

Texture segmentation based on multiscale parameters

Combining local variance and local regularity into an optimization scheme

Barbara Pascal¹, Nelly Pustelnik¹, Patrice Abry¹, Marion Serres^{1,2}, Valérie Vidal¹ ¹ Univ Lyon, ENS de Lyon, Univ Lyon 1, CNRS, Laboratoire de Physique, France ² IFP Énergies Nouvelles, Rond-point de l'échangeur de Solaize, BP3, 69360 Solaize, France

Aims and contributions

Texture segmentation constitutes a task of utmost importance in statistical image processing. Monofractal textures, characterized by piecewise constancy of their scale-free parameters, were recently shown to be versatile enough for real-world texture modeling.

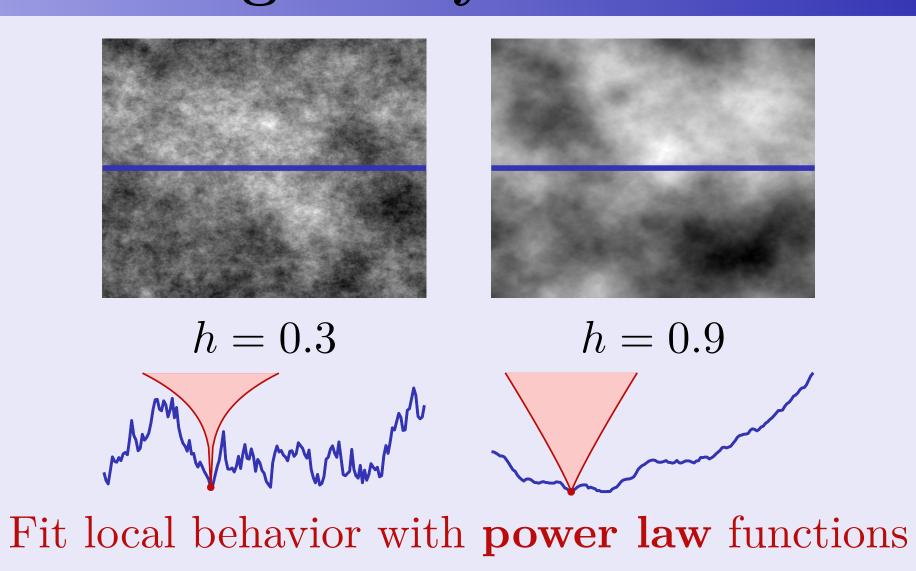
Contributions

- enrolling jointly scale-free and local "variance" descriptors into a convex, but nonsmooth, minimization strategy,
- designing an efficient implementation, able to deal with huge amounts of data/high resolution images.

Numerical assessment

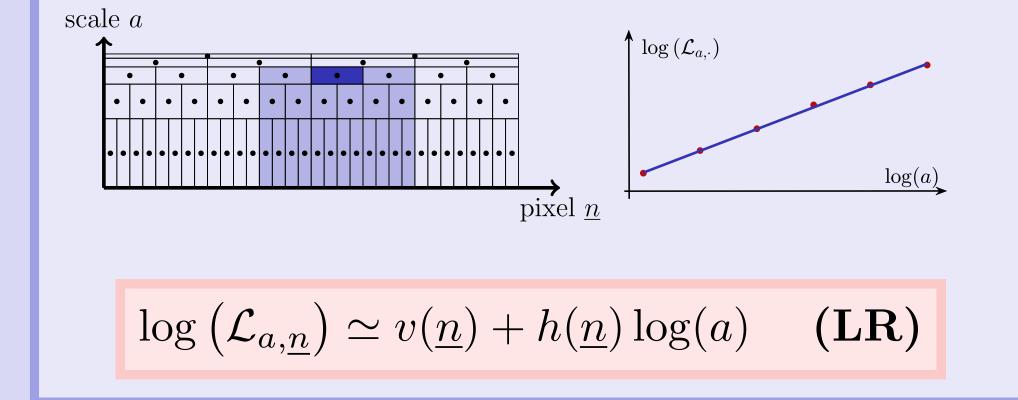
Performance of the proposed joint approach is compared against disjoint strategies working independently on scale-free features and on local "variance" on synthetic piecewise monofractal textures.

Local regularity



 $|f(x) - f(y)| \le C|x - y|^{h(x)}$

- Wavelet coefficients of the texture $w_{a,n}$ at scale a and pixel \underline{n} .
- Leaders $\mathcal{L}_{a,n}$: a local supremum within a spatial neighborhood & finer scales.
- In logarithmic coordinates *leaders* show linear behavior w.r.t. the scale.



Acc. primal-dual alg.

[Chambolle, Pock, 2011] Customized for our objective function

Primal var.
$$vh \equiv (v, h)$$
, dual var. $u\ell \equiv (u, \ell)$

for $k \in \mathbb{N}^*$ do

Conclusion

Achieved:

- \checkmark joint estimation of v and h,
- ✓ lead to reliable texture segmentation,
- ✓ with efficient implementation provided.

International Conference on Image Processing 2018

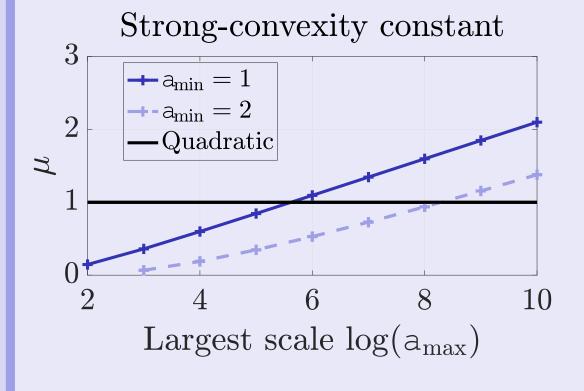
Optimization scheme

Objectives: • match scale-free behavior (LR) characterizing monofractal textures,

- obtain a joint estimation of v and h directly from the leaders $\mathcal{L}_{a,.}$,
- favor piecewise constancy of v and h without imposing same edges for v and h.

Minimization problem:

$$(\widehat{v}, \widehat{h}) \in \underset{v,h}{\operatorname{Argmin}} \underbrace{\mathbf{DF}(v, h; \mathcal{L}(X))}_{\text{Monofractal texture}} + \underbrace{\lambda_v \mathbf{TV}(v) + \lambda_h \mathbf{TV}(h)}_{\text{Piecewise constancy}}$$



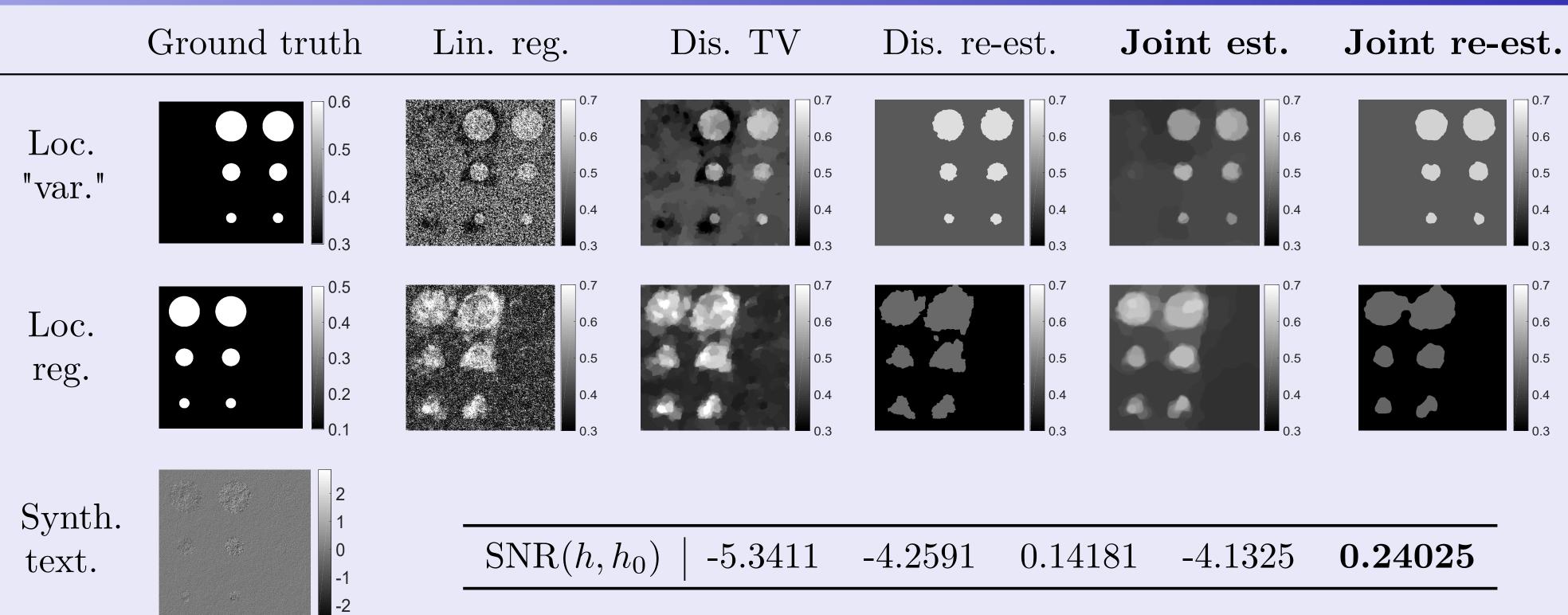
$$\mathbf{DF}(v, h; \mathcal{L}) = \frac{1}{2} \sum_{a_{\min}}^{a_{\max}} \|v + \log(a)h - \log \mathcal{L}_{a,.}\|_{2}^{2} = \frac{1}{2} \|\mathbf{A}(v, h) - \log \mathcal{L}\|_{2}^{2}$$

with $\mathbf{A}:(v,h)\mapsto \{v+\log(a)h\}_a$ linear. Then

$$\nabla \mathbf{DF}(v, h; \mathcal{L}) = \underbrace{\mathbf{A}^* \mathbf{A}(v, h)}_{\text{linear}} - \underbrace{\mathbf{A}^* \log \mathcal{L}}_{\text{constant}}.$$

 $\mathbf{DF}(v, h; \mathcal{L})$ is μ -strongly-convex, with $\mu > 0$ the smallest eigenvalue of $\mathbf{A}^*\mathbf{A}$

Experiments on synthetic textures



Experiments on synthetic textures

