

Credibility interval Design for Covid19 Reproduction Number from Nonsmooth Langevin-type Monte Carlo sampling

H. Artigas^{1,†}, <u>B. Pascal²</u>, G. Fort^{4,†}, P. Abry^{3,‡}, N. Pustelnik^{3,5}

EUSIPCO 2022, Belgrade, Serbia

- 1. Ecole Polytechnique, Paris, France
- 2. CNRS, Université de Lille, CRIStAL, France
- 3. CNRS, ENS de Lyon, Laboratoire de Physique, France,
- 4. CNRS, Institut de Mathématique de Toulouse, France,
- 5. UC Louvain, Belgium
- [†] Partly funded by the Fondation Simone et Cino Del Duca, Institut de France
- [‡] Partially supported by Grant 80PRIME-2021 CNRS

Pandemic monitoring

Counts of daily new infections

data from National Health Agencies collected by Johns Hopkins University

Pandemic monitoring

data from National Health Agencies collected by Johns Hopkins University

Design adapted counter measures and evaluate their effectiveness

- $\rightarrow\,$ efficient monitoring tools
- $\rightarrow\,$ robust to low quality of the data
- ightarrow accompanied by reliable confidence level

epidemiological model, managing outliers, credibility intervals.

Pandemic monitoring

data from National Health Agencies collected by Johns Hopkins University

Design adapted counter measures and evaluate their effectiveness

- ightarrow efficient monitoring tools epi
 - $\rightarrow\,$ robust to low quality of the data
 - ightarrow accompanied by reliable confidence level

 \implies number of cases not informative enough: need to capture the dynamics

epidemiological model, managing outliers, credibility intervals. Key concept: the reproduction number R_0

(Liu et al., 2018, *PNAS*)

"averaged number of secondary cases generated by a typical infectious individual"

 \implies relaxed into effective reproduction number R_t at time t

Epidemiological models

Key concept:the reproduction number R_0 (Liu et al., 2018, PNAS)"averaged number of secondary cases generated by a typical infectious individual" \implies relaxed into effective reproduction number R_t at time t

(Cori et al., 2013, Am. Journal of Epidemiology ; Abry et al., 2020, PlosOne ; Pascal et al., 2022, Trans. Sig. Process. ; Fort et al., 2022, preprint)

T observations $\mathbf{Z} = (Z_1, \dots, Z_T)^\top \in \mathbb{N}^T$, Z_t : new infections on day $t, \theta = (\mathbf{R}, \mathbf{0})$

$$\mathbb{P}(\mathsf{Z}_t | \mathsf{Z}_1, \dots, \mathsf{Z}_{t-1}) = \mathsf{Poiss}\left(p_t(\theta)\right), \quad p_t(\theta) = \mathsf{R}_t\left(\Phi\mathsf{Z}\right)_t + \mathsf{O}_t$$

 $\left(\Phi \mathsf{Z}\right)_{t} = \sum_{u=1}^{\tau_{\phi}} \Phi_{u} \mathsf{Z}_{t-u}, \ \Phi: \ \text{serial interval function}$

 \Rightarrow random delay between onset of symptoms in primary and secondary cases

Gamma distribution with

- mean 6.6 days
- standard deviation 3.5 days

Log-likelihood from Poisson model

(by convention $0 \ln 0 = 0$)

$$f(\theta) := \begin{cases} -\sum_{t=1}^{T} (\mathsf{Z}_t \ln p_t(\theta) - p_t(\theta)) & \text{if } \theta \in \mathcal{D} = \{\theta \,|\, \forall t, \ p_t(\theta) \ge 0\}, \\ +\infty & \text{otherwise,} \end{cases}$$

Log-likelihood from Poisson model (by convention $0 \ln 0 = 0$) $\begin{pmatrix} \sum_{i=1}^{T} (\mathbf{Z} \ln \mathbf{p}(\theta) - \mathbf{p}(\theta)) & \text{if } \theta \in \mathcal{D} = \{\theta \mid \forall t = \mathbf{p}(\theta) > 0\} \end{cases}$

$$f(\theta) := \begin{cases} -\sum_{t=1}^{r} (\mathsf{Z}_t \ln p_t(\theta) - p_t(\theta)) & \text{if } \theta \in \mathcal{D} = \{\theta \mid \forall t, \ p_t(\theta) \ge 0\}, \\ +\infty & \text{otherwise,} \end{cases}$$

A priori distribution of $\theta = (\mathbf{R}, \mathbf{O}) = (\mathsf{R}_1, \dots, \mathsf{R}_T, \mathsf{O}_1, \dots, \mathsf{O}_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

- reproduction number: $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- outliers $O_t \sim Laplace(\lambda_O)$ $\Rightarrow g(\theta) = \lambda_R \|D_2 \mathbf{R}\|_1 + \lambda_O \|\mathbf{O}\|_1, \quad D_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 1 & -2 & 1 \end{bmatrix}$

Laplacian

Log-likelihood from Poisson model

(by convention
$$0 \ln 0 = 0$$
)

$$f(\theta) := \begin{cases} -\sum_{t=1}^{T} (\mathsf{Z}_t \ln p_t(\theta) - p_t(\theta)) & \text{if } \theta \in \mathcal{D} = \{\theta \,|\, \forall t, \ p_t(\theta) \ge 0\}, \\ +\infty & \text{otherwise,} \end{cases}$$

A priori distribution of $\theta = (\mathbf{R}, \mathbf{O}) = (\mathsf{R}_1, \dots, \mathsf{R}_T, \mathsf{O}_1, \dots, \mathsf{O}_T) \in (\mathbb{R}_+)^T \times \mathbb{R}^T$

- reproduction number: $R_t 2R_{t-1} + R_{t-2} \sim Laplace(\lambda_R)$
- outliers $O_t \sim Laplace(\lambda_O)$ $\Rightarrow g(\theta) = \lambda_R ||D_2 \mathbf{R}||_1 + \lambda_O ||\mathbf{O}||_1, \quad D_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \dots & & & & & \dots & 0 \\ 0 & \dots & & & & 1 & -2 & 1 \end{bmatrix}$

Laplacian

A posteriori distribution of unknown parameters $\theta = (\mathsf{R}, \mathsf{O})$

$$\pi(heta) \propto \exp\left(-f(heta) - g(heta)
ight) \mathbb{1}_{\mathcal{D}}(heta)$$

- f, g convex
- f smooth, g nonsmooth

Markov Chain Monte Carlo sampling

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

 $^{^\}dagger~\pi$ is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n \to \infty$, $\theta^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

 $^{^\}dagger$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n \to \infty$, $\theta^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

State-of-the-art: Hastings-Metropolis random walk

(i) propose a random move according to

$$heta^{n+rac{1}{2}}= heta^n+\sqrt{2\gamma}\mathsf{\Gamma}\xi^{n+1},\quad \xi^{n+1}\sim\mathcal{N}_{2 au}(\mathsf{0},\mathsf{I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{2^T \times 2^T}$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Purpose: sampling the random variable $\theta = (\mathbf{R}, \mathbf{O}) \in \mathbb{R}^{2T}$ according to the posterior[†] $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

Principle: 1) generate a random sequence $\{\theta^n, n \in \mathbb{N}\}$ such that

- θ^{n+1} only depends on θ^n ,
- at convergence, i.e., as $n \to \infty$, $\theta^n \sim \pi$,

2) compute Bayesian estimators, e.g., credibility intervals, on samples $\{\theta^n, n \ge N\}$

State-of-the-art: Hastings-Metropolis random walk

(i) propose a random move according to

$$heta^{n+rac{1}{2}}= heta^n+\sqrt{2\gamma}\mathsf{\Gamma}\xi^{n+1},\quad\xi^{n+1}\sim\mathcal{N}_{2 au}(\mathsf{0},\mathsf{I})$$

with γ positive step size, $\Gamma \in \mathbb{R}^{2^T \times 2^T}$

(ii) accept:
$$\theta^{n+1} = \theta^{n+\frac{1}{2}}$$
, with probability $1 \wedge \frac{\pi(\theta^{n+\frac{1}{2}})}{\pi(\theta^n)}$, or reject: $\theta^{n+1} = \theta^n$

 $^{^{\}dagger}$ π is defined up to a normalizing constant

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, Adv Appl Probab) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, *Adv Appl Probab*) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

<u>Case 1:</u> g = 0 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, Bernoulli) $\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$

 \implies move towards areas of higher probability

Metropolis Adjusted Langevin Algorithm (MALA)

Langevin dynamics: $\theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma}\xi^{n+1}$, (Kent, 1978, Adv Appl Probab) $\mu(\theta)$ adapted to $\pi(\theta) = \exp(-f(\theta) - g(\theta))\mathbb{1}_{\mathcal{D}}(\theta)$

<u>Case 1:</u> g = 0 and $-\ln \pi = f$ is smooth (Roberts & Tweedie, 1996, Bernoulli) $\mu(\theta) = \theta - \gamma \Gamma \Gamma^{\top} \nabla f(\theta) = \theta + \gamma \Gamma \Gamma^{\top} \nabla \ln \pi(\theta)$

 \Longrightarrow move towards areas of higher probability

<u>Case 2:</u> $-\ln \pi = f + g$ is nonsmooth

$$\mu(\theta) = \operatorname{prox}_{\gamma g}^{\Gamma\Gamma^{\top}}(\theta - \gamma \Gamma\Gamma^{\top} \nabla f(\theta))$$

combining Langevin and proximal[†] approaches

[†] prox_{$$\gamma g$$} ^{$\Gamma\Gamma^{\top}$} $(y) = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \left(\frac{1}{2} \|x - y\|_{\Gamma\Gamma^{\top}}^2 + \gamma g(x)\right)$: preconditioned proximity operator of g
6/11

Posterior density of $\theta = (\mathbf{R}, \mathbf{O})$: $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

• smooth negative log-likelihood

if
$$\theta \in \mathcal{D}$$
, $f(\theta) = -\sum_{t=1}^{T} (\mathsf{Z}_t \ln p_t(\theta) - p_t(\theta)), p_t(\theta) = \mathsf{R}_t(\Phi\mathsf{Z})_t + \mathsf{O}_t$

• nonsmooth convex lower-semicontinuous negative a priori log-distribution

$$g(\theta) = \lambda_{\rm R} \|\mathsf{D}_2 \mathbf{R}\|_1 + \lambda_{\rm O} \|\mathbf{O}\| = h(\mathsf{A}\theta)$$

A : $\theta \mapsto (D_2 \mathbf{R}, \mathbf{O})$ linear operator, $h(\cdot_1, \cdot_2) = \lambda_R \|\cdot_1\|_1 + \lambda_O \|\cdot_2\|_1$

Posterior density of $\theta = (\mathbf{R}, \mathbf{O})$: $\pi(\theta) \propto \exp(-f(\theta) - g(\theta)) \mathbb{1}_{\mathcal{D}}(\theta)$

smooth negative log-likelihood

if
$$\theta \in \mathcal{D}$$
, $f(\theta) = -\sum_{t=1}^{T} (\mathsf{Z}_t \ln p_t(\theta) - p_t(\theta))$, $p_t(\theta) = \mathsf{R}_t(\Phi\mathsf{Z})_t + \mathsf{O}_t$

nonsmooth convex lower-semicontinuous negative a priori log-distribution

$$g(\theta) = \lambda_{\rm R} \|\mathsf{D}_2 \mathbf{R}\|_1 + \lambda_{\rm O} \|\mathbf{O}\| = h(\mathsf{A}\theta)$$

A : $\theta \mapsto (\mathsf{D}_2 \mathbf{R}, \mathbf{O})$ linear operator, $h(\cdot_1, \cdot_2) = \lambda_{\mathrm{R}} \|\cdot_1\|_1 + \lambda_{\mathrm{O}} \|\cdot_2\|_1$

<u>Case 3:</u> $-\ln \pi = f + h(A \cdot)$ (Fort et al., 2022, *preprint*)

closed-form expression of $prox_{\gamma h}$ but not of $prox_{\gamma h(A)}$

1) extend A into **invertible** \overline{A} , and *h* in \overline{h} such that $\overline{h}(\overline{A}\theta) = h(A\theta)$ 2) reason on the **dual** variable $\tilde{\theta} = \overline{A}\theta$

Langevin: drift toward higher probability regions

$$\underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} \ln \pi(\theta) = \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \bar{h}(\overline{A}\theta) = A^{-1} \underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{A}^{-1}\tilde{\theta}) + \bar{h}(\tilde{\theta})$$

Langevin: drift toward higher probability regions

$$\begin{aligned} \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} & \ln \pi(\theta) = \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \overline{h}(\overline{A}\theta) = A^{-1}\underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{A}^{-1}\tilde{\theta}) + \overline{h}(\tilde{\theta}) \\ \\ \implies \mu(\theta) = \underbrace{\overline{A}^{-1}}_{\underset{\text{back to }\theta}{\overline{A}}} \underbrace{\operatorname{prox}_{\gamma \overline{h}} \left(\overline{A}\theta - \gamma \overline{A}^{-\top} \nabla f(\theta)\right)}_{\underset{\text{proximal-gradient on } \tilde{\theta}}} \end{aligned}$$

Two strategies to extend $A = \begin{pmatrix} D_2 & 0 \\ 0 & I \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T}$ into $\overline{A} = \begin{pmatrix} D & 0 \\ 0 & I \end{pmatrix} \in \mathbb{R}^{2T \times 2T}$:

Two strategies to extend
$$A = \begin{pmatrix} D_2 & 0 \\ 0 & I \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T}$$
 into $\overline{A} = \begin{pmatrix} \overline{D} & 0 \\ 0 & I \end{pmatrix} \in \mathbb{R}^{2T \times 2T}$:

Invert

$$\overline{\mathsf{D}}_2 := egin{bmatrix} 1 & 0 & 0 & \cdots & 0 \ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \ D_2 & & & \end{bmatrix}$$

$$\begin{bmatrix} \text{Langevin: drift toward higher probability regions} \\ \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax } \ln \pi(\theta) = \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin } f(\theta) + \overline{h}(\overline{A}\theta) = A^{-1}\underset{\tilde{\theta} \in \mathbb{R}^{2T}}{\operatorname{argmin } f(\overline{A}^{-1}\tilde{\theta}) + \overline{h}(\tilde{\theta})} \\ \implies \mu(\theta) = \frac{\overline{A}^{-1}}{\underset{\text{back to } \theta}{\underline{A}^{-1}}} \underbrace{\underset{\text{prox}_{\gamma \overline{h}}}{\operatorname{prox}_{\gamma \overline{h}}} \left(\overline{A}\theta - \gamma \overline{A}^{-\top} \nabla f(\theta)\right)} \\ \xrightarrow{\text{proximal-gradient on } \tilde{\theta}} \\ \end{bmatrix}$$

Two strategies to extend $A = \begin{pmatrix} D_2 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T} \text{ into } \overline{A} = \begin{pmatrix} \overline{D} & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2T \times 2T}: \\ \text{Invert} & \text{Ortho} \\ \overline{D}_2 := \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \\ D_2 & & & \end{bmatrix} \quad \overline{D}_o := \begin{bmatrix} v_1^{\top} \\ v_2^{\top} \\ D_2 \end{bmatrix} \underbrace{v_1, v_2 \in \mathbb{R}^{2T} \\ v_1 \perp v_2, v_1, v_2 \in (D_2^{\top})^{\perp} \\ \end{bmatrix}$

Langevin: drift toward higher probability regions

$$\begin{aligned} \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmax}} \ln \pi(\theta) &= \underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\theta) + \overline{h}(\overline{A}\theta) = A^{-1}\underset{\theta \in \mathbb{R}^{2T}}{\operatorname{argmin}} f(\overline{A}^{-1}\tilde{\theta}) + \overline{h}(\tilde{\theta}) \\ &\implies \mu(\theta) = \frac{\overline{A}^{-1}}{\underset{\text{back to } \theta}{\overline{A}}} \frac{\operatorname{prox}_{\gamma \overline{h}} \left(\overline{A}\theta - \gamma \overline{A}^{-\top} \nabla f(\theta)\right)}{\underset{\text{proximal-gradient on } \overline{\theta}}{} \end{aligned}$$
Two strategies to extend $A = \begin{pmatrix} D_2 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{(2T-1) \times 2T} \text{ into } \overline{A} = \begin{pmatrix} \overline{D} & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2T \times 2T}$:
Invert Ortho
 $\overline{D}_2 := \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -2/\sqrt{5} & 1/\sqrt{5} & 0 & \cdots & 0 \\ D_2 & & \end{bmatrix} \quad \overline{D}_o := \begin{bmatrix} v_1^{\top} \\ v_2^{\top} \\ D_2 \end{bmatrix} v_1, v_2 \in \mathbb{R}^{2T} \\ v_1 \perp v_2, v_1, v_2 \in (D_2^{\top})^{\perp} \end{aligned}$

Proposed PGdual drift terms on $\theta = (\mathbf{R}, \mathbf{O})$:

reproduction numbers
$$\mu_{\mathsf{R}}(\theta) = \overline{\mathsf{D}}^{-1} \operatorname{prox}_{\gamma_{\mathsf{R}}\lambda_{\mathsf{R}} \parallel (\cdot)_{3:T} \parallel_{1}} \left(\overline{\mathsf{D}} \, \mathsf{R} - \gamma_{\mathsf{R}} \overline{\mathsf{D}}^{-\top} \, \nabla_{\mathsf{R}} f(\theta) \right)$$

outliers $\mu_{\mathsf{O}}(\theta) = \operatorname{prox}_{\gamma_{\mathsf{O}}\lambda_{\mathsf{O}} \parallel \cdot \parallel_{1}} \left(\mathbf{O} - \gamma_{\mathsf{O}} \nabla_{\mathsf{O}} f(\theta) \right)$

Algorithm 1: Proximal-Gradient dual: PGdual Invert and PGdual Ortho

Data:
$$\overline{D} = \overline{D}_2$$
 (Invert) or $\overline{D} = \overline{D}_o$ (Ortho)
 $\gamma_R, \gamma_O > 0, N_{max} \in \mathbb{N}_*, \theta^0 = (\mathbb{R}^0, \mathbb{O}^0) \in \mathcal{D}$
Result: A \mathcal{D} -valued sequence $\{\theta^n = (\mathbb{R}^n, \mathbb{O}^n), n \in 0, \dots, N_{max}\}$
for $n = 0, \dots, N_{max} - 1$ do
Sample $\xi_R^{n+1} \sim \mathcal{N}_T(0, \mathbb{I})$ and $\xi_O^{n+1} \sim \mathcal{N}_T(0, \mathbb{I})$;
Set $\mathbb{R}^{n+\frac{1}{2}} = \mu_R(\theta^n) + \sqrt{2\gamma_R}\overline{D}^{-1}\overline{D}^{-\top}\xi_R^{n+1}$;
 $\mathbb{O}^{n+\frac{1}{2}} = \mu_O(\theta^n) + \sqrt{2\gamma_O}\xi_O^{n+1}$;
 $\theta^{n+\frac{1}{2}} = (\mathbb{R}^{n+\frac{1}{2}}, \mathbb{O}^{n+\frac{1}{2}})$;
Set $\theta^{n+1} = \theta^{n+\frac{1}{2}}$ with probability
 $1 \wedge \frac{\pi(\theta^{n+\frac{1}{2}})}{\pi(\theta^n)} \frac{q_R(\theta^{n+\frac{1}{2}}, \theta_R^n)}{q_R(\theta^n, \theta_R^{n+\frac{1}{2}})} \frac{q_O(\theta^{n+\frac{1}{2}}, \theta_O^n)}{q_O(\theta^n, \theta_O^{n+\frac{1}{2}})}$,
 $q_{R/O}$: Gaussian kernel stemming from nonsymmetric proposal
and $\theta^{n+1} = \theta^n$ otherwise.

Comparison of MCMC sampling schemes

 $\begin{array}{ll} \textbf{Gaussian proposal:} & \theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma} \Gamma \xi^{n+1} \\ \bullet \text{ random walks: } \mu(\theta) = \theta \\ & \mathbb{RW:} \ \Gamma = \mathsf{I} \text{ ; } \mathbb{RW} \text{ Invert: } \Gamma = \overline{\mathsf{D}}_2^{-1} \overline{\mathsf{D}}_2^{-\mathsf{T}} \text{ ; } \mathbb{RW} \text{ Ortho: } \Gamma = \overline{\mathsf{D}}_o^{-1} \overline{\mathsf{D}}_o^{-\mathsf{T}} \\ \bullet \text{ Proximal-Gradient dual: } \mu_{\mathsf{R}}(\theta), \ \mu_{\mathsf{O}}(\theta), \ \Gamma = \overline{\mathsf{D}}^{-1} \overline{\mathsf{D}}^{-\mathsf{T}} \\ & \mathbb{P}\text{Gdual Invert: } \overline{\mathsf{D}} = \overline{\mathsf{D}}_2 \text{ ; } \mathbb{P}\text{Gdual Ortho: } \overline{\mathsf{D}} = \overline{\mathsf{D}}_o \\ \end{array}$

Comparison of MCMC sampling schemes

 $\begin{array}{ll} \textbf{Gaussian proposal:} & \theta^{n+\frac{1}{2}} = \mu(\theta^n) + \sqrt{2\gamma} \Gamma \xi^{n+1} \\ \bullet \text{ random walks: } \mu(\theta) = \theta \\ & \mathbb{RW:} \ \Gamma = \mathsf{I} \text{ ; } \mathbb{RW} \text{ Invert: } \Gamma = \overline{\mathsf{D}}_2^{-1} \overline{\mathsf{D}}_2^{-\mathsf{T}} \text{ ; } \mathbb{RW} \text{ Ortho: } \Gamma = \overline{\mathsf{D}}_o^{-1} \overline{\mathsf{D}}_o^{-\mathsf{T}} \\ \bullet \text{ Proximal-Gradient dual: } \mu_{\mathsf{R}}(\theta), \ \mu_{\mathsf{O}}(\theta), \ \Gamma = \overline{\mathsf{D}}^{-1} \overline{\mathsf{D}}^{-\mathsf{T}} \\ & \mathbb{P}\text{Gdual Invert: } \overline{\mathsf{D}} = \overline{\mathsf{D}}_2 \text{ ; } \mathbb{P}\text{Gdual Ortho: } \overline{\mathsf{D}} = \overline{\mathsf{D}}_o \\ \\ \textbf{Practical settings: } N_{\text{max}} = 10^7 \text{ iterations, } 15 \text{ independent runs} \\ & \text{ log-density } \end{array}$

PGdual credibility interval estimation of the reproduction number

 \Longrightarrow significant step toward actual use of the estimate $\mathsf{R}_{\mathcal{T}}$

Denoised counts and reproduction number estimates for several countries available at https://perso.ens-lyon.fr/patrice.abry/ https://perso.math.univ-toulouse.fr/gfort/

Further investigations and perspectives:

• comparisons with other MCMC strategies, such as Gibbs samplers

(Fort et al., 2022, preprint)

► automated data-driven tuning of hyperparameters ($\gamma_{R/O}$, λ_{R} , λ_{O} , ...)