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Signal processing aims to extract information from real data.

Data of very diverse types:

— measurements of a physical quantity,
— biological or epidemiological indicators,
— data produced by human activities.

The Golden triangle of signal processing
data

data: modeling of phenomena

mathematics: formalization & evaluation

computer science: efficient implementation

mathematics computer science

inspired from P. Flandrin

3/45



Time and frequency: two dual descriptions of temporal signals

A continuous finite energy signal is a function of time y(t) with y € LA(R).

electrical cardiac activity,

audio recording,

= e seismic activity,

light intensity on a photosensor
—20 —10 0 10 20

t o ...

Information of interest:
— time events, e.g., an earthquake and its replica
— frequency content, e.g., monitoring of the heart beating rate

ever-changing world waves, oscillations, rhythms
marker of events and evolutions intrinsic mechanisms
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Signal-plus-noise model

A chirp is a transient waveform modulated in amplitude and frequency:

x(t) = A,(t)sin (27r (ﬂ +(h—f) t,jy”) t)

= 00

—0.5

—20 —10 0 10
t

o

White noise is a random variable £(t) such that

E[§(t)] =0 and E[¢(t)§(t)] = o(t — ')

0.1
= 00
=

—0.1

—20 -10 0 10 20

P. Flandrin: 'A signal is characterized by a structured organization.
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Signal-plus-noise model

Noisy observations y(t) = snrx x(t) +£(t)

| = 00
5 B
—05
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0.1

y(t)

0.0
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Signal processing tasks: given an observation y(t)
denoising consists in retrieving the pure signal x(t).

detection amounts to decide whether there is a signal or only noise.
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A frequency representation: the Fourier spectrum

Time or frequency

Fourier transform: .Fy(w)é/y(t)exp(—iwt)dt
R

—20 -10

=04 =02 0.0 0.2 0.4

w

In the Fourier representation, the temporal information is lost
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Time-frequency analysis

Time and frequency Short-Time Fourier Transform with window h:

o0

Viy(t,w) = / y(u)h(u — t) exp(—iwu) du

—0oQ

y(t)

—20 —10 0 10 20

Energy density interpretation  Spy(t,w) = |Viy(t,w)|* the spectrogram

e dw e 2 . 2
Spy(t,w)dt— = [x(t)|=dt if |h||5=1

Signal, i.e., information of interest: regions of maximal energy.
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Denoising in the time-frequency plane: y = snr x x + &,

spectrogram

0.03
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y(t)
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snr = 2
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Denoising in the time-frequency plane: y = snr x x + &, snr =2

spectrogram

only maxima

10

noisy observation

y(t)

—20 —10 0
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Denoising in the time-frequency plane: y = snr x x + &,

+o0 d
Inversion formula  y(t) = // Viy (u,w)h(t — u) exp(iwu) duzw
oo ™

spectrogram

only maxima

3 0.02
0.01

0.00
—20 10 ) —10 0
t t
noisy observation denoised estimate

10

0.05

y(t)

0.00

g(t)
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t

snr = 2
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Denoising in the time-frequency plane: y = snr x x 4 &,

+o00
Inversion formula y(t)://
— 00

spectrogram
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snr = 0.5

Viy (u,w)h(t — u) exp(iwu) dud—w

2w

only maxima
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Denoising in the time-frequency plane: y = snr x x 4 &,

+o0 d
Inversion formula  y(t) = // Viy (u,w)h(t — u) exp(iwu) duz—w
oo ™

spectrogram
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Maxima detection: reassignment, synchrosqueezing, ridge extraction

snr = 0.5
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Outline of the presentation
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Unorthodox time-frequency analysis: spectrogram zeros snr =2
Restriction to the circular Gaussian window: g(t) = 7~ 1/4e=t/2

Look for the zeros, i.e., the points (t;,w;) such that |ng(t,-,w,-)|2 =0.
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Unorthodox time-frequency analysis: spectrogram zeros

snr = 2

Restriction to the circular Gaussian window: g(t) = 7 1/4¢ /2

Look for the zeros, i.e., the points (t;,w;) such that |Vyy(t;,w;i)|” =0
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Unorthodox time-frequency analysis: spectrogram zeros

snr =2
Restriction to the circular Gaussian window: g(t)

“—1 4(\—r /2

Look for the zeros, i.e., the points (t;,w;) such that |Vyy(t;,w;i)|” =0
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Unorthodox time-frequency analysis: spectrogram zeros

snr =2
Restriction to the circular Gaussian window: g(t)

“—1 4(\—r /2

Look for the zeros, i.e., the points (t;,w;) such that |Vyy(t;,w;i)|” =0

0.03 JCHRIN
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0.01
1
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t
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t

QObservations: (Gardner & Magnasco, 2006), (Flandrin, 2015)
e In the noise region zeros are evenly spread.

e There exists a short-range repulsion between zeros.
e Zeros are repelled by the signal.
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Unorthodox time-frequency analysis: spectrogram zeros

snr = 0.5
Restriction to the circular Gaussian window: g(t) =

2
ﬂ71/4(‘7t /2

Look for the zeros, i.e., the points (t;,w;) such that |Vyy(t;,w;i)|” =0

—20 —10

0 10 20
t

Observations: (Gardner & Magnasco, 2006), (Flandrin, 2015)
e In the noise region zeros are evenly spread.

e There exists a short-range repulsion between zeros.
e Zeros are repelled by the signal.
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Unorthodox time-frequency analysis: spectrogram zeros snr =15

Restriction to the circular Gaussian window: g(t) = 7 1/4e /2

Look for the zeros, i.e., the points (t;,w;) such that |V,y(t;,w;)|* = 0.

0.03 EEE.
3 002

0.01

0.00 N crut SXTAT, :
—90 ) 0 10 20 —20 —10 0 10 20
t t

Observations: (Gardner & Magnasco, 2006), (Flandrin, 2015)
e In the noise region zeros are evenly spread.
e There exists a short-range repulsion between zeros.

e Zeros are repelled by the signal.
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Unorthodox time-frequency analysis: spectrogram zeros snr =15
—1/4y—1%/2

Restriction to the circular Gaussian window: g(t) =7

Look for the zeros, i.e., the points (t;,w;) such that |V,y(t;,w;)|* = 0.

0.03 EEE.
3 002

0.01

0.00 N crut SXTAT, :
—90 ) 0 10 20 —20 —10 0 10 20
t t

Observations: (Gardner & Magnasco, 2006), (Flandrin, 2015)
e In the noise region zeros are evenly spread.
e There exists a short-range repulsion between zeros.

e Zeros are repelled by the signal.

What can be said theoretically about the zeros of the spectrogram?
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Unorthodox time-frequency analysis: spectrogram zeros
Idea assimilate the time-frequency plane with C through z = (w + it)/v/2

0.03 K.
3 0.02 1

0.01

B
—20 —10 0 10 20
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Unorthodox time-frequency analysis: spectrogram zeros

Idea assimilate the time-frequency plane with C through z = (w + it)/v/2

Bargmann factorization

Vey(t,w) = e #7226 710t/2 By (7)

PRI R g the circular Gaussian window

Bargmann transform of the signal y
By(z) = r1/4e=7/2 / y(u) exp (\ﬁuz - u2/2) du,
R

By is an entire function, almost characterized by its infinitely many zeros:

2
1
o) - ameraeroe [ (1- 2o (243 (2)').
Zn zn 2\ 2z,

neN
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Unorthodox time-frequency analysis: spectrogram zeros

Idea assimilate the time-frequency plane with C through z = (w + it)/v/2

Bargmann factorization

Vey(t,w) = e #7226 710t/2 By (7)

PRI R g the circular Gaussian window

Theorem  The zeros of the Gaussian spectrogram Vgy(t,w)
e coincide with the zeros of the entire function By,
e hence are isolated and constitute a Point Process,
e which almost completely characterizes the spectrogram.
(Flandrin, 2015)
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Unorthodox time-frequency analysis:

spectrogram zeros snr =2

-20 —10

—20 —10 0 10 20
t

Advantages of working with the zeros

e Easy to find compared to relative maxima.
e Form a robust pattern in the time-frequency plane.
e Require little memory space for storage.

e Efficient tools were recently developed in stochastic geometry.

Need for a rigorous characterization of the distribution of the zeros.
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The zeros of the spectrogram of white noise

Continuous complex white Gaussian noise

£(t) = iﬁ[n]hn(t), &[n] ~ Ng(0,1),  {h,, k=0,1,...} Hermite functions
n=0

-20 —10 0 10 20
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The zeros of the spectrogram of white noise

Continuous complex white Gaussian noise

£(t) = i{[n]hn(t), &[n] ~ Ng(0,1),  {h,, k=0,1,...} Hermite functions
n=0

<0
—20 —-10 0 10 20
t
Theorem Vgﬁ(t,w) = e_lz‘2/4e_iwt/2 GAF¢(z2) (Bardenet & Hardy, 2021)
GAFc(z) = if[n]z—n the planar Gaussian Analytic Function and z = it
n=0 \/m \/§
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The zeros of the planar Gaussian Analytic Function

non-vanishing

Vgé(t,w) o< GAF¢(2)

z=(w+it)/V2

Zeros of GAF¢: random set of points forming a Point Process
characterized by a probability distribution on point configurations

Properties of the Point Process of the zeros of GAF¢:

e invariant under the isometries of C, i.e., stationary,
e has a uniform density p()(z) = pV) = 1/x,
explicit pair correlation function p(?)(z,2') = g(|z — Z/|),

scaling of the hole probability: r~*log p, — —3e?/4, as r — 0o

pr = P (no point in the disk of center 0 and radius r)
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The zeros of the planar Gaussian Analytic Function

1.0
©
=0.5

SY

0.0

non-vanishing

Vgé(t,w) o< GAF¢(2)

z=(w+it)/V2

Zeros of GAF¢: random set of points forming a Point Process

characterized by a probability distribution on point configurations

+ Poisson
Ginibre
— GAF¢

0

r

2

Pair correlation  p®(z,2/)dzdz’ =

P (1 point in B(z,dz) and 1 in B(Z',dZ’))

The point process of the zeros of the spectrogram is not determinantal.
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Signal detection based on the spectrogram zeros

e Hj white noisy only,

(Bardenet, Flamant & Chainais, 2020)
e, y(t) =&(t)
e Hj presence of a signal, i.e., y(t) =

snr >0

—20 —10




Signal detection based on the spectrogram zeros

(Bardenet, Flamant & Chainais, 2020)

e Hj white noisy only,  i.e., y(t) = &(t)
e Hj presence of a signal, i.e., y(t) =snr x x(t) +&(t), snr>0




Monte Carlo envelope test

Purpose: summary statistic s, such that for y =snr x x + ¢

E[s(y)Ho] =0 E[s(y)[Hi] >0

snr=0 snr >0

‘Large value of s(y) is a strong indication that there is a signal.’

Tools from stochastic geometry to capture spatial statistics of the zeros.
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Unorthodox path: zeros of Gaussian Analytic Functions

The signal creates holes in the zeros pattern: sedond order statistics.
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Unorthodox path: zeros of Gaussian Analytic Functions

hd P ) * . .o * * - s -
20 —10 0 10 20

snr=0 snr >0

The signal creates holes in the zeros pattern: sedond order statistics.

A functional statistic: the empty space function

Z a stationary point process, zy any reference point

F(r)=P (zil_gfzd(zo,z,-) < r)

— probability to find a zero at distance less than r from zg
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Signal detection based on the spectrogram zeros

Estimation of the F-function of a stationary Point Process (Mgller, 2007)

F(r)=P ( inf d(zo, z) < r) . empty space function

zieZ
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Signal detection based on the spectrogram zeros

Estimation of the F-function of a stationary Point Process (Mgller, 2007)

F(r)="P ( inf d(z, 7)) < r) : empty space function

zieZ
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Signal detection based on the spectrogram zeros

Estimation of the F-function of a stationary Point Process (Mgller, 2007)

F(r)="P ( inf d(z, 7)) < r) : empty space function

zieZ

» Monte Carlo envelope test based on the discrepancy between F and Fo
23/45



Monte Carlo envelope test

Test settings: « level of significance, m number of samples under Hy

Index k, chosen so that o = k/(m + 1)

(i) generate m independent samples of complex white Gaussian noise;
(ii) compute their summary statistics 53 > s, > ... > sp;
(iii) compute the summary statistics of the observations y under concern;

(iv) if s(y) > sk, then reject the null hypothesis with confidence 1 — .
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Signal detection based on the spectrogram zeros - | snr=15

Detection of a noisy chirp of duration 2v =30 s

0.
01 !

01

= 00 = S

g S 0w T 00 0.0

01

0.2
20 -0

—01
[ 10 20 20 -0 [ 10
t

y(t)

20

~0.1
20 -0 [] 0

N =128 N = 256 N =
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Signal detection based on the spectrogram zeros - | snr=15

Detection of a noisy chirp of duration 2v =30 s

0.
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Signal detection based on the spectrogram zeros - | snr=15

Detection of a noisy chirp of duration 2v =30 s

] o] o o

N =128 N = 256 N =512 N = 1024

ult

Performance: power of the test computed over 200 samples

- Fourie v Fast Fourier Transform
0.8
06 X low detection power
04 b X requires large number of samples
0.2 £
“'[l|f7s _72(; 02 1024 005 1
N 3002 18

0.01 9

0.00 M e
—20 —10 0 10 20
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Signal detection based on the spectrogram zeros - | snr=15

Detection of a noisy chirp of duration 2v =30 s

] o] ] i

20 10 [ 10 20 20 10 ] 0 ) 20 10 0 10

N =128 N = 256 N =512 N = 1024

ult

Performance: power of the test computed over 200 samples

- Fouie v/ Fast Fourier Transform

06 X low detection power

04 4 X requires large number of samples
0.2
I oo
128 256 512 1024 0.03
N .
30.02 40
0.01 "-
H H H UUQ’U 71U 0 - lU i U
Limitations: : ¢ .
e necessary discretization of the STFT: arbitrary resolution
e observe only a bounded window: edge correction to compute F( )
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Outline of the presentation

e What is signal processing?

e Time-frequency analysis: the Short-Time Fourier Transform
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e Covariance principle and stationary point processes

e The Kravchuk transform and its zeros
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Other Gaussian Analytic Functions, other transforms?

Unbounded phase space C

Short-Time Fourier Transform

V,&(t,w) o GAFc(z) = Zf[n]%
n=0 :
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Other Gaussian Analytic Functions, other transforms?

Unbounded phase space C

Short-Time Fourier Transform

%ﬂnwnyN%@):§:ﬂd§%
n=0 :

New transform?

? o GAFs(2) [n],/

stereographic projection z = cot(1/2)el?

— spherical coordinates (9, p) € S? *
— no border! 27/45



Algebraic interpretation: covariance under a symmetry group
Time and frequency shifts

0.1

Wiew)y(u) = e y(u—t)

0.1
—0.1

(t)y(t)

0.0
—20 —10

=0.1
20
t

10
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Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

y(t)

—20 —10 0 10 20 =20 —10 0 10 20

(covariance)

e—i(w’—w)t Vhy(tl —t of = LU),

Vh[W(t,w))/](t/7 wl)




Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

| VA We,py](t', o) Wiy (t — t.o —w)?,
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Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

2 (covarlance 2

’Vh[W(t,w)y](tlvw” |Vy(t —tw _w)‘ 5

Complex white Gaussian noise §= W)

o E[¢(u)] =e WE[g(u—1t)] =0
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Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

2
| ValW(ewpy](t', o) Viy(t' — 0" —w)[*,

Complex white Gaussian noise §= W)

o E[¢(u)] =e WE[g(u—1t)] =0
o E[E(u)é(u)] = e R[E(u)e(w)] = 6(u — o)
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Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

| Ve Wt VI, ") Vay(t' =t —w)[?,

Complex white Gaussian noise E: Wi:.h§
o E{()]  =e™E[f(u—t)] =0
o E[{(u)é(v)] = - EE)E()] = §(u — o)

Invariance under time-frequency shifts: 00 RS SRR
_ (1aw) 3 0.02 . S
§=W tw€ = f 0.01 1K

0.0 -



Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

| Ve Wt VI, ") Vay(t' =t —w)[?,

Complex white Gaussian noise 5: Wi:.h§
o E{()]  =e™E[f(u—t)] =0
o E[{(u)é(v)] = - EE)E()] = §(u — o)

Invariance under time-frequency shifts: 00 RS SRR

~ (law) ‘ .:'.'- '.".-,'.:-
£=W twg_f 0.01 {8 o Ho
0.00 IR Ay,
—20 —10 0 10 20
t

Covariance is the key to get stationarity: how to get covariant transforms?
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Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

| VA We,py](t', o) Wiy (t — t.o —w)?,
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Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

| Ve Wt VI, ") Vay(t' =t —w)[?,

Weyl-Heisenberg group  {e"" W, ., (7, t,w) € [0,27] x R?}

. ’
iwt

W(t/7w/) W(t,w) =e W(t+t’,w+w’)~
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Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

| Ve Wt VI, ") Vay(t' =t —w)[?,

Weyl-Heisenberg group  {e"" W, ., (7, t,w) € [0,27] x R?}

. ’
iwt

Vv(t/,w/) W(Lw) =e W(t+t',w+w’)~




Algebraic interpretation: covariance under a symmetry group

Time and frequency shifts Wity (u) = e “y(u—t)

|2 (covarlance

| VA We,py](t', o) Wiy (t — t.o —w)?,

Weyl-Heisenberg group  {e"" W, ., (7, t,w) € [0,27] x R?}

. ’
iwt

Vv(t/,w/) W(Lw) =e W(t+t',w+w’)'

Coherent state interpretation  {W(; )h, t,w € R} covariant family

Viy(t,w) = /_OO y(u)h(u — t) exp(—iww) du = (y, W .y h)

g(t)y=mYexp(—t?/2) Tug(t)=g(t—u) Myg(t)=g(t)exp (—i%)/45




Outline of the presentation

e What is signal processing?

e Time-frequency analysis: the Short-Time Fourier Transform
e Signal detection based on the spectrogram zeros - |

e Covariance principle and stationary point processes

e The Kravchuk transform and its zeros
e Numerical implementation of the Kravchuk transform

e Signal detection based on the spectrogram zeros - Il
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The Kravchuk transform: covariance under SO(3)
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The Kravchuk transform: covariance under SO(3)

Coherent state interpretation ~ y € CN+!

Ty(ﬂv 90) = <y, lI’(ﬁ,Lp)>

9 € [0,7], ¢ € [0,2n]
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The Kravchuk transform: covariance under SO(3)

Coherent state interpretation ~ y € CN+!

Ty(ﬁv 90) = <y7 lI’(ﬁ,Lp)>

9 € [0,7], ¢ € [0,2n]

SO(3) coherent states (Gazeau, 2009)

N n N—n
N 19 . 19 in
Wy = E <n> (cos 5) (sm 5) e qn = Ru.0)¥(0,0):
n=0
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The Kravchuk transform: covariance under SO(3)

Coherent state interpretation ~ y € CN*1

Ty(ﬂv (P) = <y7 lI’(ﬁ,Lp)>

9 € [0,7], ¢ € [0,2n]

SO(3) coherent states (Gazeau, 2009)

N n N—n
N 19 . 19 in
Wy, = E (n) (cos 2) (sm 2) e"q, = Ru(ﬁ,cp)‘I’(O,O)’
n=0

Kravchuk transform {gn,n=0,1,..., N} the Kravchuk functions
1 N N
@) =~ Y trany ()27, 2= cot(o/2)e
V(142N ;;; m
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The Kravchuk transform: covariance under SO(3)

Kravchuk transform {g,,n=0,1,..., N} the Kravchuk functions

1 u [(N .
Ty(z) = m HZ:(:)@, an) (n>z , z=cot(¥/2)e

0.0

y(t)

—0.1

=20 —10 0 10 20
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The Kravchuk transform: covariance under SO(3)

Kravchuk transform {g,,n=0,1,..., N} the Kravchuk functions

1 u [(N .
Ty(z) = m HZ:(:)@, an) <n>z , z=cot(¥/2)e

0.0

y(t)

—0.1

=20 —10 0 10 20

Theorem TEW, ) = V(L + 2P | GAFs(2), 2 = cot(9/2)ei®

N
N
GAFs(z) = Z{[n] (n>z” the spherical Gaussian Analytic Function
n=0 (Pascal & Bardenet, 2022)
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Outline of the presentation

e What is signal processing?

e Time-frequency analysis: the Short-Time Fourier Transform
e Signal detection based on the spectrogram zeros - |

e Covariance principle and stationary point processes

e The Kravchuk transform and its zeros
e Numerical implementation of the Kravchuk transform

e Signal detection based on the spectrogram zeros - Il
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Practical computation of the Kravchuk transform

Kravchuk transform {gn,n=0,1,..., N} the Kravchuk basis
N

N
TV = S Y (3)en 2= cortw/et
n=0

— first: basis change, i.e., computation of (y, q,) Zy[f]CIn (4 N)
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Practical computation of the Kravchuk transform

Kravchuk transform {gn,n=0,1,..., N} the Kravchuk basis
N

N
TV = S Y (3)en 2= cortw/et
n=0

— first: basis change, i.e., computation of (y, q,) Zy[f]CIn (4 N)

1 /(N [ (N
Evaluation of Kravchuk functions g,(¢; N) = NG (n) Qn(t; N) <£>
)

(N = n)Qny1(t; N) = (N —2t)Qu(t; N) — nQs—1(t; N),

{Qn(t; N),n=0,1,..., N} orthogonal family of Kravchuk polynomials
N A L
Z( )Qné N)Qn (e N)—2N(n> 6n,n/
=
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Instability of the computation of Kravchuk polynomials

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials
(N = n)@Qny1(t; N) = (N —2t)Qu(t; N) — nQn1(t; N),

(ii) multiplication by the binomial coefficients

anlli M) = (’;’)Qn(é;/\/) (2’)
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(i) recursion to compute the Kravchuk polynomials
(N = n)@Qny1(t; N) = (N —2t)Qu(t; N) — nQn1(t; N),

(ii) multiplication by the binomial coefficients

Gnll: N) = J%m Qu(t: N)m

0.0
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Instability of the computation of Kravchuk polynomials

Evaluation of Kravchuk functions

(i) recursion to compute the Kravchuk polynomials
(N = n)@Qny1(t; N) = (N —2t)Qu(t; N) — nQn1(t; N),

(ii) multiplication by the binomial coefficients

anlli M) = (’;’)Qn(é;/\/) (2’)

0.0

@lt:N)

—0.2

T
0 25 50 75 100 0 20 40 60 80 100

— estimated basis is not orthogonal! Not possible to compute (y, g,).
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Rewritting of the Kravchuk transform

Kravchuk transform {g,,n=0,1,..., N} the Kravchuk basis

Ty(z) = WZ (Zy[ﬂ]qn (¢; N) ) U( )z” — intractable

A generative function for Kravchuk polynomials

i(’;’)cpn(e N)z" = (1 — 2) (1 + 2)N~

n=0

. Z ( an(l: N)2" = / 1—z) 1—|—z) Nt

2) (1+2)""

e = WZ ()=

X no more Fast Fourier Transform algorithm using z" = cot(¢/2)"e!"?
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Detection of the zeros of the Kravchuk spectrogram | Ty(z)[> = 0

Advantage compared to Fourier: can tune the resolution of phase space.
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Detection of the zeros of the Kravchuk spectrogram | Ty(z)[> = 0

Advantage compared to Fourier: can tune the resolution of phase space.

&

é 250

& % 200

- N

& =150

- o}

L = 100

2 E

L 50 ===+ theoretically N zeros

® 1 —&— Minimal Grid Neighbords
Pj—2Pj—1 Pj Pit1 Pj+2 0 s T

Minimal Grid Nelgh bors resolution of phase space

In progress: demonstrate that all local minima of | Ty(z)|* are zeros. 38/45



Outline of the presentation

e What is signal processing?

e Time-frequency analysis: the Short-Time Fourier Transform
e Signal detection based on the spectrogram zeros - |

e Covariance principle and stationary point processes

e The Kravchuk transform and its zeros
e Numerical implementation of the Kravchuk transform

e Signal detection based on the spectrogram zeros - Il
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Unorthodox path: zeros of Gaussian Analytic Functions

hd P ) * . .o * * - s -
20 —10 0 10 20

snr=0 snr >0

The signal creates holes in the zeros pattern: sedond order statistics.

Functional statistics:

e the empty space function
F(r)=P iand(zo,z,-) < r> : probability to find a zero at less than r
Zi€
e Ripley's K-function

K(r) = 27r/ sgo(s)ds : expected # of pairs at distance less than r
0
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Detection test:

choice of the functional statistic

0.25 01 0.1
0.00 0.0 0.0 0.0
—0.1
—0.25 —0.1 —0.1
—20 0 20 —20 0 20 —20 0 20 —20 0 20
t(s) t(s) t(s) t(s)
snr = 0.5 snr=1 snr =2 snr=>5
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Detection test: choice of the functional statistic

0.25 0.1 01

0.00 0.0 0.0 0.0
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—0.25 =01 —0.1

—20 0 20 —20 0 20 —20 0 20 —20 0 20

t(s) t(s) t(s) t(s)
snr=0.5 snr=1 snr=2 snr=>5

Ripley’s K functional vs. empty space functional F

1.0

— - 1.0

—+ F '
0.8 3 K 0.8
0.6 0.6 ¥
(. (@
0.4 0.4
0.2 0.2 +r
00951 3 5 10 50 0-0%; 10 50
snr
N + 1 = 257 points N + 1 = 513 points
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Detection test: snr and relative duration of the signal

short time event

Fixed observation window of 40 s
long time event
0.1

= 00

0.1
20

—0.1
10

-20 —10 0
t

10

duration 2v =20 s

—0.1
-20 =10 0
t

duration 2v =30 s
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Fixed observation window of 40 s
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Robustness to small number of samples and short duration.
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Signal detection based on the spectrogram zeros - Il

snr = 1.5
Detection of a noisy chirp of duration 2v =30 s
N =128 N = 256 N =512 N = 1024
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Signal detection based on the spectrogram zeros - Il

Detection of a noisy chirp of duration 2v =30 s

0.2

Performance: power of the test computed over 200 samples

snr = 1.5

T [ 10 20
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N = 256
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Signal detection based on the spectrogram zeros - Il snr = 1.5

Detection of a noisy chirp of duration 2v =30 s

0.2

0
01
01
00 S < oo < 0o
—02 o o
]

y(t)
y(t)

y(t)

N =128 N = 256 N =512 N = 1024
Performance: power of the test computed over 200 samples
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Signal detection based on the spectrogram zeros - Il snr = 1.5

Detection of a noisy chirp of duration 2v =30 s

0.2

Lo o - o

0 20

(1)

0 -0 ] 0

N =128 N = 256 N =512 N = 1024
Performance: power of the test computed over 200 samples

1.0
os ~—4$- Fourier
- Kravchuk . .
o v higher detection power

o 4 v/ more robust to small N
' . & X no fast algorithm yet
e N 512 1024

Advantages of using Kravchuk vs. Fourier spectrogram

e intrinsically encoded resolution: no need for prior knowledge
e compact phase space: no edge correction
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Point Processes in time-frequency analysis

Take home messages

e Novel covariant discrete Kravchuk transform Ty(9, ¢)
% Interpreted as a coherent state decomposition
* Representation on a compact phase space
x Zeros of the Kravchuk spectrogram of white noise fully characterized

e Signal detection based on spectrogram zeros
* Preliminary work using the zeros of the Fourier spectrogram
* Significant improvement using the Kravchuk spectrogram

Pascal & Bardenet, 2022: arxiv:2202.03835
GitHub: bpascal-fr/kravchuk-transform-and-its-zeros

Work in progress and perspectives

Interpretation of the action of SO(3) on CN+1

Implementation of the inversion formula: denoising based on zeros
Design of a Kravchuk FFT counterpart

Convergence of Kravchuk toward the Fourier spectrogram as N — oo
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Opening: can the Kravchuk spectrogram have multiple zeros?

Spherical Gaussian Analytic Function

GAFs(z [n]1 /

50 ===+ theoretically N zeros with E[n] ~ N(C(O, 1) i.i.d.

1 == Minimal Grid Neighbords
10 0 — only simple zeros

resolution of phase space

General case  Ty(z) = \/{T+[2P) Z () @

If y deterministic, such that (Qy) [n] = 4/ </,\7l) aV="p" a € C, b e C*,

V(i +1z)2) Z <)Qy [n)z" = (a+ bz)V

— —a/b multipl t of order of d N
a/b multiple root of order of degeneracy 4545



