Unrolled proximal algorithms for estimating
the reproduction number of Covid-19 pandemic

Master internship in machine learning applied to signal processing

Supervision and contact: Barbara Pascal, barbara.pascal@cnrs.fr, CNRS, Researcher,
Sébastien Bourguignon, sebastien.bourguignon@ec-nantes, Centrale Nantes, Professor.

Application: Send a CV, master grades, references and motivations.
Location: Laboratoire des Sciences du Numérique de Nantes (LS2N), Ecole Centrale Nantes.

Duration and dates: 4 to 6 months in 2025.

Context: Epidemics, striking heavily our societies both on the sanitary, economic and soci-
etal sides, are a major public health issue. The crisis triggered by the Covid-19 pandemic
emphasized the need for accurate, robust and real-time tools for assessing epidemic intensity.

In practice, health authorities collect daily new infection
counts Z; atdayst =1,...,7. As an example, daily Covid-
19 infections in France during ten weeks is displayed
on the right figure, top plot. Yet, direct observation of
these infections counts is not sufficient to precisely as-
sess the intensity of Covid-19 pandemic in real-time for
two main reasons: first, infections constitute a conse-
quence of the virus spread, but quantifying the instan- !

noise, leading for example to drastically underestimated ob
counts during week-ends and days-off, which severely 2022
hampers direct quantification of the epidemic intensity.
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A key epidemic indicator is the basic reproduction number R, of an epidemic, defined as the
average number of secondary infections caused by one standard contagious individual [1].
Relaxed into a daily indicator R; at day ¢ it is called the effective reproduction number, providing
one of the most widely used tools to monitor the intensity of virus propagation in a population:
when R; > 1 (resp. R; < 1) the number of cases is growing (resp. decreasing) exponentially [2, 3].
Direct estimation of R, from the low quality reported counts exemplified in the top plot yields the
Maximum Likelihood Estimate (MLE) [2], represented as the dashed gray curve in the bottom
plot, which follows closely the underestimation during week-ends and days-off observed in the
reported counts, not reflecting the effective virus spread. To design an accurate and robust to
low quality data estimate of R;, a state-of-the-art epidemiological model, proposed in [3], has
been combined with advanced signal processing tools to design a variational estimator [4]

~PKL )

R =argmin —log L(Z,R) + AT (R) (1

ReRT

balancing the fidelity to the model, through a Poisson likelihood £, and regularity constraints,
through the regularization term 7. This Penalized Kullback-Leibler (PKL) estimate, solid blue
curve in the bottom plot, varies continuously and independently of the large fluctuations
caused by misreported counts. Not only this variational estimate behaves far more realisti-
cally from an epidemiological point of view, but also, it appears robust to administrative noise.

Challenge: A major bottleneck to the practical use of the Penalized Kullback-Leibler estimate
of Equation (1) is the necessary fine-tuning of the regularization parameter A > 0 controlling
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A = 3.5 (too small) AT = 50 (optimal) A = 250 (too large)
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the amount of regularity enforced: if too small, the estimate is not robust to noise in reported
counts, if too large there is a risk of oversmoothing, as illustrated on the figure above.

Objectives: The main goal of this internship is to implement an unrolled version of the
Chambolle-Pock scheme [4, Algorithm 1], which consists in reframing the variational esti-
mate (1) into a trainable neural network, leveraging recent connections established between
proximal algorithms and deep learning [5, 6, 7]. The regularization parameter ) is then inter-
preted as a weight of the unrolled network to be learned from a training dataset.

The accuracy of a neural network-based estimator depends to a large extent on the availabil-
ity of a large and diverse training dataset. The second objective of the internship is thus to
leverage the synthetic infection counts generation procedure proposed in [8] to build an anno-
tated dataset containing pairs of infection counts Z and associated ground truth reproduction
number R, on which to learn the weights of the unrolled network.

Finally, the developed model-informed deep network will be applied to real Covid-19 data, made
available by the Johns Hopkins University https://coronavirus. jhu.edu/.

Prerequisite: The recruited intern is expected to be at ease with the basic concepts of statis-
tics, machine learning and convex optimization. Knowledge in convex nonsmooth optimiza-
tion, with a special focus on proximity operators, would be a plus. Good programming skills
in Python are required, in particular in the use of PyTorch environment.
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