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The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-
dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J + 1)-dimensional
Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of
independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test
charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the
Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings.
Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole
moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric
formulation of the quantum dynamics is presented and its application to systems with exotic ordering such
as spin nematics is outlined.
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Spin angular momentum: first experimental evidence

Stern (conception 1921)-Gerlach (realization 1922) experiment:

Source: Wikipedia, Peng, CC BY-SA 3.0


https://commons.wikimedia.org/w/index.php?curid=207137

Stern-Gerlach experiment
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Silver atom beam through a nonuniform magnetic field of direction Z
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Stern-Gerlach experiment
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Silver atom beam through a nonuniform magnetic field of direction Z

Force on an object of magnetic moment i into a magnetic field B

F=(i-V)B

» silver atoms have no orbital magnetic orbital moment [=0..
> ... but the beam is deflected ji # 0!

» resulting in two accumulation points on the screen.

-

Total angular moment i = L+J, J: intrinsic quantum spin momentum



The spin from a physicist point of view

Elementary and composite particle ex: electron, proton, neutron
» mass
» electric charge

» spin: intrinsic angular momentum which is quantized



The spin from a physicist point of view

Elementary and composite particle ex: electron, proton, neutron
» mass
» electric charge

» spin: intrinsic angular momentum which is quantized

Silver atoms in Stern-Gerlach experiment
» two possible measurements: “spin up” 1 or “spin down" |
» equal probability Py atom(1) = P1 atom({) = 1/2
> same deflection amplitude |J|+ = |J],.



Elements of quantum mechanics

State of the system Quantum Hilbert space
W) e H
Superpositions: W) = 1 |W1) + 72|Va) € H, y1,72 € C, |Vy),|V2) € H
Equivalence: If [W,) = ¢'?|Wy), for some ¢ € R then
|W,) ~ |W;) describe the same physical state.

Physical quantum state: P := H/ ~ projective space




Elements of quantum mechanics

State of the system Quantum Hilbert space
W) e H
Superpositions: W) = 1 |W1) + 72|Va) € H, y1,72 € C, |Vy),|V2) € H
Equivalence: If [W,) = ¢'?|Wy), for some ¢ € R then
|W,) ~ |W;) describe the same physical state.

Physical quantum state: P := H/ ~ projective space

Hamiltonian dynamics Schrédinger equation

() _
L =HEW)

Time evolution: |W(t)) = exp (i/ot H(t) dt’> |w(0))



Elementary intrinsic angular momentum: spin-1/2

General spin-1/2 state superposition of “spin up” and “spin down”

[y =alt) +Bl), «,BeC
Quantum Hilbert space:  |¢) € H(1/2) .= C?
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Elementary intrinsic angular momentum: spin-1/2

General spin-1/2 state superposition of “spin up” and “spin down"

[y =alt) +Bl), «,BeC
Quantum Hilbert space:  |¢) € H(1/2) .= C?

Equivalence: (reminder)
Vi € R, |W1) and €l?|W;) are the same physical state.

Physical quantum state: P(1/2) .= }(1/2) / ~ = CP?

Measurement probabilities

P(1) = [(tl ¥)]* = laf* and P() = [(L| )? =8
Normalization: P(1) + P(}) = |a* 4+ [8]* =1



Bloch's sphere

Spin-1/2 [y =alt) +BIL), laff+|82=1

0 (
) = cos 1) +sin Se¥|)



Bloch's sphere

Spin-1/2 |y =at) +B8lL), o+ |8 =1

0 9,
) = cos 1) +sin Se¥|)

Appropriate variables to describe spins are angles.

REVIEWS OF MODERN PHYSICS VOLUME 17, NUMBERS 2 AND 3 APRIL-JULY, 194§
Atoms in Variable Magnetic Fields*
F. Brocu

Stanford University, Stanford University, California
AND

I. I. Rasr
Columbia University, New York, New York

Majorana star: U := —(sin 9 cos y, sin ¥ sin ¢, cos¥) on Bloch’

s sphere



Schwinger bosons: second quantization

One particle of spin-1/2 HU) = C?

Let u := —(sin ¥ cos @, sin ¥ sin p, cos ¥#), the associated spin-1/2 state is

~ J o0
[u) := (cos Ecl + sin 2e1”’c1) |0) = CB|@>

c$ (resp. CD operator creating a state |1) (resp. |J))



Schwinger bosons: second quantization

One particle of spin-1/2 HU) = C?

Let u := —(sin ¥ cos @, sin ¥ sin p, cos ¥#), the associated spin-1/2 state is

~ J o0
[u) := (cos Ecl + sin 2e1”’c1) |0) = C}|@>

c$ (resp. CD operator creating a state |1) (resp. |J))

Spin-J, J € N*/2 as a 2J spin-1/2 particle state HU) = ¢+t

Let U :={u,..., Uy} 2J points on Bloch's sphere and define

v =2 ([ )
vt /e u;

i=1




Spin-J coherent states

Particular case maximally degenerate constellations

A= 2 ()0 U= (a R
—_———

2J copies

g-

(2J)!

Not a basis of the quantum Hilbert space H) = C%/*1 .

10



Spin-J coherent states

Particular case maximally degenerate constellations

A= 2 ()0 U= (a R
—_———

2J copies

g-

(2J)!

Not a basis of the quantum Hilbert space #{J) = C%/*! .
... but a family indexed by S? which is well-suited for computations!

Scalar product of two coherent states
1+n -1\’
(A" | A7) = (212> exp {iJ5(2, iy, i)}

Y(z,m, ny): oriented spherical area of the triangle (z, ny, n2)

10



Coherent state representation

Generative family of the quantum Hilbert space
_2J+1

1
J 47

/ d?a a9y (aW)| Resolution of identity
S2
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Coherent state representation

Generative family of the quantum Hilbert space
_2J+1

1
J 47

/ d?a a9y (aW)| Resolution of identity
S2

Wavefunction on the sphere S

2J =
- Dy — (a0 [y _ 1—-n-u s s
Vn, WV;’(n): <n | Wy > ,-|:|1 P {iJZ(z,n, —u;)}

11



Coherent state representation

Generative family of the quantum Hilbert space
_2J+1

1
J 47

/ d?a a9y (aW)| Resolution of identity
S2

Wavefunction on the sphere S2
=
va, w(n) = <ﬁ<J> | xu(UJ)> =15 er{iz(z n—a))
i=1

Probability distribution

2
QE_,J)(E) i= ‘\U(d)(ﬁ)‘ Husimi function
Zl-n-g
(algebraic manipulations) = H _—
i=1 2
Majorana stars U = {u, ..., Uy} are the zeros of the Husimi function.

11



Majorana's representation

PU) unambiguously parametrized by Majorana’s stars “constellation”:

U={u,i=1,...,2J}

. N - RV
Reminder: cl := cos —c] + sin —¢'“c!
u 2 2

By construction

1 2J
‘\U(d)> — I <H c%) |0) = Polynomialw(cLCD‘m
© \i=1

Polynomialy: homogeneous polynomial.

Reciprocally
Factorization of the Husimi function provides the Majorana stars
U= {ah"'?aQJ}

12



System of interacting particles on the sphere

2D Coulomb potential on the sphere:

V(l/;l,az) =—1In d12

1—uy -

dip = sin2(1912/2) = - chordal distance on S2

Internal energy: for a configuration of Majorana stars U = {uy, ..., Uy}

2J
VA, Ey(n):=>_ V(n,u)
i=1

Partition function: Z(U) := 417r/ d?n exp{—Ey(n)/T}

Free energy: F(U) := T InZ(U)

13



Mapping between spin-J system and gas on the sphere

1—u -

2D Coulomb potential on the sphere: V/(uy, ;) = —In 5
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Mapping between spin-J system and gas on the sphere

1—u -

2D Coulomb potential on the sphere: V/(uy, ;) = —In 5

Boltzmann density for fixed “temperature” T =1

exp{—~Eu(R)/ T} = exp {—i— " (1_;A>} 11 (=)

i=1 i=1

Partition function

1

Z(U) == 47T/ d%n exp{—Ey(n)/T} = 7T/2d2ﬁQ§j)(ﬁ)

Q(J)( n): Husimi function associated to |\U(J))

14



Mapping between spin-J system and gas on the sphere

201 [ e s
. / &7 [V ()]
47 Js2

From partition function to vector norm

Resolution of identity: 1, =

1

2(0) = o | a ey @)
1 2~ | /=) (4)
i / || [

1 =@ | a\ s J
-4 LR A ED | V)

4 2J+1

1 R R ICORRIC)
1 (o [ @) e - Pyl
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Mapping between spin-J system and gas on the sphere
1 R <\U(J) | \U(J)>
2(U) = 47r/ 4 Qi (A )_LzlJi+1U

= Fictitious classical gas of independent particles living on the sphere
= With density QE,J)

= Interacting via Coulomb repulsion with 2J charges located at the u;'s

16



Mapping between spin-J system and gas on the sphere

1 ~ v |y
2(U) = 47r/ & Q) (n )_< L21J‘+1U>

= Fictitious classical gas of independent particles living on the sphere
= With density QE,J)

= Interacting via Coulomb repulsion with 2J charges located at the u;'s

Fictitious indirect interaction between the Majorana stars {u;}?/;

indirect: mediated by gas particles at “thermal equilibrium” at T =1
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Mapping between spin-J system and gas on the sphere

1 ~ v |y
2(U) = 47r/ & Q) (n )_< L21J‘+1U>

= Fictitious classical gas of independent particles living on the sphere
= With density QE,J)

= Interacting via Coulomb repulsion with 2J charges located at the u;'s

Fictitious indirect interaction between the Majorana stars {u;}?/;

indirect: mediated by gas particles at “thermal equilibrium” at T =1

Mapping of a spin-J quantum state onto a 2J-body classical system.
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Mapping between spin-J system and gas on the sphere

Observables in quantum mechanics (0) = <\U(Lf) | O | \U(UJ)>/HW(UJ>H2

(P ~U) ) ()

) <2J+1> //d%dz, (W [8) @ | O (™ | W)
v= J J
5t Js: Wy vy

If O acts diagonally on {|ﬁ(J)>};652: (a1 o/aY)y .= O(n)

Averaged quantity
2J+1 1
(O)u =
oy vy
2J+1 1

2
- 250 | GY | v
i )| v fszd m0@) || V)|

~ J) 1~ ~\ J
[ 0@E | v

241 1 o oy () e
=S T v /52dn0(n)QU ()

17



Mapping between spin-J system and gas on the sphere

Reminder D1 wl)
© d%n Eu(n) SRy (W)
4 = - L — U T Tu/
(V) / ar exP{ T /5 2 Qu (1) 2J+1
Averaged quantum observable

2J+1 1 [ 2R0O(R) QY ()

(O)u =

JRECOEADE
52

am (v | vy Js. 420 Q) (m)

18



Mapping between spin-J system and gas on the sphere

Reminder ) o)

" d%n Ey(n) [ d*n )~y Vo' vy
2= [ 5 eXP{T = [ @ =T
Averaged quantum observable

2J+1 1 [ 2R0O(R) QY ()

(O)u =

JRECOEADE
52

47 <\|,(UJ) | W(UJ)> fsz d2n Q(J)( )

Expectation value in statistical physics:

Js: d*n f(n) exp{—Ey(n)/T}
Js: 4?0 exp{—Ey(n)/ T}

(f(n)) =

18



Diagrammatic expressions

Statistical physics tools applied to quantum averaging

V]

. F(R) =1, 2(U) = ﬁ Z(—1)"(2(J2;)!”)!D{,Jv">
J (2J—n J,n
» f(n) =1, (n,) = 2(J1+ 1) Z: o= ) (2J2 )nI;D%JVnz
> onmo(—1)" G- Dy
J 2J—n J,n
» f(n)=n,n,  (A,n,) = 20+ 1§(J 13) ZEO(_I) zz(sz):;: DEJJV:::
Youlo(—1)" Gt D
Ul :{ J for2Jeven
J—1/2 for 2J odd

b, pY:" and DLJ;';) computed from diagrams.

19



(4;n)

Diagrammatic rules to compute DY, DY”, Dy,

(a) (k) l

e: Majorana stars, o: auxiliary stars

(i) draw all possible distinct diagrams with n pairing links
(ii) calculate the contribution of each possible diagram

— unlinked e: factor 1

— unlinked o: factor 0

— link between e; and e;: factor dj

— link between e; and o,: factor (u;),

— link between o, and o,: factor —2§,,

Eg.: (a) diadss, () (Us), dozdss, (<) (u3), (Us),
(iii) sum all the contributions

20



Computation of physical quantities of interest

— —

Magnetic energy  Ejagnet. x —J - B

—

J: angular momentum, B: magnetic field

Dipole moment J: J,: p-th component of spin operator J
<Ju> =(J+ 1)<ﬁu>

(), + (),

E.g.: for spin-1, 2J = 2 Majorana stars u; and w, (J,) = 4
— —di2
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Computation of physical quantities of interest

— —

Magnetic energy  Ejagnet. < —J - B

—

J: angular momentum, B: magnetic field

Dipole moment J: J,: p-th component of spin operator J
<Ju> =(J+ 1)<ﬁu>

(), + (),
2 —dp

JI/J) J)J]/ J J 1
Quadrupole moment M M, , = f ; pdv _ S ; )

(M,,) =(J+1) (J + 3> ((ﬁuﬁp> _ 5;;)

1 (@), (@), + (@), (1), . by,
2 —di 2 3

E.g.: for spin-1, 2J = 2 Majorana stars u; and w, (J,) =

(‘)1//)

N

L<MV>:
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