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Texture segmentation

Purpose: obtaining a partition of the image into two regions

Ω = Ω1
⊔Ω2

Ω1: liquid, Ω2: gas.
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Piecewise monofractal textures
Local characterization

Texture’s attributes
(mathematical model)

Variance σ2 amplitude of variations

Local regularity h scale-free behavior

h(x) ≡ h1 = 0.9 h(x) ≡ h2 = 0.3

Fit local behavior with power law functions

|f (x)− f (y)| ≤ C |x − y |h(x)

Segmentation requires local measurement of σ2 and h.
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Multiscale analysis for features extraction

Textured image

Non-linear transform of wavelet coefficients: La,·

Log-log linear behavior

log (La,·) ' v
∼log(σ2)
(variance)

+ log(a) h
regularity
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Linear regression
Pointwise estimates

Textured image

Local power v̂LR Local regularity ĥLR

log (La,·) ' v
∼log(σ2)

+ log(a) h
regularity

Pointwise linear regression is an estimation from one sample!
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Linear regression
Pointwise estimates

Textured image Local power v̂LR Local regularity ĥLR

E log (La,·)
expected value

' v
∼log(σ2)

+ log(a) h
regularity

Pointwise linear regression is an estimation from one sample!
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Joint and coupled segmentation

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares
→ fidelity to log-linear model

+ λ R(v ,h;α)
total variation

→ enforce piecewise constancy

Discrete differences Hx (horizontal), Vx (vertical) at each pixel

joint: v , h are independently piecewise constant

coupled: v , h are concomitantly piecewise constant
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√
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→ fidelity to log-linear model

+ λ R(v ,h;α)
total variation

→ enforce piecewise constancy

Discrete differences Hx (horizontal), Vx (vertical) at each pixel

joint: v , h are independently piecewise constant
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coupled: v , h are concomitantly piecewise constant
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Regularization parameters

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares
→ fidelity to log-linear model

+ λ R(v ,h;α)
total variation

→ enforce piecewise constancy

Fine tuning of regularization parameters (λ, α) is necessary . . . but costly!

too small optimal too large

In practice, we explore a log-spaced grid of 15× 15 = 225 hyperparameters (λ, α).
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Algorithmic minimization of joint and coupled functionals

minimize
v,h

∑
a
‖log La,. − v − log(a)h‖2

least-squares

→ strongly convex

+ λ R(v ,h;α)
total variation

→ non-smooth

ϕ is α-strongly convex iff
ϕ−

α

2
‖·‖2 is convex.

Accelerated primal-dual algorithm (Chambolle, Pock 11’)
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total variation
→ non-smooth

ϕ is α-strongly convex iff
ϕ−

α

2
‖·‖2 is convex.

Accelerated primal-dual algorithm (Chambolle, Pock 11’)

yn+1 = proxσn‖·‖2,1 (yn + σn∇x̄n)
xn+1 = proxτn‖A·−b‖2

2

(
xn − τn∇∗yn+1)

θn =
√

1 + 2ατn, τn+1 = τn/θn, σn+1 = θnσn

x̄n+1 = xn+1 + θ−1
n
(
xn+1 − xn)
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Segmentation of multiphasic flow images.
Comparison of joint and coupled methods to state-of-the-art and previous work.

Factorization-based
segmentation [Yuan et al. 15’]†

(i) local spectral histograms

(ii) matrix factorization

Threshold-ROF on ĥLR

[Pustelnik 16’]

min
h
‖h − ĥLR‖2 + λ‖∇h‖2,1

Lin. reg. ROF Threshold

Based on regularity h only.

†https://sites.google.com/site/factorizationsegmentation/
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Gas/liquid flow modeled by piecewise monofractal textures

Synthetic textures

Liquid: h1 = 0.4, σ2
1 = 10−2

Gas:
∣∣∣∣ h2 = 0.9, σ2

1 = 10−2 (dark bubbles)
h2 = 0.9, σ2

2 = 10−1(clear bubbles)

Mask Texture

Segmentation performance
’Gas/Liquid’ Yuan 88% T-ROF 88% Joint 95% Coupled 95%
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Multiphasic flow. QG = 300mL/min - QL = 300mL/min: low activity

Flow Zooms Yuan T-ROF Joint Coupled
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Multiphasic flow. QG = 400mL/min - QL = 700mL/min: transition

Flow Zooms Yuan T-ROF Joint Coupled
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Multiphasic flow. QG = 1200mL/min - QL = 300mL/min: high activity

Flow Zooms Yuan T-ROF Joint Coupled
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Conclusion
Comparison of the different methods

Liquid/Gas
(regularity change)

Clear/Dark bubbles
(variance change)

Smooth
contours

Yuan 7 3 3

T-ROF 3 3 7

Joint 3 3 ∼∼∼
Coupled 3 3 3

Coupled is the most satisfactory in term of segmentation quality . . .

. . . but it is the most time consuming (2100s)
Yuan(1s), T-ROF (12s), Joint (700s)
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Ongoing work and perspectives

• Video analysis (temporal series of hundreds of images)
Intership of L. Helmlinger

3 Best (λ, α) tuned on 1st image is sufficiently robust for the entire series.
3 Time evolution of physical quantities can be assessed.

Fraction of gas (area) Liquid/gas contact perimeter

• Automatic tuning of hyperparameters
Stein’s Unbiased Risk Estimate R̂(λ, α)

Stein Unbiased GrAdient estimator of the Risk ∇λR̂(λ, α)
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Thank you for your attention!
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Fully Convolutional Neural Networks†

Flow Joint Coupled FCN

† V. Andrearczyk, https://arxiv.org/abs/1703.05230
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