Optimization Reminder and exercises

Barbara Pascal, Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, Univ. Lyon 1 nelly.pustelnik@ens-lyon.fr
barbara.pascal@ens-lyon.fr

Reminder of the context

$\widehat{x} \in \operatorname{Argmin} f(x), \quad \mathcal{H} \quad$ a Hilbert space $x \in \mathcal{H}$

with possibility to consider $\widetilde{f}(x)= \begin{cases}f(x) & \text { if } x \in D \\ \infty & \text { otherwise }\end{cases}$
D domain of the function $\operatorname{dom} \widetilde{f} \equiv\{x \in \mathcal{H} \mid \widetilde{f}(x)<\infty\}$

Reminder of the context

$\widehat{x} \in \operatorname{Argmin} f(x), \quad \mathcal{H} \quad$ a Hilbert space $x \in \mathcal{H}$

with possibility to consider $\widetilde{f}(x)= \begin{cases}f(x) & \text { if } x \in D \\ \infty & \text { otherwise }\end{cases}$
D domain of the function $\operatorname{dom} \widetilde{f} \equiv\{x \in \mathcal{H} \mid \widetilde{f}(x)<\infty\}$

$f \in \Gamma_{0}(\mathcal{H})$

proper: $\operatorname{dom} f \neq \emptyset$,

Reminder of the context

$\widehat{x} \in \operatorname{Argmin} f(x), \quad \mathcal{H} \quad$ a Hilbert space $x \in \mathcal{H}$

with possibility to consider $\widetilde{f}(x)= \begin{cases}f(x) & \text { if } x \in D \\ \infty & \text { otherwise }\end{cases}$
D domain of the function $\operatorname{dom} \widetilde{f} \equiv\{x \in \mathcal{H} \mid \widetilde{f}(x)<\infty\}$

$f \in \Gamma_{0}(\mathcal{H})$

proper: $\operatorname{dom} f \neq \emptyset$,

- lower semi-continuous: closed epigraph

$$
\operatorname{epi} f=\{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}
$$

Reminder of the context

$\widehat{x} \in \operatorname{Argmin} f(x), \quad \mathcal{H} \quad$ a Hilbert space $x \in \mathcal{H}$

with possibility to consider $\widetilde{f}(x)= \begin{cases}f(x) & \text { if } x \in D \\ \infty & \text { otherwise }\end{cases}$ D domain of the function $\operatorname{dom} \widetilde{f} \equiv\{x \in \mathcal{H} \mid \widetilde{f}(x)<\infty\}$

$f \in \Gamma_{0}(\mathcal{H})$

proper: $\operatorname{dom} f \neq \emptyset$,

- lower semi-continuous: closed epigraph

$$
\operatorname{epi} f=\{(x, \zeta) \in \operatorname{dom} f \times \mathbb{R} \mid f(x) \leq \zeta\}
$$

- convex: convex epigraph.

Reminder of the context

Questions:

- Existence and uniqueness of \widehat{x}
\rightarrow coercivity or compactness (existence)
\rightarrow strict convexity (uniqueness)
- Characterization of \widehat{x}
$\rightarrow \nabla f(\widehat{x})=0$ if f Gâteaux-differentiable
$\rightarrow 0 \in \partial f(\widehat{x})$ is f non-smooth

$$
\partial f:\left\{\begin{aligned}
\mathcal{H} & \rightarrow 2^{\mathcal{H}} \\
x & \mapsto\{u \in \mathcal{H} \mid(\forall y \in \mathcal{H}), \quad\langle y-x \mid u\rangle+f(x) \leq f(y)\}
\end{aligned}\right.
$$

Reminder of the context

Explicit (sub)gradient descent

$$
x_{n+1}=x_{n}-\gamma \partial f\left(x_{n}\right)
$$

Reminder of the context

Explicit (sub)gradient descent

$$
x_{n+1}=x_{n}-\gamma \partial f\left(x_{n}\right)
$$

Implicit (sub)gradient descent
$x_{n+1}=x_{n}-\gamma \partial f\left(x_{n+1}\right)$

Reminder of the context

Explicit (sub)gradient descent

$$
x_{n+1}=x_{n}-\gamma \partial f\left(x_{n}\right)
$$

Implicit (sub)gradient descent

$$
x_{n+1}+\gamma \partial f\left(x_{n+1}\right)=x_{n}
$$

Reminder of the context

Explicit (sub)gradient descent

$$
x_{n+1}=x_{n}-\gamma \partial f\left(x_{n}\right)
$$

Implicit (sub)gradient descent
$(\operatorname{Id}+\gamma \partial f) x_{n+1}=x_{n}$

Reminder of the context

Explicit (sub)gradient descent
Implicit (sub)gradient descent

$$
x_{n+1}=x_{n}-\gamma \partial f\left(x_{n}\right) \quad(\operatorname{Id}+\gamma \partial f) x_{n+1}=x_{n}
$$

Proximal operator

$$
\operatorname{prox}_{\gamma f}(x)=\underset{y \in \mathcal{H}}{\arg \min } \frac{1}{2}\|y-x\|^{2}+\gamma f(y)=(\operatorname{Id}+\gamma \partial f)^{-1}(x)
$$

Reminder of the context

Explicit (sub)gradient descent
Implicit (sub)gradient descent

$$
x_{n+1}=x_{n}-\gamma \partial f\left(x_{n}\right) \quad(\operatorname{Id}+\gamma \partial f) x_{n+1}=x_{n}
$$

Proximal operator

$$
\operatorname{prox}_{\gamma f}(x)=\underset{y \in \mathcal{H}}{\arg \min } \frac{1}{2}\|y-x\|^{2}+\gamma f(y)=(\operatorname{Id}+\gamma \partial f)^{-1}(x)
$$

Another way to say that $p=\operatorname{prox}_{f}(x) \quad \Leftrightarrow \quad x-p \in \partial f(p)$.

Exercise 1: Huber function

Let $\rho>0$ and set

$$
f: \mathbb{R} \rightarrow \mathbb{R}: \mapsto \begin{cases}\frac{x^{2}}{2}, & \text { if }|x| \leq \rho \\ \rho|x|-\frac{\rho^{2}}{2}, & \text { otherwise }\end{cases}
$$

1. What is the domain of f ?
2. Is f differentiable ? twice-differentiable ?
3. Prove that f is convex.
4. $(\forall x \in \mathbb{R}) \quad f(x)<\infty$, thus $\operatorname{dom} f=\mathbb{R}$.
5. f is differentiable on $\mathbb{R} \backslash\{ \pm \rho\}$. Further

$$
\lim _{x \rightarrow \rho^{-}} \underbrace{f^{\prime}(x)}_{=x}=\rho=\lim _{x \rightarrow \rho^{+}} \underbrace{f^{\prime}(x)}_{=\rho}
$$

Thus f is differentiable at $x=\rho$ and by symmetry, f is also differentiable at $-\rho$. Finally f is differentiable on \mathbb{R}.

Exercise 1: Huber function

Let $\rho>0$ and set

$$
f: \mathbb{R} \rightarrow \mathbb{R}: \mapsto \begin{cases}\frac{x^{2}}{2}, & \text { if }|x| \leq \rho \\ \rho|x|-\frac{\rho^{2}}{2}, & \text { otherwise }\end{cases}
$$

1. What is the domain of f ?
2. Is f differentiable ? twice-differentiable ?
3. Prove that f is convex.
4. f is twice-differentiable on $\mathbb{R} \backslash\{ \pm \rho\}$ and

$$
f^{\prime \prime}(x)= \begin{cases}1 & \text { if }|x|<\rho \\ 0 & \text { if }|x|>\rho\end{cases}
$$

thus it is not twice-differentiable.

Exercise 1: Huber function

Let $\rho>0$ and set

$$
f: \mathbb{R} \rightarrow \mathbb{R}: \mapsto \begin{cases}\frac{x^{2}}{2}, & \text { if }|x| \leq \rho \\ \rho|x|-\frac{\rho^{2}}{2}, & \text { otherwise }\end{cases}
$$

1. What is the domain of f ?
2. Is f differentiable ? twice-differentiable ?
3. Prove that f is convex.
4. f is differentiable on \mathbb{R} and

$$
f^{\prime}(x)= \begin{cases}-\rho & \text { if } x<-\rho \\ x & \text { if }|x|<\rho \\ \rho & \text { otherwise }\end{cases}
$$

which is increasing. Thus f is convex.

Exercise 1: Huber function

Let $\rho>0$ and set

$$
f: \mathbb{R} \rightarrow \mathbb{R}: \mapsto \begin{cases}\frac{x^{2}}{2}, & \text { if }|x| \leq \rho \\ \rho|x|-\frac{\rho^{2}}{2}, & \text { otherwise }\end{cases}
$$

1. What is the domain of f ?
2. Plot the subdifferential of f.
3. Is f differentiable ? Prove that f is convex.
4. (See the computation of $f^{\prime}(x)$ done above.) For $\rho=1$

Exercise 2

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \rightarrow]-\infty,+\infty]$ and let $C \subset \mathcal{H}$ such that $\operatorname{dom} f \cap C \neq \varnothing$.

- Give a sufficient condition for $x \in \mathcal{H}$ to be a global minimizer of $f+\iota_{c}$.

Assume that $f \in \Gamma_{0}(\mathcal{H})$ and that C is a closed convex set.
Then, from the properties of $C,{ }_{\iota} \subset \in \Gamma_{0}(\mathcal{H})$.
From Fermat's rule, \widehat{x} is a minimizer of $f+\iota_{C}$ iff $0 \in \partial\left(f+\iota_{C}\right)(\widehat{x})$.
Since $\operatorname{dom} f \cap C \neq \varnothing$, then $\partial\left(f+\iota_{C}\right)=\partial f+\partial \iota c$. Moreover $(\forall x \in \mathcal{H}) \quad \partial \iota_{C}(x)=N_{C}(x)$, the normal cone of C at x.

Thus, \widehat{x} is a minimizer of $f+\iota_{C}$ iff $0 \in \partial f(\widehat{x})+N_{C}(\widehat{x})$.
That is if the normal cone of C at \widehat{x} contains a subgradient of f at \widehat{x}.

