdot)}$

$$\mu^{\mathrm{PGdec}}(\boldsymbol{\theta}) = \mathrm{prox}_{\gamma \, g(\mathbf{A}\cdot)} \left(\boldsymbol{\theta} - \gamma \, \nabla f(\boldsymbol{\theta})\right)$$
étendu à $g(\mathbf{A}\cdot) = \sum_{i=1}^{I} g_i(\mathbf{A}_i\cdot)$, avec $\mathbf{A}_i \mathbf{A}_i^\top = \nu_i \mathbf{I}$, $\nu_i > 0$ (Fort et col, 2022, preprint)

Objectif: terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non régulière.

$$\mathrm{prox}_{\gamma g(\mathbf{A} \cdot)}(\boldsymbol{\theta}) = \operatorname*{argmin}_{\boldsymbol{\varphi} \in \mathbb{R}^d} \left(\frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{\varphi}\|_2^2 + \gamma g(\mathbf{A} \boldsymbol{\varphi}) \right)$$

Méthodes primales

• Dérive de Moreau : approximation régulière de g par son enveloppe de Moreau

$$\mu^{\rm M}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}) - \frac{\gamma}{\rho} \mathbf{A}^{\top} (\mathbf{I} - \mathbf{prox}_{\rho \mathbf{g}}) \mathbf{A} \boldsymbol{\theta}, \quad \rho = \gamma$$
 (Durmus et col, 2018, SIAM J Imaging Sci ; Luu et col, 2020, Methodol Comput Appl Probab)

• <u>Dérive PGdec</u>: si $AA^{\top} = \nu I$, avec $\nu > 0 \Longrightarrow$ forme explicite de $prox_{\gamma g(A \cdot)}$

$$\mu^{\text{PGdec}}(\boldsymbol{\theta}) = \text{prox}_{\gamma g(\mathbf{A}\cdot)}(\boldsymbol{\theta} - \gamma \nabla f(\boldsymbol{\theta}))$$
étendu à $g(\mathbf{A}\cdot) = \sum_{i=1}^{I} g_i(\mathbf{A}_i\cdot)$, avec $\mathbf{A}_i \mathbf{A}_i^\top = \nu_i \mathbf{I}$, $\nu_i > 0$ (Fort et col, 2022, preprint)

• Dérive marche aléatoire : $\mu^{\text{RM}}(\theta) = \theta$

Objectif: terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbbm{1}_{\mathcal{D}}$, g non régulière.

Objectif : terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbbm{1}_{\mathcal{D}}$, g non régulière.

$$\begin{split} \mathbf{A} \in \mathbb{R}^{c \times d}, \ c \leq d \ \text{de rang plein} &\Longrightarrow \text{extension inversible } \overline{\mathbf{A}} \in \mathbb{R}^{d \times d} \\ \text{terme de dérive dual } \tilde{\mu}(\tilde{\boldsymbol{\theta}}), \ \tilde{\boldsymbol{\theta}} &= \overline{\mathbf{A}} \boldsymbol{\theta}, \ \text{adapt\'e à } \tilde{\pi} \propto \exp\left(-f(\overline{\mathbf{A}}^{-1} \cdot) - \overline{g}\right) \mathbbm{1}_{\mathcal{D}}(\overline{\mathbf{A}}^{-1} \cdot) \end{split}$$

Objectif : terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbb{1}_{\mathcal{D}}$, g non régulière.

$$\begin{split} \mathbf{A} \in \mathbb{R}^{c \times d}, \ c \leq d \ \text{de rang plein} & \Longrightarrow \text{ extension inversible } \overline{\mathbf{A}} \in \mathbb{R}^{d \times d} \\ \text{terme de dérive dual } \widetilde{\mu}(\widetilde{\boldsymbol{\theta}}), \ \widetilde{\boldsymbol{\theta}} & = \overline{\mathbf{A}} \boldsymbol{\theta}, \ \text{adapt\'e à } \widetilde{\pi} \propto \exp\left(-f(\overline{\mathbf{A}}^{-1} \cdot) - \overline{g}\right) \mathbbm{1}_{\mathcal{D}}(\overline{\mathbf{A}}^{-1} \cdot) \end{split}$$

Méthodes duales

Objectif : terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbbm{1}_{\mathcal{D}}$, g non régulière.

$$\begin{split} \mathbf{A} \in \mathbb{R}^{c \times d}, \ c \leq d \ \text{de rang plein} & \Longrightarrow \text{ extension inversible } \overline{\mathbf{A}} \in \mathbb{R}^{d \times d} \\ \text{terme de dérive dual } \tilde{\mu}(\tilde{\boldsymbol{\theta}}), \ \tilde{\boldsymbol{\theta}} &= \overline{\mathbf{A}} \boldsymbol{\theta}, \ \text{adapt\'e à } \tilde{\pi} \propto \exp\left(-f(\overline{\overline{\mathbf{A}}}^{-1} \cdot) - \overline{g}\right) \mathbb{1}_{\mathcal{D}}(\overline{\overline{\mathbf{A}}}^{-1} \cdot) \end{split}$$

Méthodes duales

• Dérive de Moreau duale :

$$\tilde{\boldsymbol{\mu}}^{\mathtt{M}}(\tilde{\boldsymbol{\theta}}) = \tilde{\boldsymbol{\theta}} - \gamma \overline{\boldsymbol{\mathsf{A}}}^{-\top} \nabla f(\overline{\boldsymbol{\mathsf{A}}}^{-1} \tilde{\boldsymbol{\theta}}) - \frac{\gamma}{\rho} (\mathsf{I} - \mathsf{prox}_{\rho \overline{\boldsymbol{g}}}) \tilde{\boldsymbol{\theta}}, \quad \rho = \gamma$$

Objectif : terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbbm{1}_{\mathcal{D}}$, g non régulière.

$$\begin{split} \mathbf{A} &\in \mathbb{R}^{c \times d}, \ c \leq d \ \text{de rang plein} \Longrightarrow \text{extension inversible } \overline{\mathbf{A}} \in \mathbb{R}^{d \times d} \\ \text{terme de dérive dual } \tilde{\mu}(\tilde{\boldsymbol{\theta}}), \ \tilde{\boldsymbol{\theta}} &= \overline{\mathbf{A}} \boldsymbol{\theta}, \ \text{adapt\'e à } \tilde{\pi} \propto \exp\left(-f(\overline{\mathbf{A}}^{-1} \cdot) - \overline{g}\right) \mathbbm{1}_{\mathcal{D}}(\overline{\mathbf{A}}^{-1} \cdot) \end{split}$$

Méthodes duales

• Dérive de Moreau duale :

$$\tilde{\boldsymbol{\mu}}^{\mathtt{M}}(\tilde{\boldsymbol{\theta}}) = \tilde{\boldsymbol{\theta}} - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\overline{\mathbf{A}}^{-1} \tilde{\boldsymbol{\theta}}) - \frac{\gamma}{\rho} (\mathbf{I} - \mathrm{prox}_{\rho \overline{\mathbf{g}}}) \tilde{\boldsymbol{\theta}}, \quad \rho = \gamma$$

• Dérive PGdual :

$$\tilde{\mu}^{\mathrm{PG}}(\tilde{\boldsymbol{\theta}}) = \mathrm{prox}_{\gamma_{\overline{g}}} \left(\tilde{\boldsymbol{\theta}} - \gamma_{\overline{\mathbf{A}}}^{-\top} \nabla f(\overline{\mathbf{A}}^{-1} \tilde{\boldsymbol{\theta}}) \right)$$
(Artigas, 2022, *EUSIPCO*; Fort et col, 2022, *preprint*)

Objectif : terme de dérive $\mu(\theta)$ adapté à $\pi \propto \exp(-f - g(A \cdot)) \mathbbm{1}_{\mathcal{D}}$, g non régulière.

$$\begin{split} \mathbf{A} \in \mathbb{R}^{c \times d}, \ c \leq d \ \text{de rang plein} &\Longrightarrow \text{extension inversible } \overline{\mathbf{A}} \in \mathbb{R}^{d \times d} \\ \text{terme de dérive dual } \tilde{\mu}(\tilde{\boldsymbol{\theta}}), \ \tilde{\boldsymbol{\theta}} &= \overline{\mathbf{A}} \boldsymbol{\theta}, \ \text{adapt\'e à } \tilde{\pi} \propto \exp\left(-f(\overline{\mathbf{A}}^{-1} \cdot) - \overline{g}\right) \mathbbm{1}_{\mathcal{D}}(\overline{\mathbf{A}}^{-1} \cdot) \end{split}$$

Méthodes duales

• Dérive de Moreau duale :

$$\tilde{\boldsymbol{\mu}}^{\mathtt{M}}(\tilde{\boldsymbol{\theta}}) = \tilde{\boldsymbol{\theta}} - \gamma \overline{\mathbf{A}}^{-\top} \nabla f(\overline{\mathbf{A}}^{-1} \tilde{\boldsymbol{\theta}}) - \frac{\gamma}{\rho} (\mathbf{I} - \mathsf{prox}_{\rho \overline{g}}) \tilde{\boldsymbol{\theta}}, \quad \rho = \gamma$$

• <u>Dérive PGdual</u>:

$$\tilde{\mu}^{\mathrm{PG}}(\tilde{\boldsymbol{\theta}}) = \mathrm{prox}_{\gamma \, \overline{\mathbf{g}}} \left(\tilde{\boldsymbol{\theta}} - \gamma \, \overline{\mathbf{A}}^{-\top} \nabla f(\overline{\mathbf{A}}^{-1} \tilde{\boldsymbol{\theta}}) \right)$$

(Artigas, 2022, EUSIPCO; Fort et col, 2022, preprint)

ullet Dérive marché aléatoire duale : $ilde{\mu}^{ t RM}(ilde{m{ heta}}) = ilde{m{ heta}}$

Modèle

- $X \in \mathbb{R}^{N \times d}$: matrice des covariables,
 - $heta^* \in \mathbb{R}^d$: vecteur de régression constant par blocs,
 - $Y \in \{0,1\}^N$: vecteur de réponses binaires

$$\mathsf{Y}_j \sim \mathsf{Bernoulli}\left((1+\mathsf{exp}(-(\mathsf{X}\pmb{\theta}^*)_j))^{-1}\right), \quad \mathsf{ind\acute{e}pendantes}.$$

Modèle

- $X \in \mathbb{R}^{N \times d}$: matrice des covariables,
 - $heta^* \in \mathbb{R}^d$: vecteur de régression constant par blocs,
 - $Y \in \{0,1\}^N$: vecteur de réponses binaires

$$Y_j \sim \text{Bernoulli}\left(\left(1 + \exp(-(X\theta^*)_j)\right)^{-1}\right), \quad \text{indépendantes.}$$

Log-distribution a posteriori

$$\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$$
 : gradient discret

$$\ln \pi_{\mathrm{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \mathsf{exp}((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \| \mathsf{D}_{1} \boldsymbol{\theta} \|_{1}$$

Modèle

- $X \in \mathbb{R}^{N \times d}$: matrice des covariables,
 - $\theta^* \in \mathbb{R}^d$: vecteur de régression constant par blocs,
 - $Y \in \{0,1\}^N$: vecteur de réponses binaires

$$Y_i \sim \text{Bernoulli}\left(\left(1 + \exp(-(X\theta^*)_i)\right)^{-1}\right), \text{ indépendantes.}$$

Log-distribution a posteriori

$$\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$$
 : gradient discret

$$\ln \pi_{\mathrm{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \exp((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \|\mathsf{D}_{1} \boldsymbol{\theta}\|_{1}$$

$$\text{PGdec} \ : \ \| \mathsf{D}_1 \boldsymbol{\theta} \|_1 = \underbrace{\| \mathsf{D}_{1,\rho} \boldsymbol{\theta} \|_1}_{\text{lignes paires}} + \underbrace{\| \mathsf{D}_{1,i} \boldsymbol{\theta} \|_1}_{\text{lignes impaires}} \text{,} \qquad \qquad \mathsf{D}_{1,\rho} \mathsf{D}_{1,\rho}^\top = \mathsf{D}_{1,i} \mathsf{D}_{1,i}^\top = \nu \mathsf{I}, \ \nu = 1 \text{;}$$

Modèle

- $X \in \mathbb{R}^{N \times d}$: matrice des covariables,
 - $oldsymbol{ heta}^* \in \mathbb{R}^d$: vecteur de régression constant par blocs,
 - $Y \in \{0,1\}^N$: vecteur de réponses binaires

$$Y_j \sim \text{Bernoulli}\left(\left(1 + \exp(-(X\theta^*)_j)\right)^{-1}\right), \quad \text{indépendantes.}$$

Log-distribution a posteriori

$$\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$$
 : gradient discret

$$\ln \pi_{\mathrm{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \exp((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \|\mathsf{D}_{1} \boldsymbol{\theta}\|_{1}$$

$$\begin{array}{ll} \text{PGdec} \ : \ \|D_1\theta\|_1 = \underbrace{\|D_{1,p}\theta\|_1}_{\text{lignes paires}} + \underbrace{\|D_{1,i}\theta\|_1}_{\text{lignes impaires}}, \qquad D_{1,p}D_{1,p}^\top = D_{1,i}D_{1,i}^\top = \nu \text{I, } \nu = 1; \\ \\ *\text{dual} \ : \ \overline{D}_1 = \begin{pmatrix} -1 & 0 \dots 0 \\ 0 & \\ \vdots & D_1 \\ 0 & \end{pmatrix} \Longrightarrow \text{extension inversible de } D_1. \end{array}$$

Modèle • $X \in \mathbb{R}^{N \times d}$: matrice des covariables,

- $\theta^* \in \mathbb{R}^d$: vecteur de régression constant par blocs,
 - $Y \in \{0,1\}^N$: vecteur de réponses binaires

$$\mathsf{Y}_j \sim \mathsf{Bernoulli}\left(\left(1 + \mathsf{exp}(-(\mathsf{X}oldsymbol{ heta}^*)_j)
ight)^{-1}
ight), \quad \mathsf{ind}$$
épendantes.

Log-distribution a posteriori

 $\mathsf{D}_1 \in \mathbb{R}^{d-1 imes d}$: gradient discret

$$\ln \pi_{\mathrm{t}}(\boldsymbol{\theta}) = \mathsf{Y}^{\top} \mathsf{X} \boldsymbol{\theta} - \sum_{i=1}^{N} \ln \left(1 + \exp((\mathsf{X} \boldsymbol{\theta})_{j}) \right) - \lambda \|\mathsf{D}_{1} \boldsymbol{\theta}\|_{1}$$

$$\begin{aligned} & \text{PGdec} \ : \ \|D_1 \boldsymbol{\theta}\|_1 = \underbrace{\|D_{1,\rho} \boldsymbol{\theta}\|_1}_{\text{lignes paires}} + \underbrace{\|D_{1,i} \boldsymbol{\theta}\|_1}_{\text{lignes impaires}}, & D_{1,\rho} D_{1,\rho}^\top = D_{1,i} D_{1,i}^\top = \nu \textbf{I}, \ \nu = 1 \, ; \\ & \text{*dual} \ : \ \overline{D}_1 = \begin{pmatrix} -1 & 0 \dots 0 \\ 0 & \\ \vdots & D_1 \\ 0 & \end{pmatrix} \Longrightarrow \text{extension inversible de } D_1. \end{aligned}$$

Données $N = 2.10^3$, d = 20

 $\mathsf{X}:\mathsf{v.a.}$ de Rademacher indépendantes, lignes normalisées à 1.

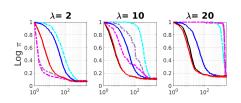
Exemple jouet : vitesse de convergence des chaînes de Markov

Indicateur de convergence :

$$\operatorname{Log} \pi = \frac{\ln \pi_t(\theta^n) - \ln \pi_t^*}{\ln \pi_t(\theta^1) - \ln \pi_t^*}, \quad \ln \pi_t^* = \max_{\theta \in \mathbb{R}} \ln \pi_t(\theta) \quad \text{régions de grande probabilité}$$

Comparaison des méthodes

primales	duales
en traits pleins	en pointillés
RW	RWdual
M	Mdual
PGdec	PGdual



- gain à utiliser l'ordre un vs. RW;
- méthodes primales : les meilleures à λ petit ;
- méthodes duales : les plus rapides pour λ moyen à grand, correctes pour λ petit.

 \implies Mdual et PGdual bonnes performances; robustes au choix de λ

Échantillonneurs duaux pour l'estimation du taux de reproduction

[Mdual] dérive de type Moreau sur le dual $\gamma=
ho$

$$\begin{split} & \boldsymbol{\mathsf{R}}^{n+\frac{1}{2}} = \boldsymbol{\mathsf{R}}^{n} - \gamma \overline{\mathsf{D}}_{2}^{-1} \overline{\mathsf{D}}_{2}^{-\top} \nabla_{\mathsf{R}} f(\boldsymbol{\theta}^{n}) - \overline{\mathsf{D}}_{2}^{-1} \left[0 \, ; 0 \, ; \mathsf{D}_{2} \boldsymbol{\theta}^{n} - \mathsf{prox}_{\gamma \lambda_{\mathsf{R}} \| \cdot \|_{1}} (\mathsf{D}_{2} \boldsymbol{\mathsf{R}}^{n}) \right] + \sqrt{2 \gamma} \xi_{\mathsf{R}}^{n+1}, \\ & \boldsymbol{\mathsf{O}}^{n+\frac{1}{2}} = - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\boldsymbol{\theta}^{n}) + \mathsf{prox}_{\gamma_{\mathsf{O}} \lambda_{\mathsf{O}} \| \cdot \|_{1}} (\boldsymbol{\mathsf{O}}^{n}) + \sqrt{2 \gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1} \; ; \end{split}$$

[PGdual] dérive de type proximal-gradient sur le dual

$$\begin{split} & \boldsymbol{\mathsf{R}}^{n+\frac{1}{2}} = \overline{\mathsf{D}}_2^{-1} \operatorname{\mathsf{prox}}_{\gamma \lambda_{\mathsf{R}} \parallel (\cdot)_{3:T} \parallel_1} \left(\overline{\mathsf{D}}_2 \boldsymbol{\mathsf{R}}^n - \gamma \overline{\mathsf{D}}_2^{-\top} \nabla_{\mathsf{R}} f(\boldsymbol{\theta}^n) \right) + \sqrt{2\gamma} \xi_{\mathsf{R}}^{n+1}, \\ & \boldsymbol{\mathsf{O}}^{n+\frac{1}{2}} = \operatorname{\mathsf{prox}}_{\gamma_{\mathsf{O}} \lambda_{\mathsf{O}} \parallel \cdot \parallel_1} (\boldsymbol{\mathsf{O}}^n - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\boldsymbol{\theta}^n)) + \sqrt{2\gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1}. \end{split}$$

 $\nabla_{R/O}$: gradient partiel par rapport à R/O ;

Echantillonneurs duaux pour l'estimation du taux de reproduction

[Mdual] dérive de type Moreau sur le dual $\gamma = \rho$

$$\begin{split} & \boldsymbol{\mathsf{R}}^{n+\frac{1}{2}} = \boldsymbol{\mathsf{R}}^{n} - \gamma \overline{\mathsf{D}}_{2}^{-1} \overline{\mathsf{D}}_{2}^{-\top} \nabla_{\mathsf{R}} f(\boldsymbol{\theta}^{n}) - \overline{\mathsf{D}}_{2}^{-1} \left[0 \, ; 0 \, ; \mathsf{D}_{2} \boldsymbol{\theta}^{n} - \mathsf{prox}_{\gamma \lambda_{\mathsf{R}} \| \cdot \|_{1}} (\mathsf{D}_{2} \boldsymbol{\mathsf{R}}^{n}) \right] + \sqrt{2 \gamma} \xi_{\mathsf{R}}^{n+1}, \\ & \boldsymbol{\mathsf{O}}^{n+\frac{1}{2}} = - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\boldsymbol{\theta}^{n}) + \mathsf{prox}_{\gamma_{\mathsf{O}} \lambda_{\mathsf{O}} \| \cdot \|_{1}} (\boldsymbol{\mathsf{O}}^{n}) + \sqrt{2 \gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1} \; ; \end{split}$$

[PGdual] dérive de type proximal-gradient sur le dual

$$\begin{split} \mathbf{R}^{n+\frac{1}{2}} &= \overline{\mathsf{D}}_2^{-1} \operatorname{\mathsf{prox}}_{\gamma \lambda_{\mathsf{R}} \| (\cdot)_{3:T} \|_1} \left(\overline{\mathsf{D}}_2 \mathbf{R}^n - \gamma \overline{\mathsf{D}}_2^{-\top} \nabla_{\mathsf{R}} f(\boldsymbol{\theta}^n) \right) + \sqrt{2\gamma} \xi_{\mathsf{R}}^{n+1}, \\ \mathbf{O}^{n+\frac{1}{2}} &= \operatorname{\mathsf{prox}}_{\gamma_{\mathsf{O}} \lambda_{\mathsf{O}} \| \cdot \|_1} (\mathbf{O}^n - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\boldsymbol{\theta}^n)) + \sqrt{2\gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1}. \end{split}$$

 $\nabla_{R/O}$: gradient partiel par rapport à R/O;

Perturbations gaussiennes: $-\xi_{\rm p}^{n+1} \sim \mathcal{N}(0, \overline{\mathsf{D}}_2^{-1} \overline{\mathsf{D}}_2^{-\top}),$ $-\xi_0^{n+1}\sim\mathcal{N}(0,1)$; Paramètres :

$$-(\lambda_{\rm R}, \lambda_{\rm O}) = (3.5 \,\sigma_{\rm Z} \sqrt{6}/4, 0.05),$$

$$-\gamma_{\rm O} = \gamma (\lambda_{\rm R}/\lambda_{\rm O})^2,$$

$$-\gamma_{\rm O}=\gamma(\lambda_{\rm R}/\lambda_{\rm O})^2$$
,

 $-\gamma$ ajusté pour accepter 25% des $\theta^{n+\frac{1}{2}}$.

Échantillonneurs duaux pour l'estimation du taux de reproduction

[Mdual] dérive de type Moreau sur le dual $\gamma = \rho$

$$\begin{split} & \boldsymbol{\mathsf{R}}^{n+\frac{1}{2}} = \boldsymbol{\mathsf{R}}^{n} - \gamma \overline{\mathsf{D}}_{2}^{-1} \overline{\mathsf{D}}_{2}^{-\top} \nabla_{\mathsf{R}} f(\boldsymbol{\theta}^{n}) - \overline{\mathsf{D}}_{2}^{-1} \left[0 \, ; 0 \, ; \mathsf{D}_{2} \boldsymbol{\theta}^{n} - \mathsf{prox}_{\gamma \lambda_{\mathrm{R}} \| \cdot \|_{1}} (\mathsf{D}_{2} \boldsymbol{\mathsf{R}}^{n}) \right] + \sqrt{2 \gamma} \xi_{\mathrm{R}}^{n+1}, \\ & \boldsymbol{\mathsf{O}}^{n+\frac{1}{2}} = - \gamma_{\mathrm{O}} \nabla_{\mathrm{O}} f(\boldsymbol{\theta}^{n}) + \mathsf{prox}_{\gamma_{\mathrm{O}} \lambda_{\mathrm{O}} \| \cdot \|_{1}} (\boldsymbol{\mathsf{O}}^{n}) + \sqrt{2 \gamma_{\mathrm{O}}} \xi_{\mathrm{O}}^{n+1} \; ; \end{split}$$

[PGdual] dérive de type proximal-gradient sur le dual

$$\begin{split} \mathbf{R}^{n+\frac{1}{2}} &= \overline{\mathsf{D}}_2^{-1} \operatorname{\mathsf{prox}}_{\gamma \lambda_{\mathsf{R}} \parallel (\cdot)_{3:T} \parallel_1} \left(\overline{\mathsf{D}}_2 \mathbf{R}^n - \gamma \overline{\mathsf{D}}_2^{-\top} \nabla_{\mathsf{R}} f(\boldsymbol{\theta}^n) \right) + \sqrt{2\gamma} \xi_{\mathsf{R}}^{n+1}, \\ \mathbf{O}^{n+\frac{1}{2}} &= \operatorname{\mathsf{prox}}_{\gamma_{\mathsf{O}} \lambda_{\mathsf{O}} \parallel \cdot \parallel_1} (\mathbf{O}^n - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\boldsymbol{\theta}^n)) + \sqrt{2\gamma_{\mathsf{O}}} \xi_{\mathsf{O}}^{n+1}. \end{split}$$

 $\nabla_{R/O}$: gradient partiel par rapport à R/O;

${\color{red} \textbf{Perturbations gaussiennes}}:$

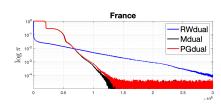
$$-\xi_{\mathsf{R}}^{n+1} \sim \mathcal{N}(0, \overline{\mathsf{D}}_{2}^{-1} \overline{\mathsf{D}}_{2}^{-\top}), \\ -\xi_{\mathsf{D}}^{n+1} \sim \mathcal{N}(\mathsf{0}, \mathsf{I});$$

Paramètres :

$$\begin{split} &-\left(\lambda_{\mathrm{R}},\lambda_{\mathrm{O}}\right)=(3.5\,\sigma_{\text{Z}}\sqrt{6}/4,0.05),\\ &-\gamma_{\mathrm{O}}=\gamma(\lambda_{\mathrm{R}}/\lambda_{\mathrm{O}})^{2}, \end{split}$$

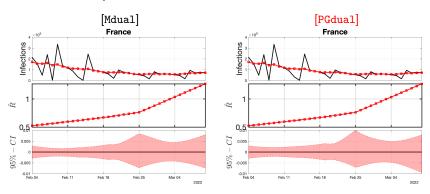
 $-\gamma$ ajusté pour accepter 25% des $\theta^{n+\frac{1}{2}}$.

Vitesse de convergence des chaînes de Markov



Estimation par intervalles de crédibilité

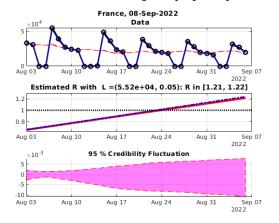
- Nombre de nouvelles infections débruités $\mathbf{Z}^{(D)} = \mathbf{Z} \widehat{\mathbf{0}}$
- Coefficient de reproduction $\widehat{\mathbf{R}}$



 \Longrightarrow crucial pour appuyer des mesures sanitaires sur l'estimée $R_{\mathcal{T}}$

Nombre de cas débruité et intervalles de crédibilité de R_t postés quotidiennement

https://perso.ens-lyon.fr/patrice.abry/ https://perso.math.univ-toulouse.fr/gfort/project/opsimore-2/



Pistes de recherche et perspectives :

- ▶ Réglage automatique piloté par les données des hyperparamètres $\gamma_{R/O}$, $\lambda_{R/O}$;
- ▶ Gestion de données reportées de moins en moins régulièrement.