A link between Majorana Stellar representation of pure spin states and Coulomb gas on the sphere

Barbara Pascal

May 28, 2021

from Patrick Bruno, Physical Review Letters, 2012

"Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase"

PRL 108	, 240402	(2012)
----------------	----------	--------

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 15 JUNE 2012

Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase

Patrick Bruno*

European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France (Received 10 April 2012; published 11 June 2012)

The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finitedimensional quantum systems is studied. It is shown that a pure quantum state in a (2J + 1)-dimensional Hilbert space (or, equivalently, of a spin-1 system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

DOI: 10.1103/PhysRevLett.108.240402

PACS numbers: 03.65.Vf, 03.65.Aa, 75.10.Jm

Spin angular momentum: first experimental evidence

Stern (conception 1921)-Gerlach (realization 1922) experiment:

Source: Wikipedia, Peng, CC BY-SA 3.0

Silver atom beam through a *nonuniform* magnetic field of direction $\widehat{\boldsymbol{z}}$

Silver atom beam through a *nonuniform* magnetic field of direction \hat{z}

Force on an object of magnetic moment $\vec{\mu}$ into a magnetic field \vec{B}

$$\vec{F} = \left(\vec{\mu} \cdot \vec{\nabla}\right) \vec{B}$$

▶ silver atoms have no orbital magnetic orbital moment $\vec{L} = \vec{0}$...

Silver atom beam through a *nonuniform* magnetic field of direction \hat{z}

Force on an object of magnetic moment $\vec{\mu}$ into a magnetic field \vec{B}

$$\vec{F} = \left(\vec{\mu} \cdot \vec{\nabla}
ight) \vec{B}$$

▶ silver atoms have no orbital magnetic orbital moment $\vec{L} = \vec{0}$...

▶ ... but the beam is deflected $\vec{\mu} \neq \vec{0}!$

Silver atom beam through a *nonuniform* magnetic field of direction \hat{z}

Force on an object of magnetic moment $\vec{\mu}$ into a magnetic field \vec{B}

$$\vec{F} = \left(\vec{\mu} \cdot \vec{\nabla}
ight) \vec{B}$$

- ▶ silver atoms have no orbital magnetic orbital moment $\vec{L} = \vec{0}$...
- ... but the beam is deflected $\vec{\mu} \neq \vec{0}!$
- ▶ resulting in **two** accumulation points on the screen.

Total angular moment $\vec{\mu} = \vec{L} + \vec{J}$, \vec{J} : intrinsic quantum *spin* momentum

The *spin* from a physicist point of view

Elementary and composite particle <u>ex:</u> electron, proton, neutron

- mass
- electric charge
- **spin**: intrinsic angular momentum which is quantized (new)

The *spin* from a physicist point of view

Elementary and composite particle <u>ex:</u> electron, proton, neutron

- mass
- electric charge
- **spin**: intrinsic angular momentum which is quantized (new)

Silver atoms in Stern-Gerlach experiment

- two possible measurements: "spin up" \uparrow or "spin down" \downarrow
- equal probability $\mathbb{P}_{1 \text{ atom}}(\uparrow) = \mathbb{P}_{1 \text{ atom}}(\downarrow) = 1/2$
- ▶ same deflection amplitude $|\vec{J}|_{\uparrow} = |\vec{J}|_{\downarrow}$.

Elements of quantum mechanics

State of the system Quantum Hilbert space

 $|\Psi
angle\in\mathcal{H}$

 $\underbrace{ \text{Superpositions: } |\Psi\rangle = \gamma_1 |\Psi_1\rangle + \gamma_2 |\Psi_2\rangle \in \mathcal{H}, \ \gamma_1, \gamma_2 \in \mathbb{C}, \ |\Psi_1\rangle, |\Psi_2\rangle \in \mathcal{H}$

Equivalence: If $|\Psi_2\rangle = e^{i\varphi} |\Psi_1\rangle$, for some $\varphi \in \mathbb{R}$ then

 $|\Psi_2\rangle \sim |\Psi_1\rangle$ describe the same physical state.

Physical quantum state: $\mathcal{P} := \mathcal{H} / \sim$ projective space

Elements of quantum mechanics

State of the system Quantum Hilbert space

 $|\Psi
angle\in\mathcal{H}$

 $\underbrace{ \text{Superpositions: } |\Psi\rangle = \gamma_1 |\Psi_1\rangle + \gamma_2 |\Psi_2\rangle \in \mathcal{H}, \ \gamma_1, \gamma_2 \in \mathbb{C}, \ |\Psi_1\rangle, |\Psi_2\rangle \in \mathcal{H}$

Equivalence: If $|\Psi_2\rangle = e^{i\varphi} |\Psi_1\rangle$, for some $\varphi \in \mathbb{R}$ then

 $|\Psi_2\rangle \sim |\Psi_1\rangle$ describe the same physical state.

Physical quantum state: $\mathcal{P} := \mathcal{H} / \sim$ projective space

Hamiltonian dynamics Schrödinger equation

$$\frac{\mathrm{d}|\Psi(t)\rangle}{\mathrm{d}t} = \mathbf{H}(t)|\Psi\rangle$$
Time evolution: $|\Psi(t)\rangle = \exp\left(\mathrm{i}\int_{0}^{t}\mathbf{H}(t')\,\mathrm{d}t'\right)|\Psi(0)\rangle$

Elementary intrinsic angular momentum: spin-1/2

 $\begin{array}{ll} \mbox{General spin-1/2 state} & \mbox{superposition of "spin up" and "spin down"} \\ & |\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle, \quad \alpha,\beta \in \mathbb{C} \\ \hline & \mbox{Quantum Hilbert space:} & |\psi\rangle \in \mathcal{H}^{(1/2)} := \mathbb{C}^2 \end{array}$

Elementary intrinsic angular momentum: spin-1/2

 $\begin{array}{ll} \textbf{General spin-1/2 state} & \text{superposition of "spin up" and "spin down"} \\ \\ |\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle, & \alpha,\beta \in \mathbb{C} \\ \\ \hline \textbf{Quantum Hilbert space:} & |\psi\rangle \in \mathcal{H}^{(1/2)} := \mathbb{C}^2 \end{array}$

Equivalence: (reminder)

 $\forall \varphi \in \mathbb{R}, |\Psi_1\rangle$ and $e^{i\varphi} |\Psi_1\rangle$ are the *same* physical state.

Physical quantum state: $\mathcal{P}^{(1/2)}:=\mathcal{H}^{(1/2)}/\sim=\mathbb{C}\mathsf{P}^1$

Elementary intrinsic angular momentum: spin-1/2

 $\begin{array}{ll} \textbf{General spin-1/2 state} & \text{superposition of "spin up" and "spin down"} \\ \\ |\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle, & \alpha,\beta \in \mathbb{C} \\ \\ \hline \textbf{Quantum Hilbert space:} & |\psi\rangle \in \mathcal{H}^{(1/2)} := \mathbb{C}^2 \end{array}$

Equivalence: (reminder) $\forall \varphi \in \mathbb{R}, |\Psi_1\rangle$ and $e^{i\varphi}|\Psi_1\rangle$ are the *same* physical state. Physical quantum state: $\mathcal{P}^{(1/2)} := \mathcal{H}^{(1/2)} / \sim = \mathbb{C}P^1$

Measurement probabilities

 $\mathbb{P}(\uparrow) = |\langle \uparrow | \psi \rangle|^2 = |\alpha|^2 \text{ and } \mathbb{P}(\downarrow) = |\langle \downarrow | \psi \rangle|^2 = |\beta|^2$ <u>Normalization</u>: $\mathbb{P}(\uparrow) + \mathbb{P}(\downarrow) = |\alpha|^2 + |\beta|^2 = 1$

Bloch's sphere

 $\label{eq:spin-1/2} {\rm Spin-1/2} \qquad |\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle, \quad |\alpha|^2 + |\beta|^2 = 1$

$$|\psi\rangle = \cos\frac{\vartheta}{2}|\!\!\uparrow\rangle + \sin\frac{\vartheta}{2}{\rm e}^{{\rm i}\varphi}|\!\!\downarrow\rangle$$

Bloch's sphere

Spin-1/2 $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle, \quad |\alpha|^2 + |\beta|^2 = 1$

$$|\psi\rangle = \cos\frac{\vartheta}{2}|\!\uparrow\rangle + \sin\frac{\vartheta}{2} {\rm e}^{{\rm i}\varphi}|\!\downarrow\rangle$$

Appropriate variables to describe spins are angles.

REVIEWS OF MODERN PHYSICS

VOLUME 17, NUMBERS 2 AND 3

APRIL-JULY, 1945

Atoms in Variable Magnetic Fields*

F. BLOCH Stanford University, Stanford University, California

AND

I. I. RABI Columbia University, New York, New York

Majorana star: $\hat{\boldsymbol{u}} := -(\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$ on Bloch's sphere

Schwinger bosons: second quantization

One particle of spin-1/2 $\mathcal{H}^{(J)} = \mathbb{C}^2$

Let $\widehat{u} := -(\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$, the associated spin-1/2 state is

$$|\hat{u}
angle := \left(\cosrac{artheta}{2}\mathbf{c}^{\dagger}_{\uparrow} + \sinrac{artheta}{2}\mathrm{e}^{\mathrm{i}arphi}\mathbf{c}^{\dagger}_{\downarrow}
ight)|\emptyset
angle := \mathbf{c}^{\dagger}_{\widehat{u}}|\emptyset
angle$$

 $\mathbf{c}^{\dagger}_{\uparrow}$ (resp. $\mathbf{c}^{\dagger}_{\downarrow}$) operator creating a state $|\uparrow\rangle$ (resp. $|\downarrow\rangle$)

Schwinger bosons: second quantization

One particle of spin-1/2 $\mathcal{H}^{(J)} = \mathbb{C}^2$

Let $\widehat{u} := -(\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$, the associated spin-1/2 state is

$$|\hat{u}
angle := \left(\cosrac{artheta}{2}\mathbf{c}^{\dagger}_{\uparrow} + \sinrac{artheta}{2}\mathrm{e}^{\mathrm{i}arphi}\mathbf{c}^{\dagger}_{\downarrow}
ight)|\emptyset
angle := \mathbf{c}^{\dagger}_{\widehat{u}}|\emptyset
angle$$

 $\mathbf{c}^{\dagger}_{\uparrow} \text{ (resp. } \mathbf{c}^{\dagger}_{\downarrow} \text{) operator creating a state } |\uparrow\rangle \text{ (resp. } |\downarrow\rangle)$

Spin-J, $J \in \mathbb{N}^*/2$ as a 2J spin-1/2 particle state $\mathcal{H}^{(J)} = \mathbb{C}^{2J+1}$

Let $\boldsymbol{U} := \{\widehat{\boldsymbol{u}}_1, \dots, \widehat{\boldsymbol{u}}_{2J}\}$ 2J points on Bloch's sphere and define

$$|\Psi_{\boldsymbol{U}}^{(J)}
angle := rac{1}{\sqrt{(2J)!}} \left(\prod_{i=1}^{2J} \mathbf{c}_{\widehat{\boldsymbol{u}}_i}^\dagger
ight) |\emptyset
angle$$

Spin-J coherent states

Particular case

maximally degenerate constellations

$$|\widehat{\boldsymbol{n}}^{(J)}
angle := rac{1}{\sqrt{(2J)!}} \left(\boldsymbol{c}_{-\widehat{\boldsymbol{n}}}
ight)^{2J} |\emptyset
angle, \qquad \boldsymbol{U} := \{-\underbrace{\widehat{\boldsymbol{n}},\ldots,-\widehat{\boldsymbol{n}}}_{2J ext{ copies}}\}$$

Not a basis of the quantum Hilbert space $\mathcal{H}^{(J)} = \mathbb{C}^{2J+1} \dots$

Spin-J coherent states

Particular case

maximally degenerate constellations

$$|\widehat{\boldsymbol{n}}^{(J)}\rangle := rac{1}{\sqrt{(2J)!}} \left(\boldsymbol{c}_{-\widehat{\boldsymbol{n}}}
ight)^{2J} |\emptyset
angle, \qquad \boldsymbol{U} := \{-\underbrace{\widehat{\boldsymbol{n}}, \ldots, -\widehat{\boldsymbol{n}}}_{2J ext{ copies}}\}$$

Not a basis of the quantum Hilbert space $\mathcal{H}^{(J)} = \mathbb{C}^{2J+1}$ but a family indexed by S^2 which is well-suited for computations!

Scalar product of two coherent states

$$\left\langle \widehat{\boldsymbol{n}}_{1}^{(J)} \mid \widehat{\boldsymbol{n}}_{2}^{(J)} \right\rangle = \left(\frac{1 + \widehat{\boldsymbol{n}}_{1} \cdot \widehat{\boldsymbol{n}}_{2}}{2} \right)^{J} \exp\left\{ \mathrm{i} J \Sigma(\widehat{\boldsymbol{z}}, \widehat{\boldsymbol{n}}_{1}, \widehat{\boldsymbol{n}}_{2}) \right\}$$

 $\Sigma(\widehat{z}, \widehat{n}_1, \widehat{n}_2)$: oriented spherical area of the triangle $(\widehat{z}, \widehat{n}_1, \widehat{n}_2)$

Coherent state representation

Generative family of the quantum Hilbert space

$$\mathbf{1}_{J} = \frac{2J+1}{4\pi} \int_{S^2} \mathrm{d}^2 \widehat{\boldsymbol{n}} \, |\widehat{\boldsymbol{n}}^{(J)}\rangle \langle \widehat{\boldsymbol{n}}^{(J)}|$$

Resolution of identity

Generative family of the quantum Hilbert space

$$\mathbf{1}_{J} = \frac{2J+1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, |\hat{\boldsymbol{n}}^{(J)}\rangle \langle \hat{\boldsymbol{n}}^{(J)}| \qquad \text{Resolution of identity}$$

Wavefunction on the sphere S^2

$$\forall \widehat{\boldsymbol{n}}, \quad \Psi_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}}) := \left\langle \widehat{\boldsymbol{n}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \right\rangle = \prod_{i=1}^{2J} \sqrt{\frac{1 - \widehat{\boldsymbol{n}} \cdot \widehat{\boldsymbol{u}}_i}{2}} \exp\left\{ \mathrm{i} J \Sigma(\widehat{\boldsymbol{z}}, \widehat{\boldsymbol{n}}, -\widehat{\boldsymbol{u}}_i) \right\}$$

Generative family of the quantum Hilbert space

$$\mathbf{1}_{J} = \frac{2J+1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, |\hat{\boldsymbol{n}}^{(J)}\rangle \langle \hat{\boldsymbol{n}}^{(J)}| \qquad \text{Resolution of identity}$$

Wavefunction on the sphere S^2

$$\forall \widehat{\boldsymbol{n}}, \quad \Psi_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}}) := \left\langle \widehat{\boldsymbol{n}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \right\rangle = \prod_{i=1}^{2J} \sqrt{\frac{1 - \widehat{\boldsymbol{n}} \cdot \widehat{\boldsymbol{u}}_i}{2}} \exp\left\{ i J \Sigma(\widehat{\boldsymbol{z}}, \widehat{\boldsymbol{n}}, -\widehat{\boldsymbol{u}}_i) \right\}$$

Probability distribution

$$\begin{aligned} Q_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}}) &:= \left| \Psi_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}}) \right|^2 & \text{Husimi function} \\ (algebraic manipulations) &= \prod_{i=1}^{2J} \frac{1 - \widehat{\boldsymbol{n}} \cdot \widehat{\boldsymbol{u}}_i}{2} \end{aligned}$$

Majorana stars $m{U} = \{\widehat{m{u}}_1, \dots, \widehat{m{u}}_{2J}\}$ are the zeros of the Husimi function.

Majorana's representation

 $\mathcal{P}^{(\textit{J})}$ unambiguously parametrized by Majorana's stars "constellation":

$$\boldsymbol{U} = \{\widehat{\boldsymbol{u}}_i, i = 1, \dots, 2J\}$$

Reminder:
$$\mathbf{c}_{\widehat{\boldsymbol{u}}}^{\dagger} := \cos \frac{\vartheta}{2} \mathbf{c}_{\uparrow}^{\dagger} + \sin \frac{\vartheta}{2} \mathrm{e}^{\mathrm{i}\varphi} \mathbf{c}_{\downarrow}^{\dagger}$$

By construction

$$|\Psi_{\boldsymbol{U}}^{(J)}
angle := rac{1}{\sqrt{(2J)!}} \left(\prod_{i=1}^{2J} \mathbf{c}_{\widehat{\boldsymbol{u}}_i}^\dagger
ight) |\emptyset
angle = extsf{Polynomial}_{\boldsymbol{\Psi}}(\mathbf{c}_{\uparrow}^\dagger, \mathbf{c}_{\downarrow}^\dagger) |\emptyset
angle$$

 $Polynomial_{\psi}$: homogeneous polynomial.

Reciprocally

Factorization of the Husimi function provides the Majorana stars

$$\boldsymbol{\textit{U}}=\{\widehat{\boldsymbol{\textit{u}}}_1,\ldots,\widehat{\boldsymbol{\textit{u}}}_{2J}\}$$

System of interacting particles on the sphere

2D Coulomb potential on the sphere:

$$V(\widehat{\pmb{u}}_1,\widehat{\pmb{u}}_2) = -\ln d_{12}$$

$$d_{12} = \sin^2(artheta_{12}/2) = rac{1-\widehat{oldsymbol{u}}_1 \cdot \widehat{oldsymbol{u}}_2}{2}$$
: chordal distance on S^2

Internal energy: for a configuration of Majorana stars $\boldsymbol{U} = \{ \widehat{\boldsymbol{u}}_1, \dots, \widehat{\boldsymbol{u}}_{2J} \}$ $\forall \widehat{\boldsymbol{n}}, \quad E_{\boldsymbol{U}}(\widehat{\boldsymbol{n}}) := \sum_{i=1}^{2J} V(\widehat{\boldsymbol{n}}, \widehat{\boldsymbol{u}}_i)$

<u>Partition function</u>: $Z(\boldsymbol{U}) := \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \widehat{\boldsymbol{n}} \exp\{-E_{\boldsymbol{U}}(\widehat{\boldsymbol{n}})/T\}$

Free energy: $F(U) := T \ln Z(U)$

2D Coulomb potential on the sphere:
$$V(\widehat{u}_1, \widehat{u}_2) = -\ln rac{1 - \widehat{u}_1 \cdot \widehat{u}_2}{2}$$

2D Coulomb potential on the sphere:
$$V(\widehat{u}_1, \widehat{u}_2) = -\ln rac{1 - \widehat{u}_1 \cdot \widehat{u}_2}{2}$$

Boltzmann density for fixed "temperature" $\underline{T=1}$

$$\exp\{-E_{U}(\widehat{\boldsymbol{n}})/T\} = \exp\left\{-\sum_{i=1}^{2J} - \ln\left(\frac{1-\widehat{\boldsymbol{n}}\cdot\widehat{\boldsymbol{u}}_{i}}{2}\right)\right\} = \prod_{i=1}^{2J}\left(\frac{1-\widehat{\boldsymbol{n}}\cdot\widehat{\boldsymbol{u}}_{i}}{2}\right)$$

2D Coulomb potential on the sphere:
$$V(\widehat{u}_1, \widehat{u}_2) = -\ln rac{1 - \widehat{u}_1 \cdot \widehat{u}_2}{2}$$

Boltzmann density for fixed "temperature" $\underline{T=1}$

$$\exp\{-E_{U}(\widehat{\boldsymbol{n}})/T\} = \exp\left\{-\sum_{i=1}^{2J} - \ln\left(\frac{1-\widehat{\boldsymbol{n}}\cdot\widehat{\boldsymbol{u}}_{i}}{2}\right)\right\} = \prod_{i=1}^{2J}\left(\frac{1-\widehat{\boldsymbol{n}}\cdot\widehat{\boldsymbol{u}}_{i}}{2}\right)$$

2D Coulomb potential on the sphere:
$$V(\widehat{u}_1, \widehat{u}_2) = -\ln rac{1 - \widehat{u}_1 \cdot \widehat{u}_2}{2}$$

Boltzmann density for fixed "temperature" T = 1

$$\exp\{-E_{U}(\widehat{\boldsymbol{n}})/T\} = \exp\left\{-\sum_{i=1}^{2J} - \ln\left(\frac{1-\widehat{\boldsymbol{n}}\cdot\widehat{\boldsymbol{u}}_{i}}{2}\right)\right\} = \prod_{i=1}^{2J}\left(\frac{1-\widehat{\boldsymbol{n}}\cdot\widehat{\boldsymbol{u}}_{i}}{2}\right)$$

Partition function

$$Z(\boldsymbol{U}) := \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \exp\{-E_{\boldsymbol{U}}(\hat{\boldsymbol{n}})/T\} = \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}})$$

 $Q_{m{U}}^{(J)}(\widehat{m{n}})$: Husimi function associated to $|\Psi_{m{U}}^{(J)}
angle$

Resolution of identity:
$$\mathbf{1}_{J} = \frac{2J+1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} |\hat{\boldsymbol{n}}^{(J)}\rangle \langle \hat{\boldsymbol{n}}^{(J)}|$$

From partition function to vector norm

$$Z(\boldsymbol{U}) = \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}})$$

$$= \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, \left| \langle \hat{\boldsymbol{n}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle \right|^2$$

$$= \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, \langle \Psi_{\boldsymbol{U}}^{(J)} \mid \hat{\boldsymbol{n}}^{(J)} \rangle \langle \hat{\boldsymbol{n}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle$$

$$= \langle \Psi_{\boldsymbol{U}}^{(J)} \mid \left(\frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, | \hat{\boldsymbol{n}}^{(J)} \rangle \langle \hat{\boldsymbol{n}}^{(J)} | \right) \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle = \frac{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle}{2J+1}$$

$$Z(\boldsymbol{U}) = \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}}) = \frac{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle}{2J+1}$$

- Fictitious *classical* gas of independent particles living on the *sphere*
- With density $Q_{U}^{(J)}$
- Interacting via Coulomb repulsion with 2J charges located at the \hat{u}_i 's

$$Z(\boldsymbol{U}) = \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}}) = \frac{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle}{2J+1}$$

- Fictitious *classical* gas of independent particles living on the *sphere*
- With density $Q_{U}^{(J)}$
- Interacting via Coulomb repulsion with 2J charges located at the \hat{u}_i 's

Fictitious *indirect* interaction between the Majorana stars $\{\widehat{\pmb{u}}_i\}_{i=1}^{2J}$

indirect: mediated by gas particles at "thermal equilibrium" at T = 1

$$Z(\boldsymbol{U}) = \frac{1}{4\pi} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}}) = \frac{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle}{2J+1}$$

- Fictitious *classical* gas of independent particles living on the *sphere*
- With density $Q_{U}^{(J)}$
- Interacting via Coulomb repulsion with 2J charges located at the \hat{u}_i 's

Fictitious *indirect* interaction between the Majorana stars $\{\widehat{u}_i\}_{i=1}^{2J}$

indirect: mediated by gas particles at "thermal equilibrium" at T = 1

Mapping of a spin-*J* quantum state onto a 2*J*-body classical system.

Mapping between spin-J system and gas on the sphere Observables in quantum mechanics $\langle \mathbf{O} \rangle_{U} := \langle \Psi_{U}^{(J)} | \mathbf{O} | \Psi_{U}^{(J)} \rangle / \| \Psi_{U}^{(J)} \|^{2}$

$$\langle \mathbf{0} \rangle_{\boldsymbol{\mathcal{U}}} = \left(\frac{2J+1}{4\pi}\right)^2 \int_{S^2} \int_{S^2} \mathrm{d}^2 \widehat{\boldsymbol{n}} \, \mathrm{d}^2 \widehat{\boldsymbol{n}'} \, \frac{\langle \Psi_{\boldsymbol{\mathcal{U}}}^{(J)} | \widehat{\boldsymbol{n}}^{(J)} \rangle \langle \widehat{\boldsymbol{n}}^{(J)} | \mathbf{0} | \widehat{\boldsymbol{n}'}^{(J)} \rangle \langle \widehat{\boldsymbol{n}'}^{(J)} | \Psi_{\boldsymbol{\mathcal{U}}}^{(J)} \rangle}{\langle \Psi_{\boldsymbol{\mathcal{U}}}^{(J)} | \Psi_{\boldsymbol{\mathcal{U}}}^{(J)} \rangle}$$

 $\underline{\mathsf{If} \ \mathbf{O} \text{ acts diagonally on }} \{ | \widehat{\boldsymbol{n}}^{(J)} \rangle \}_{\widehat{\boldsymbol{n}} \in S^2} : \langle \widehat{\boldsymbol{n}}^{(J)} \mid \mathbf{O} | \widehat{\boldsymbol{n}}^{(J)} \rangle := \mathrm{O}(\widehat{\boldsymbol{n}})$

Averaged quantity

$$\begin{split} \langle \mathbf{O} \rangle_{\boldsymbol{U}} &= \frac{2J+1}{4\pi} \frac{1}{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \langle \Psi_{\boldsymbol{U}}^{(J)} | \hat{\boldsymbol{n}}^{(J)} \rangle \mathrm{O}(\hat{\boldsymbol{n}}) \langle \hat{\boldsymbol{n}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle \\ &= \frac{2J+1}{4\pi} \frac{1}{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \operatorname{O}(\hat{\boldsymbol{n}}) \left| \langle \hat{\boldsymbol{n}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle \right|^2 \\ &= \frac{2J+1}{4\pi} \frac{1}{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \operatorname{O}(\hat{\boldsymbol{n}}) Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}}) \end{split}$$

Reminder

$$Z(U) = \int_{S^2} \frac{\mathrm{d}^2 \widehat{\boldsymbol{n}}}{4\pi} \exp\left\{-\frac{E_U(\widehat{\boldsymbol{n}})}{T}\right\} = \int_{S^2} \frac{\mathrm{d}^2 \widehat{\boldsymbol{n}}}{4\pi} Q_U^{(J)}(\widehat{\boldsymbol{n}}) = \frac{\langle \Psi_U^{(J)} \mid \Psi_U^{(J)} \rangle}{2J+1}$$

Averaged quantum observable

$$\langle \mathbf{0} \rangle_{\boldsymbol{U}} = \frac{2J+1}{4\pi} \frac{1}{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle} \int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, \mathrm{O}(\hat{\boldsymbol{n}}) Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}}) = \frac{\int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, \mathrm{O}(\hat{\boldsymbol{n}}) Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}})}{\int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \, Q_{\boldsymbol{U}}^{(J)}(\hat{\boldsymbol{n}})}$$

Reminder

$$Z(\boldsymbol{U}) = \int_{S^2} \frac{\mathrm{d}^2 \widehat{\boldsymbol{n}}}{4\pi} \exp\left\{-\frac{E_{\boldsymbol{U}}(\widehat{\boldsymbol{n}})}{T}\right\} = \int_{S^2} \frac{\mathrm{d}^2 \widehat{\boldsymbol{n}}}{4\pi} Q_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}}) = \frac{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle}{2J+1}$$

Averaged quantum observable

$$\langle \mathbf{0} \rangle_{\boldsymbol{U}} = \frac{2J+1}{4\pi} \frac{1}{\langle \Psi_{\boldsymbol{U}}^{(J)} \mid \Psi_{\boldsymbol{U}}^{(J)} \rangle} \int_{S^2} \mathrm{d}^2 \widehat{\boldsymbol{n}} \, \mathrm{O}(\widehat{\boldsymbol{n}}) Q_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}}) = \frac{\int_{S^2} \mathrm{d}^2 \widehat{\boldsymbol{n}} \, \mathrm{O}(\widehat{\boldsymbol{n}}) Q_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}})}{\int_{S^2} \mathrm{d}^2 \widehat{\boldsymbol{n}} \, Q_{\boldsymbol{U}}^{(J)}(\widehat{\boldsymbol{n}})}$$

Expectation value in statistical physics:

$$\langle f(\hat{\boldsymbol{n}}) \rangle := \frac{\int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} f(\hat{\boldsymbol{n}}) \exp\{-E_{\boldsymbol{U}}(\hat{\boldsymbol{n}})/T\}}{\int_{S^2} \mathrm{d}^2 \hat{\boldsymbol{n}} \exp\{-E_{\boldsymbol{U}}(\hat{\boldsymbol{n}})/T\}}$$

Diagrammatic expressions

Statistical physics tools applied to quantum averaging

•
$$f(\hat{\boldsymbol{n}}) = 1,$$
 $Z(\boldsymbol{U}) = \frac{1}{2J+1} \sum_{n=0}^{[J]} (-1)^n \frac{(2J-n)!}{(2J)!} D_{\boldsymbol{U}}^{(J,n)}$
• $f(\hat{\boldsymbol{n}}) = \hat{n}_{\nu},$ $\langle \hat{n}_{\nu} \rangle = \frac{1}{2(J+1)} \frac{\sum_{n=0}^{[J]} (-1)^n \frac{(2J-n)!}{(2J)!} D_{\boldsymbol{U}^{\nu}}^{(J,n)}}{\sum_{n=0}^{[J]} (-1)^n \frac{(2J-n)!}{(2J)!} D_{\boldsymbol{U}^{\nu}\rho}^{(J,n)}}$
• $f(\hat{\boldsymbol{n}}) = \hat{n}_{\nu} \hat{n}_{\rho},$ $\langle \hat{n}_{\nu} \hat{n}_{\rho} \rangle = \frac{1}{2(J+1)(J+3)} \frac{\sum_{n=0}^{[J]} (-1)^n \frac{(2J-n)!}{(2J)!} D_{\boldsymbol{U}^{\nu}\rho}^{(J,n)}}{\sum_{n=0}^{[J]} (-1)^n \frac{(2J-n)!}{(2J)!} D_{\boldsymbol{U}^{\nu}\rho}^{(J,n)}}$
 $[J] := \begin{cases} J & \text{for } 2J \text{ even} \\ J-1/2 & \text{for } 2J \text{ odd} \end{cases}$

 $D_{\boldsymbol{U}}^{(J,n)}$, $D_{\boldsymbol{U}\nu}^{(J,n)}$ and $D_{\boldsymbol{U}\nu\rho}^{(J,n)}$ computed from *diagrams*.

Diagrammatic rules to compute $D_{U}^{(J,n)}$, $D_{U_{\nu}}^{(J,n)}$, $D_{U_{\nu}\rho}^{(J,n)}$

(i) draw all possible distinct diagrams with n pairing links(ii) calculate the contribution of each possible diagram

- unlinked •: factor 1
- unlinked \circ : factor 0
- link between \bullet_i and \bullet_j : factor d_{ij}
- link between \bullet_i and \circ_{ν} : factor $(\widehat{u}_i)_{\nu}$
- link between \circ_{μ} and \circ_{ν} : factor $-2\delta_{\mu\nu}$

<u>E.g.</u>: (a) $d_{12}d_{45}$, (b) $(\hat{u}_5)_{\mu} d_{23}d_{46}$, (c) $(\hat{u}_3)_{\mu} (\hat{u}_6)_{\nu}$

(iii) sum all the contributions

Computation of physical quantities of interest

Dipole moment J:

 J_{μ} : μ -th component of spin operator $\vec{\mathbf{J}}$

$$\langle J_{\mu}
angle = (J+1)\langle \widehat{n}_{\mu}
angle$$

 $\underline{\mathsf{E.g.:}} \text{ for spin-1, } 2J = 2 \text{ Majorana stars } \widehat{\pmb{u}}_1 \text{ and } \widehat{\pmb{u}}_2, \ \langle J_\nu \rangle = -\frac{(\widehat{u}_1)_\nu + (\widehat{u}_2)_\nu}{2 - d_{12}}$

Computation of physical quantities of interest

Dipole moment J:

 J_{μ} : μ -th component of spin operator \vec{J}

$$\langle J_{\mu}
angle = (J+1)\langle \widehat{n}_{\mu}
angle$$

<u>E.g.</u>: for spin-1, 2J = 2 Majorana stars \hat{u}_1 and \hat{u}_2 , $\langle J_\nu \rangle = -\frac{(\hat{u}_1)_\nu + (\hat{u}_2)_\nu}{2 - d_{12}}$

Quadrupole moment M $M_{\nu,\rho} := \frac{J_{\nu}J_{\rho} + J_{\rho}J_{\nu}}{2} - \frac{J(J+1)}{3}\delta_{\nu\rho}$

$$\langle \boldsymbol{M}_{\nu\rho} \rangle = (J+1) \left(J + \frac{3}{2} \right) \left(\langle \widehat{\boldsymbol{n}}_{\nu} \widehat{\boldsymbol{n}}_{\rho} \rangle - \frac{\delta_{\nu\rho}}{3} \right)$$

$$\underline{\mathsf{E.g.:}} \langle \boldsymbol{M}_{\nu\rho} \rangle = \frac{1}{2 - d_{12}} \left(\frac{(\widehat{\boldsymbol{u}}_{1})_{\nu} (\widehat{\boldsymbol{u}}_{2})_{\rho} + (\widehat{\boldsymbol{u}}_{2})_{\nu} (\widehat{\boldsymbol{u}}_{1})_{\rho}}{2} - \widehat{\boldsymbol{u}}_{1} \cdot \widehat{\boldsymbol{u}}_{2} \frac{\delta_{\nu\rho}}{3} \right)$$