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Reminder of the context

x̂ ∈ Argmin
x∈H

f (x), H a Hilbert space

with possibility to consider f̃ (x) =

{
f (x) if x ∈ D
∞ otherwise

D domain of the function dom f̃ ≡ {x ∈ H | f̃ (x) <∞}

f ∈ Γ0(H)

I proper: dom f 6= ∅,
I lower semi-continuous: closed epigraph

epi f = {(x , ζ) ∈ dom f × R | f (x) ≤ ζ},

I convex: convex epigraph.
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Reminder of the context

Questions:

I Existence and uniqueness of x̂

→ coercivity or compactness (existence)
→ strict convexity (uniqueness)

I Characterization of x̂

→ ∇f (x̂) = 0 if f Gâteaux-differentiable
→ 0 ∈ ∂f (x̂) is f non-smooth

∂f :

{
H → 2H

x 7→ {u ∈ H | (∀y ∈ H), 〈y − x | u〉+ f (x) ≤ f (y)}
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Reminder of the context

Explicit (sub)gradient descent

xn+1 = xn − γ∂f (xn)

Implicit (sub)gradient descent

Proximal operator

proxγf (x) = arg min
y∈H

1

2
‖y − x‖2 + γf (y) = (Id + γ∂f )−1 (x)

Another way to say that p = proxf (x) ⇔ x − p ∈ ∂f (p).
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Exercise 1: Huber function

Let ρ > 0 and set

f : R→ R : 7→

{
x2

2 , if |x | ≤ ρ
ρ|x | − ρ2

2 , otherwise

1. What is the domain of f ?

2. Is f differentiable ? twice-differentiable ?

3. Prove that f is convex.

1. (∀x ∈ R) f (x) <∞, thus dom f = R.

2. f is differentiable on R \ {±ρ}. Further

lim
x→ρ−

f ′(x)︸ ︷︷ ︸
=x

= ρ = lim
x→ρ+

f ′(x)︸ ︷︷ ︸
=ρ

Thus f is differentiable at x = ρ and by symmetry, f is also
differentiable at −ρ. Finally f is differentiable on R.
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Let ρ > 0 and set

f : R→ R : 7→

{
x2

2 , if |x | ≤ ρ
ρ|x | − ρ2

2 , otherwise

1. What is the domain of f ?

2. Is f differentiable ? twice-differentiable ?

3. Prove that f is convex.

2. f is twice-differentiable on R \ {±ρ} and

f ′′(x) =

{
1 if |x | < ρ
0 if |x | > ρ

thus it is not twice-differentiable.
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Exercise 1: Huber function

Let ρ > 0 and set

f : R→ R : 7→

{
x2

2 , if |x | ≤ ρ
ρ|x | − ρ2

2 , otherwise

1. What is the domain of f ?

2. Is f differentiable ? twice-differentiable ?

3. Prove that f is convex.

3. f is differentiable on R and

f ′(x) =


−ρ if x < −ρ
x if |x | < ρ
ρ otherwise

which is increasing. Thus f is convex.
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Exercise 1: Huber function

Let ρ > 0 and set

f : R→ R : 7→

{
x2

2 , if |x | ≤ ρ
ρ|x | − ρ2

2 , otherwise.

1. What is the domain of f ?

2. Plot the subdifferential of f .

3. Is f differentiable ? Prove that f is convex.

2. (See the computation of f ′(x) done above.) For ρ = 1

1

-1

1

-1
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Exercise 2

Let H be a Hilbert space. Let f : H → ]−∞,+∞] and let C ⊂ H such
that dom f ∩ C 6= ∅.

I Give a sufficient condition for x ∈ H to be a global minimizer of
f + ιC .

I Assume that f ∈ Γ0(H) and that C is a closed convex set.

Then, from the properties of C , ιC ∈ Γ0(H) .

From Fermat’s rule,

x̂ is a minimizer of f + ιC iff 0 ∈ ∂(f + ιC )(x̂).

Since dom f ∩ C 6= ∅, then ∂(f + ιC ) = ∂f + ∂ιC .
Moreover (∀x ∈ H) ∂ιC (x) = NC (x), the normal cone of C at x .

Thus, x̂ is a minimizer of f + ιC iff 0 ∈ ∂f (x̂) + NC (x̂) .

That is if the normal cone of C at x̂ contains a subgradient of f at x̂ .


