

Estimation régularisée d'attributs fractals par minimisation convexe pour la segmentation de textures.

Barbara Pascal

30 septembre 2020 Laboratoire de Physique à l'École Normale Supérieure de Lyon

Mme Laure Blanc-Féraud

M. Bruno Torrésani

M. Gabriel Peyré
M. Rémi Bardenet

M. Jean-François Giovannelli

Mme Nelly Pustelnik

M. Patrice Abry

Examinatrice

Rapporteur

Rapporteur Examinateur

Examinateur

Co-directrice

Directeur

Estimation régularisée d'attributs fractals par minimisation convexe pour la segmentation de textures.

Barbara Pascal

30 septembre 2020 Laboratoire de Physique à l'École Normale Supérieure de Lyon

Mme Laure Blanc-Féraud

M. Bruno Torrésani

M. Gabriel Peyré
M. Rémi Bardenet

M. Jean-François Giovannelli

Mme Nelly Pustelnik

M. Patrice Abry

Examinatrice

Rapporteur

Rapporteur

Examinateur Examinateur

Co-directrice

Directeur

Segmentation d'image

Segmentation d'image

Objectif : obtenir une partition de l'image en K régions homogènes $\Omega=\Omega_1\sqcup\ldots\sqcup\Omega_K$

Segmentation d'image

Objectif : obtenir une partition de l'image en K régions homogènes $\Omega=\Omega_1 \bigsqcup \ldots \bigsqcup \Omega_K$

Crucial pour décrire les images réelles

Écoulement multiphasiques en milieu poreux

Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Écoulement multiphasiques en milieu poreux

Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Écoulement multiphasiques en milieu poreux

Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

1. Caractérisation de textures

[Filtres de Gabor (Dunn, 1995)] [Amplitude et fréquence locales (Havlicek, 1996)] [Histogrammes spectraux (Yuan, 2015)]

1. Caractérisation de textures

- \rightarrow attributs fractals
 - ightharpoonup variance locale σ^2
 - régularité locale h

[Filtres de Gabor (Dunn, 1995)] [Amplitude et fréquence locales (Havlicek, 1996)] [Histogrammes spectraux (Yuan, 2015)]

1. Caractérisation de textures

- \rightarrow attributs fractals
 - ▶ variance locale σ^2
 - régularité locale h

[Filtres de Gabor (Dunn, 1995)]

[Amplitude et fréquence locales (Havlicek, 1996)] [Histogrammes spectraux (Yuan, 2015)]

2. Construction de fonctionnelles

[Champ de Markov (Geman, 1984)] [Contours actifs (Chan, 2001)] [Variation Totale et Seuillage (Cai, 2013)]

1. Caractérisation de textures

→ attributs fractals

[Filtres de Gabor (Dunn, 1995)] \triangleright variance locale σ^2 [Amplitude et fréquence locales (Havlicek, 1996)]

régularité locale h

[Histogrammes spectraux (Yuan, 2015)]

2. Construction de fonctionnelles

→ moindres carrés pénalisés

contours libres

contours co-localisés

[Champ de Markov (Geman, 1984)] [Contours actifs (Chan, 2001)] [Variation Totale et Seuillage (Cai, 2013)]

1. Caractérisation de textures

ightarrow attributs fractals

[Filtres de Gabor (Dunn, 1995)]

ightharpoonup variance locale σ^2

[Amplitude et fréquence locales (Havlicek, 1996)]

régularité locale h

[Histogrammes spectraux (Yuan, 2015)]

2. Construction de fonctionnelles

→ moindres carrés pénalisés

contours libres

contours co-localisés

[Champ de Markov (Geman, 1984)] [Contours actifs (Chan, 2001)] [Variation Totale et Seuillage (Cai, 2013)]

3. Algorithme de minimisation accéléré

[Forward-backward (Combettes, 2005)] [FISTA (Beck, 2009)] [Primal-dual (Chambolle, 2011)]

1. Caractérisation de textures

 \rightarrow attributs fractals

[Filtres de Gabor (Dunn, 1995)]

 \triangleright variance locale σ^2

[Amplitude et fréquence locales (Havlicek, 1996)]

régularité locale h

[Histogrammes spectraux (Yuan, 2015)]

2. Construction de fonctionnelles

→ moindres carrés pénalisés

contours libres

contours co-localisés

[Champ de Markov (Geman, 1984)] [Contours actifs (Chan, 2001)] [Variation Totale et Seuillage (Cai, 2013)]

3. Algorithme de minimisation accéléré

- → algorithmes proximaux scindés
 - calcul des opérateurs proximaux
 - accélération par forte-convexité

[Forward-backward (Combettes, 2005)] [FISTA (Beck, 2009)]

[Primal-dual (Chambolle, 2011)]

1. Caractérisation de textures

→ attributs fractals

[Filtres de Gabor (Dunn, 1995)] [Amplitude et fréquence locales (Havlicek, 1996)]

 \triangleright variance locale σ^2

[Histogrammes spectraux (Yuan, 2015)]

2. Construction de fonctionnelles

→ moindres carrés pénalisés

régularité locale h

contours libres

contours co-localisés

[Champ de Markov (Geman, 1984)] [Contours actifs (Chan, 2001)] [Variation Totale et Seuillage (Cai, 2013)]

3. Algorithme de minimisation accéléré

→ algorithmes proximaux scindés

calcul des opérateurs proximaux

accélération par forte-convexité

[Forward-backward (Combettes, 2005)] [FISTA (Beck, 2009)]

[Primal-dual (Chambolle, 2011)]

4. Réglage des hyperparamètres

[SURE (Stein, 1981)] [SURE DFMC (Ramani, 2008)] [GSURE (Eldar, 2008)] [SUGAR (Deledalle, 2014)]

1. Caractérisation de textures

→ attributs fractals

[Filtres de Gabor (Dunn, 1995)]

 \triangleright variance locale σ^2

[Amplitude et fréquence locales (Havlicek, 1996)] [Histogrammes spectraux (Yuan, 2015)]

régularité locale h

2. Construction de fonctionnelles

→ moindres carrés pénalisés

contours libres

contours co-localisés

[Champ de Markov (Geman, 1984)] [Contours actifs (Chan, 2001)]

[Variation Totale et Seuillage (Cai, 2013)]

3. Algorithme de minimisation accéléré

→ algorithmes proximaux scindés

calcul des opérateurs proximaux

accélération par forte-convexité

[Forward-backward (Combettes, 2005)] [FISTA (Beck, 2009)]

[Primal-dual (Chambolle, 2011)]

4. Réglage des hyperparamètres

→ SURE avec bruit gaussien corrélé

erreur d'estimation projetée

minimisation par quasi-Newton

→ SUGAR généralisé

[SURE (Stein, 1981)] [SURE DFMC (Ramani, 2008)] [GSURE (Eldar, 2008)]

[SUGAR (Deledalle, 2014)]

Attributs fractals

• variance σ^2 amplitude des variations

Attributs fractals

- variance σ^2 amplitude des variations
- régularité locale *h* invariance d'échelle

Attributs fractals

- variance σ^2 amplitude des variations
- régularité locale h invariance d'échelle

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Attributs fractals

- variance σ^2
- amplitude des variations

régularité locale h invariance d'échelle

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

$$h(x) \equiv h_1 = 0.9$$
 $h(x) \equiv h_2 = 0.3$

$$h(x) \equiv h_2 = 0.3$$

Attributs fractals

- variance σ^2 amplitude des variations
- régularité locale h invariance d'échelle

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Segmentation

 \blacktriangleright h et σ^2 constants par morceaux

Attributs fractals

- variance σ^2 amplitude des variations
- <u>régularité locale h</u> invariance d'échelle

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Segmentation

- \blacktriangleright h et σ^2 constants par morceaux
- région Ω_k caractérisée par (h_k, σ_k^2)

Image texturée

Image texturée

Maximum local des coefficients d'ondelettes : $\mathcal{L}_{a,\cdot}$

échelle a

Image texturée

$$a = 2^1$$

échelle a

Image texturée

Maximum local des coefficients d'ondelettes : $\mathcal{L}_{a,.}$

Échelle

$$a = 2^1$$

$$\log\left(\mathcal{L}_{a,\cdot}
ight) \underset{a o 0}{\simeq} \log(a) \frac{\mathbf{h}}{\mathsf{r\'egularit\'e}} + \underset{\left(\mathsf{variance}\right)}{\mathsf{v}}$$

Image texturée

Maximum local des coefficients d'ondelettes : $\mathcal{L}_{a,.}$

Échelle

$$a=2^1$$

$$a = 2^5$$

$$\log\left(\mathcal{L}_{a,\cdot}
ight) \underset{a o 0}{\simeq} \log(a) rac{m{h}}{\mathrm{régularit\acute{e}}} + rac{m{v}}{\mathrm{clog}(m{\sigma}^2)}$$
(variance)

Image texturée

Maximum local des coefficients d'ondelettes : $\mathcal{L}_{a,\cdot}$

$$a=2^1$$

$$a = 2^5$$

$$\log\left(\mathcal{L}_{a,\cdot}\right) \underset{a \to 0}{\simeq} \log(a) \frac{\mathbf{h}}{\mathsf{régularit\acute{e}}} + \underset{\substack{\alpha \log(\sigma^2) \ (\mathsf{variance})}}{\mathsf{v}}$$

Image texturée

Maximum local des coefficients d'ondelettes : $\mathcal{L}_{a,.}$

Échelle

$$a = 2^1$$

$$\log\left(\mathcal{L}_{a,\cdot}\right) \underset{a \to 0}{\simeq} \log(a) \frac{\mathbf{h}}{\mathsf{régularit\acute{e}}} + \underset{\left(\mathsf{variance}\right)}{\mathsf{v}}$$

Image texturée

Maximum local des coefficients d'ondelettes : \mathcal{L}_{a} .

Échelle

$$a=2^1$$

$$\log\left(\mathcal{L}_{a,\cdot}
ight) \underset{a o 0}{\simeq} \log(a) \frac{m{h}}{\mathsf{régularit\acute{e}}} + \bigvee_{\substack{\propto \log(\sigma^2) \ (\mathsf{variance})}}$$

Image texturée

Maximum local des coefficients d'ondelettes : $\mathcal{L}_{a,.}$

Échelle

$$a = 2^1$$

$$\log\left(\mathcal{L}_{a,\cdot}\right) \underset{a \to 0}{\simeq} \log(a) \frac{\mathbf{h}}{\mathsf{régularit\acute{e}}} + \underset{\substack{\alpha \log(\sigma^2) \ (\mathsf{variance})}}{\mathsf{v}}$$

Analyse multi-échelle

Image texturée

Maximum local des coefficients d'ondelettes : $\mathcal{L}_{a,.}$

Échelle

$$a = 2^1$$

 $a = 2^5$

Proposition (Jaffard, 2004), (Wendt, 2008)

$$\log\left(\mathcal{L}_{a,\cdot}
ight) \underset{a o 0}{\simeq} \log(a) \frac{m{h}}{\text{régularité}} + \frac{m{v}}{\underset{\left(\text{variance}\right)}{\sim}}$$

Image texturée

$$\left(\widehat{\boldsymbol{\textit{h}}}^{\mathrm{RL}}, \widehat{\boldsymbol{\textit{v}}}^{\mathrm{RL}}\right) = \operatorname*{argmin}_{\boldsymbol{\textit{h}}, \boldsymbol{\textit{v}}} \sum_{a=a_{\min}}^{a_{\max}} \left\| \log \left(\boldsymbol{\mathcal{L}}_{a, \cdot} \right) - \log(a) \boldsymbol{\textit{h}} - \boldsymbol{\textit{v}} \right\|^{2}$$

Image texturée

$$\left(\widehat{\boldsymbol{\textit{h}}}^{\mathrm{RL}}, \widehat{\boldsymbol{\textit{v}}}^{\mathrm{RL}}\right) = \operatorname*{argmin}_{\boldsymbol{\textit{h}},\boldsymbol{\textit{v}}} \ \sum_{a=a_{\min}}^{a_{\max}} \left\| \log \left(\boldsymbol{\mathcal{L}}_{a,\cdot} \right) - \log(a) \boldsymbol{\textit{h}} - \boldsymbol{\textit{v}} \right\|^{2}$$

Image texturée Régularité locale $\hat{\pmb{h}}^{\mathrm{RL}}$ Puissance locale $\hat{\pmb{v}}^{\mathrm{RL}}$

Régression linéaire
$$\underbrace{\mathbb{E}\log\left(\mathcal{L}_{a,\cdot}\right)}_{\text{espérance}} = \log(a)\underbrace{\bar{h}}_{\text{régularité}} + \underbrace{\bar{v}}_{\propto \log(\sigma^2)}$$

$$\left(\widehat{\boldsymbol{\textit{h}}}^{\mathrm{RL}}, \widehat{\boldsymbol{\textit{v}}}^{\mathrm{RL}}\right) = \operatorname*{argmin}_{\boldsymbol{\textit{h}},\boldsymbol{\textit{v}}} \ \sum_{a=a_{\min}}^{a_{\max}} \left\|\log\left(\boldsymbol{\mathcal{L}}_{a,\cdot}\right) - \log(a)\boldsymbol{\textit{h}} - \boldsymbol{\textit{v}}\right\|^{2}$$

Image texturée Régularité locale $\hat{\boldsymbol{h}}^{\mathrm{RL}}$

Puissance locale $\widehat{\mathbf{v}}^{\mathrm{RL}}$

variance d'estimation élevée

Régression linéaire $\widehat{\pmb{h}}^{\mathrm{RL}}$

Régularisation a posteriori

Lissage par filtrage (linéaire)

$$\left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \widehat{\pmb{h}}^{\mathrm{RL}}$$

Régression linéaire $\hat{\pmb{h}}^{\mathrm{RL}}$

Lissage

Régularisation a posteriori

Lissage par filtrage (linéaire)

$$\left(\mathbf{I} + \lambda \mathbf{D}^{\mathsf{T}} \mathbf{D}\right)^{-1} \widehat{\boldsymbol{h}}^{\mathrm{RL}}$$

Débruitage ROF (non linéaire)

$$\underset{\boldsymbol{h}}{\operatorname{argmin}} \ \|\boldsymbol{h} - \widehat{\boldsymbol{h}}^{\mathrm{RL}}\|^2 + \lambda \|\mathbf{D}\boldsymbol{h}\|_{2,1}$$

Régression linéaire $\widehat{\pmb{h}}^{\mathrm{RL}}$

Lissage

ROF

Régularisation a posteriori

Lissage par filtrage (linéaire)

$$\left(\mathbf{I} + \lambda \mathbf{D}^{\mathsf{T}} \mathbf{D}\right)^{-1} \widehat{\boldsymbol{h}}^{\mathrm{RL}}$$

Débruitage ROF (non linéaire)

$$\underset{\boldsymbol{h}}{\operatorname{argmin}} \ \|\boldsymbol{h} - \widehat{\boldsymbol{h}}^{\mathrm{RL}}\|^2 + \lambda \|\mathbf{D}\boldsymbol{h}\|_{2,1}$$

----- cumul de la variance d'estimation et du biais de régularisation

$$\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \mathbf{h} - \mathbf{v}\|^2}{\underset{\rightarrow \text{ fidélité au modèle log-linéaire}}{\text{Moindres Carrés}}}$$

$$\sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \mathbf{h} - \mathbf{v}\|^2}{\underset{\text{Moindres Carrés}}{\text{Moindres Carrés}}} + \underbrace{\lambda \ \mathcal{Q}(\mathbf{D} \mathbf{h}, \mathbf{D} \mathbf{v}; \alpha)}_{\text{Variation Totale}}$$

$$\xrightarrow{\text{Favorise la constance par morceaux}}$$

Différences finies D_1x (horizontales), D_2x (verticales) en chaque pixel

Différences finies $Dx = [D_1x, D_2x]$

libres : h, v sont indépendamment constantes par morceaux $Q_{\mathsf{I}}(\mathsf{D}\boldsymbol{h},\mathsf{D}\boldsymbol{v};\alpha) = \alpha \|\mathsf{D}\boldsymbol{h}\|_{2,1} + \|\mathsf{D}\boldsymbol{v}\|_{2,1}$

Différences finies $Dx = [D_1x, D_2x]$

libres : h, v sont indépendamment constantes par morceaux

$$\mathcal{Q}_{\mathsf{L}}(\mathsf{D}\boldsymbol{h},\mathsf{D}\boldsymbol{v};\alpha) = \alpha \|\mathsf{D}\boldsymbol{h}\|_{2,1} + \|\mathsf{D}\boldsymbol{v}\|_{2,1}$$

co-localisés : h, v sont concomitamment constantes par morceaux

$$\mathcal{Q}_{\mathsf{C}}(\mathsf{D}\boldsymbol{h},\mathsf{D}\boldsymbol{v};\alpha) = \|[\alpha\mathsf{D}\boldsymbol{h},\mathsf{D}\boldsymbol{v}]\|_{2,1}$$

Contours disjoints

Contours communs

 $\mathbf{h} \in \mathbb{R}^{2 \times 2}$ $\mathbf{v} \in \mathbb{R}^{2 \times 2}$

Contours disjoints

 $\mathbf{h} \in \mathbb{R}^{2 \times 2}$ $\mathbf{v} \in \mathbb{R}^{2 \times 2}$

 $Q_L(\mathbf{D}h,\mathbf{D}v;1)=4$

Contours communs

 $\mathbf{h} \in \mathbb{R}^{2 \times 2}$ $\mathbf{v} \in \mathbb{R}^{2 \times 2}$

 $Q_L(\mathbf{D}h,\mathbf{D}v;1)=4$

Contours disjoints

$$Q_L(\mathbf{D}h, \mathbf{D}v; 1) = 4$$

 $Q_C(\mathbf{D}h, \mathbf{D}v; 1) = 2 + \sqrt{2} \simeq 3,4$

Contours communs

$$\mathbf{h} \in \mathbb{R}^{2 \times 2}$$
 $\mathbf{v} \in \mathbb{R}^{2 \times 2}$

$$Q_L(\mathbf{D}h,\mathbf{D}v;1)=4$$

$$Q_{\mathcal{C}}(\mathbf{D}\boldsymbol{h},\mathbf{D}\boldsymbol{v};1)=2\sqrt{2}\simeq 2.8$$

$$\underset{\pmb{h},\pmb{v}}{\text{minimiser}} \ \ \sum_{\pmb{a}} \frac{\|\log \mathcal{L}_{\pmb{a},.} - \log(\pmb{a})\pmb{h} - \pmb{v}\|^2}{\text{Moindres Carrés}} \ \ + \ \qquad \lambda \ \frac{\mathcal{Q}(\pmb{\mathsf{D}}\pmb{h}, \pmb{\mathsf{D}}\pmb{v};\alpha)}{\text{Variation Totale}}$$

$$\underset{\pmb{h},\pmb{v}}{\text{minimiser}} \ \ \sum_{\pmb{a}} \frac{\|\log \mathcal{L}_{\pmb{a},.} - \log(\pmb{a})\pmb{h} - \pmb{v}\|^2}{\text{Moindres Carrés}} \ \ + \ \qquad \lambda \ \frac{\mathcal{Q}(\pmb{\mathsf{D}}\pmb{h}, \pmb{\mathsf{D}}\pmb{v};\alpha)}{\text{Variation Totale}}$$

lacktriangle descente de gradient $\mathbf{x}^{n+1} = \mathbf{x}^n - \tau \nabla \varphi(\mathbf{x}^n)$

$$\begin{array}{cccc} \text{minimiser} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \mathbf{h} - \mathbf{v}\|^2}{\text{Moindres Carr\'es}} & + & \lambda & \frac{\mathcal{Q}(\mathsf{D} \mathbf{h}, \mathsf{D} \mathbf{v}; \alpha)}{\text{Variation Totale}} \\ & & & & & & & & & & & & & & & & \\ \end{array}$$

- ▶ descente de gradient $\mathbf{x}^{n+1} = \mathbf{x}^n \tau \nabla \varphi(\mathbf{x}^n)$
- ▶ descente de sous-gradient implicite : algorithme du point proximal

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \iff \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

$$\begin{array}{cccc} \text{minimiser} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \mathbf{h} - \mathbf{v}\|^2}{\text{Moindres Carr\'es}} & + & \lambda & \frac{\mathcal{Q}(\mathsf{D} \mathbf{h}, \mathsf{D} \mathbf{v}; \alpha)}{\text{Variation Totale}} \\ & & & & & & & & & & & & & & & & \\ \end{array}$$

- \blacktriangleright descente de gradient $\mathbf{x}^{n+1} = \mathbf{x}^n \tau \nabla \varphi(\mathbf{x}^n)$
- descente de sous-gradient implicite : algorithme du point proximal

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \Leftrightarrow \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

▶ algorithme proximal scindé

$$\begin{aligned} & \boldsymbol{y}^{n+1} = \operatorname{prox}_{\sigma(\lambda \mathcal{Q})^*} \left(\boldsymbol{y}^n + \sigma \mathbf{D} \bar{\boldsymbol{x}}^n \right) \\ & \boldsymbol{x}^{n+1} = \operatorname{prox}_{\tau \parallel \mathcal{L} - \boldsymbol{\Phi} \cdot \parallel_2^2} \left(\boldsymbol{x}^n - \tau \mathbf{D}^\top \boldsymbol{y}^{n+1} \right), \quad \boldsymbol{\Phi} : (\boldsymbol{h}, \boldsymbol{v}) \mapsto \{ \log(\boldsymbol{a}) \boldsymbol{h} + \boldsymbol{v} \}_{\boldsymbol{a}} \\ & \bar{\boldsymbol{x}}^{n+1} = 2 \boldsymbol{x}^{n+1} - \boldsymbol{x}^n \end{aligned}$$

$$\begin{array}{cccc} \text{minimiser} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \mathbf{h} - \mathbf{v}\|^2}{\text{Moindres Carr\'es}} & + & \lambda & \underbrace{\mathcal{Q}(\mathbf{D} \mathbf{h}, \mathbf{D} \mathbf{v}; \alpha)}_{\text{Variation Totale}} \end{array}$$

- \blacktriangleright descente de gradient $\mathbf{x}^{n+1} = \mathbf{x}^n \tau \nabla \varphi(\mathbf{x}^n)$
- descente de sous-gradient implicite : algorithme du point proximal

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \mathbf{u}^n, \ \mathbf{u}^n \in \partial \varphi(\mathbf{x}^{n+1}) \Leftrightarrow \mathbf{x}^{n+1} = \operatorname{prox}_{\tau \varphi}(\mathbf{x}^n)$$

▶ algorithme proximal scindé $\operatorname{prox}_{\tau\varphi}(\mathbf{x}) = \operatorname{argmin} \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|^2 + \tau\varphi(\mathbf{u})$ $\mathbf{y}^{n+1} = \operatorname{prox}_{\sigma(\lambda \mathcal{O})^*} (\mathbf{y}^n + \sigma \mathbf{D}\bar{\mathbf{x}}^n)$ $\boldsymbol{x}^{n+1} = \operatorname{prox}_{\tau \parallel \boldsymbol{\mathcal{L}} - \boldsymbol{\Phi} \cdot \parallel_{2}^{2}} \left(\boldsymbol{x}^{n} - \tau \boldsymbol{\mathsf{D}}^{\top} \boldsymbol{y}^{n+1} \right), \quad \boldsymbol{\Phi} : (\boldsymbol{\mathit{h}}, \boldsymbol{\mathit{v}}) \mapsto \{ \log(\boldsymbol{\mathit{a}}) \boldsymbol{\mathit{h}} + \boldsymbol{\mathit{v}} \}_{\boldsymbol{\mathit{a}}}$ $\bar{\mathbf{x}}^{n+1} = 2\mathbf{x}^{n+1} - \mathbf{x}^n$

Ex. Norme mixte: pour $z = [z_1; ..., z_l]$

$$Q(\mathbf{z}) = \|\mathbf{z}\|_{2,1} = \sum_{\underline{n} \in \Omega} \sqrt{\sum_{i=1}^{I} z_i^2(\underline{n})} = \sum_{\underline{n} \in \Omega} \|\mathbf{z}(\underline{n})\|_2$$

Ex. Norme mixte: pour $z = [z_1; ..., z_l]$

$$Q(\mathbf{z}) = \|\mathbf{z}\|_{2,1} = \sum_{\underline{n} \in \Omega} \sqrt{\sum_{i=1}^{I} z_i^2(\underline{n})} = \sum_{\underline{n} \in \Omega} \|\mathbf{z}(\underline{n})\|_2$$

$$m{p} = \mathrm{prox}_{\lambda \| \cdot \|_{2,1}}(m{z}) \quad \Leftrightarrow \quad p_i(\underline{n}) = \mathrm{max}\left(0,1 - \frac{\lambda}{\|m{z}(\underline{n})\|_2}\right) z_i(\underline{n})$$

Moindres carrés : $\|\log \mathcal{L} - \Phi(\mathbf{h}, \mathbf{v})\|^2$, $\Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_a$

Moindres carrés : $\|\log \mathcal{L} - \Phi(\mathbf{h}, \mathbf{v})\|^2$, $\Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_a$

Proposition (Pascal, 2019)

$$(\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}) = \text{prox}_{\tau \parallel \mathcal{L} - \Phi \cdot \parallel^2}(\textbf{\textit{h}},\textbf{\textit{v}}) \Longleftrightarrow (\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}) = \left(\textbf{\textit{I}} + \tau \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}\right)^{-1} \left((\textbf{\textit{h}},\textbf{\textit{v}}) + \tau \boldsymbol{\Phi}^{\top} \log \mathcal{L}\right)$$

$$\begin{array}{cccc} \text{minimiser} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \mathbf{h} - \mathbf{v}\|^2}{\text{Moindres Carr\'es}} & + & \lambda & \frac{\mathcal{Q}(\mathbf{D} \mathbf{h}, \mathbf{D} \mathbf{v}; \alpha)}{\text{Variation Totale}} \\ & & \text{non lisse} \end{array}$$

Moindres carrés : $\|\log \mathcal{L} - \Phi(h, \mathbf{v})\|^2$, $\Phi : (h, \mathbf{v}) \mapsto \{\log(a)h + \mathbf{v}\}_a$

Proposition (Pascal, 2019)

Soit
$$S_m = \sum_a \log^m(a)$$
, $\mathcal{D} = (1 + \tau S_2)(1 + \tau S_0) - \tau^2 S_1^2$, $\mathcal{T} = \sum_a \log \mathcal{L}_a$ et $\mathcal{G} = \sum_a \log(a) \log \mathcal{L}_a$, alors $(\widetilde{\mathbf{h}}, \widetilde{\mathbf{v}}) = \operatorname{prox}_{\tau \parallel \mathcal{L} - \Phi \cdot \parallel^2}(\mathbf{h}, \mathbf{v}) \iff (\widetilde{\mathbf{h}}, \widetilde{\mathbf{v}}) = (\mathbf{I} + \tau \Phi^\top \Phi)^{-1} ((\mathbf{h}, \mathbf{v}) + \tau \Phi^\top \log \mathcal{L})$ $\iff \begin{cases} \widetilde{\mathbf{h}} = \mathcal{D}^{-1} ((1 + \tau S_0)(\tau \mathcal{G} + \mathbf{h}) - \tau S_1(\tau \mathcal{T} + \mathbf{v})) \\ \widetilde{\mathbf{v}} = \mathcal{D}^{-1} ((1 + \tau S_2)(\tau \mathcal{T} + \mathbf{v}) - \tau S_1(\tau \mathcal{G} + \mathbf{h})) \end{cases}$

Algorithme accéléré par forte-convexité

 δ : gap de dualité, $\delta(\mathbf{x}^n, \mathbf{y}^n) \xrightarrow[n \to \infty]{} 0$

Algorithme accéléré par forte-convexité

Forte convexité

• φ μ -fortement convexe ssi $\varphi - \frac{\mu}{2} \|\cdot\|^2$ convexe

- ✓ strictement convexe
- √ 1-fortement convexe

$$\begin{array}{cccc} \text{minimiser} & \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a) \mathbf{h} - \mathbf{v}\|^2}{\text{Moindres Carr\'es}} & + & \lambda & \underbrace{\mathcal{Q}(\mathbf{D}\mathbf{h}, \mathbf{D}\mathbf{v}; \alpha)}_{\text{Variation Totale}} \\ & \mu\text{-fortement convexe} & \text{non lisse} \end{array}$$

Forte convexité

- φ μ -fortement convexe ssi $\varphi \frac{\mu}{2} \|\cdot\|^2$ convexe
- φ \mathcal{C}^2 de hessienne $\mathbf{H}\varphi \succeq 0 \implies \mu = \min \operatorname{Sp}(\mathbf{H}\varphi)$

$$\underset{\boldsymbol{h}, \boldsymbol{v}}{\text{minimiser}} \quad \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2}{\text{Moindres Carrés}} \quad + \qquad \quad \lambda \frac{\mathcal{Q}(\mathsf{D}\boldsymbol{I})}{\mathsf{Variation}}$$

 μ -fortement convexe

 $\lambda \frac{\mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \alpha)}{\mathsf{Variation Totale}}$

non lisse

Forte convexité

- φ μ -fortement convexe ssi $\varphi \frac{\mu}{2} \|\cdot\|^2$ convexe
- φ \mathcal{C}^2 de hessienne $\mathbf{H}\varphi\succeq \mathbf{0} \implies \mu=\min\operatorname{Sp}(\mathbf{H}\varphi)$

Proposition (Pascal, 2019)

 $\sum \lVert \log \mathcal{L} - \log(a) \textbf{\textit{h}} - \textbf{\textit{v}} \rVert^2 \text{ est } \mu\text{-fortement convexe}.$

$a_{\min}=2^1$, a_{\max}	2^2	2^3	2 ⁴	2 ⁵	2 ⁶
$\mu = \min \operatorname{Sp}\left(2\mathbf{\Phi}^{\top}\mathbf{\Phi}\right)$	0.29	0.72	1.20	1.69	2.20

Algorithme accéléré par forte-convexité

Algorithme primal-dual accéléré (Chambolle, 2011)

for
$$n = 0,1,...$$
 $\mathbf{x} = (\mathbf{h}, \mathbf{v})$ $\mathbf{y}^{n+1} = \operatorname{prox}_{\sigma_n(\lambda Q)^*} (\mathbf{y}^n + \sigma_n \mathbf{D} \bar{\mathbf{x}}^n)$ $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau_n \parallel \mathcal{L} - \mathbf{\Phi} \cdot \parallel_2^2} (\mathbf{x}^n - \tau_n \mathbf{D}^\top \mathbf{y}^{n+1})$ $\theta_n = \sqrt{1 + 2\mu\tau_n}, \quad \tau_{n+1} = \tau_n/\theta_n, \quad \sigma_{n+1} = \theta_n\sigma_n$ $\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta_n^{-1} (\mathbf{x}^{n+1} - \mathbf{x}^n)$

Algorithme accéléré par forte-convexité

Algorithme primal-dual accéléré (Chambolle, 2011)

$$\underset{\pmb{h},\pmb{v}}{\text{minimiser}} \quad \sum_{\pmb{a}} \frac{\|\log \mathcal{L}_{\pmb{a},.} - \log(\pmb{a})\pmb{h} - \pmb{v}\|^2}{\text{Moindres Carrés}} \quad + \quad \quad \lambda \underbrace{\mathcal{Q}(\pmb{\mathsf{D}}\pmb{h}, \pmb{\mathsf{D}}\pmb{v}; \alpha)}_{\text{Variation Totale}}$$

Image texturée

$$\underset{\boldsymbol{h}, \boldsymbol{v}}{\text{minimiser}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2}{\text{Moindres Carrés}} + \lambda \frac{\mathcal{Q}(\mathbf{D}\boldsymbol{h}, \mathbf{D}\boldsymbol{v}; \alpha)}{\text{Variation Totale}}$$

Image texturée Rég. lin. $\hat{\pmb{h}}^{\rm RL}$

$$\underset{\boldsymbol{h}, \mathbf{v}}{\text{minimiser}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a},..} - \log(\boldsymbol{a})\boldsymbol{h} - \mathbf{v}\|^2}{\text{Moindres Carrés}} + \lambda \frac{\mathcal{Q}(\mathbf{D}\boldsymbol{h}, \mathbf{D}\boldsymbol{v}; \alpha)}{\text{Variation Totale}}$$

$$\underset{\boldsymbol{h}, \boldsymbol{v}}{\text{minimiser}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2}{\text{Moindres Carrés}} + \lambda \frac{\mathcal{Q}(\mathbf{D}\boldsymbol{h}, \mathbf{D}\boldsymbol{v}; \alpha)}{\text{Variation Totale}}$$

Méthodes de l'état-de-l'art en segmentation de texture

ROF-Seuillé sur \hat{h}^{RL} (Nafornita, 2014), (Pustelnik, 2016) $\operatorname{argmin} \|\boldsymbol{h} - \widehat{\boldsymbol{h}}^{\mathrm{RL}}\|^2 + \lambda \|\mathbf{D}\boldsymbol{h}\|_{2.1}$ Rég. lin. ROF Seuillage S'appuie uniquement sur la régularité **h**.

[†]https://sites.google.com/site/factorizationsegmentation/

Méthodes de l'état-de-l'art en segmentation de texture

ROF-Seuillé sur \hat{h}^{RL} (Nafornita, 2014), (Pustelnik, 2016) $\operatorname{argmin} \|\boldsymbol{h} - \widehat{\boldsymbol{h}}^{\mathrm{RL}}\|^2 + \lambda \|\mathbf{D}\boldsymbol{h}\|_{2.1}$ Rég. lin. **ROF** Seuillage

S'appuie uniquement sur la régularité **h**.

[†]https://sites.google.com/site/factorizationsegmentation/

Performances comparées sur des textures synthétiques

Synthèse de texture monofractale par morceaux (Pascal, 2019)

- ightharpoonup masque : $\Omega=\Omega_1\sqcup\Omega_2$,
- ightharpoonup attributs : $(\bar{h}_k, \bar{\sigma}_k^2)_{k=1,2}$

Performances comparées sur des textures synthétiques

Synthèse de texture monofractale par morceaux (Pascal, 2019)

- masque : $\Omega = \Omega_1 \sqcup \Omega_2$,
- attributs : $(\bar{h}_k, \bar{\sigma}_k^2)_{k=1,2}$

Ex.
$$\bar{h}_1 = 0.5$$
, $\bar{\sigma}_1^2 = 0.6$
 $\bar{h}_2 = 0.6$, $\bar{\sigma}_2^2 = 0.7$

Performances comparées sur des textures synthétiques

Synthèse de texture monofractale par morceaux (Pascal, 2019)

- masque : $\Omega = \Omega_1 \sqcup \Omega_2$,
- attributs : $(\bar{h}_k, \bar{\sigma}_k^2)_{k=1,2}$

Ex. $\bar{h}_1 = 0.5, \; \bar{\sigma}_1^2 = 0.6$ $\bar{h}_2 = 0.6, \ \bar{\sigma}_2^2 = 0.7$

Performances de segmentation moyennées sur 5 réalisations

Faible activité : $Q_{\rm G}=300{\rm mL/min}$ - $Q_{\rm L}=300{\rm mL/min}$

Écoulement	Zooms	Yuan	ROF-S	Con- libres	tours co-localisés
sombre [7]		•		0	ST.

Faible activité : $Q_G = 300 \text{mL/min} - Q_L = 300 \text{mL/min}$

Écoulement	Zooms	Yuan	ROF-S	Con [.] libres	tours co-localisés
sombre claire		•			-
l'annual i					

Liquide : $h_{\rm L} = 0.4$

Gaz: $h_{\rm G} = 0.9$

Faible activité : $Q_G = 300 \text{mL/min} - Q_L = 300 \text{mL/min}$

Écoulement	Zooms	Yuan	ROF-S	Cont libres	tours co-localisés
sombre claire		•			-
land the					

 $\sigma_{\text{sombre}}^2 = 10^{-2}$ Liquide : $h_{\rm L} = 0.4$

Gaz: $h_{\rm G} = 0.9$

Faible activité : $Q_G = 300 \text{mL/min} - Q_L = 300 \text{mL/min}$

Écoulement	Zooms	Yuan	ROF-S	Cont libres	tours co-localisés
sombre claire		•			-

Liquide : $h_{\rm L}=0.4$ $\sigma_{\rm sombre}^2=10^{-2}$

Gaz: $h_{\rm G} = 0.9$

Faible activité : $Q_{\rm G} = 300 \, \rm mL/min$ - $Q_{\rm L} = 300 \, \rm mL/min$

Écoulement	Zooms	Yuan	ROF-S	Cont libres	tours co-localisés
sombre claire		•			-

Liquide : $h_{\rm L} = 0.4$ $\sigma_{\rm sombre}^2 = 10^{-2}$

 $\sigma_{\rm sombre}^2 = 10^{-2}$ (bulles sombres) Gaz: $h_{\rm G}=0.9$

Faible activité : $Q_{\rm G}=300{\rm mL/min}$ - $Q_{\rm L}=300{\rm mL/min}$

Écoulement	Zooms	Yuan	ROF-S	tours co-localisés
sombre claire		•		-
l land				

 $\sigma_{\mathrm{sombre}}^2 = 10^{-2}$ Liquide : $h_{\rm L} = 0.4$

Gaz : $h_{\rm G} = 0.9$ $\begin{vmatrix} \sigma_{\rm sombre}^2 = 10^{-2} & \text{(bulles sombres)} \\ \sigma_{\rm claire}^2 = 10^{-1} & \text{(bulles claires)} \end{vmatrix}$

Transition : $Q_{\rm G} = 400 \,\mathrm{mL/min}$ - $Q_{\rm L} = 700 \,\mathrm{mL/min}$

Écoulement	Zooms	Yuan	ROF-S	Con libres	tours co-localisés
sombre					
claire		8			

Liquide : $h_{\rm L} = 0.4$ $\sigma_{\rm sombre}^2 = 10^{-2}$

Gaz : $h_{\rm G} = 0.9$ $\sigma_{\rm sombre}^2 = 10^{-2}$ (bulles sombres) $\sigma_{\rm claire}^2 = 10^{-1}$ (bulles claires).

Forte activité : $Q_{\rm G}=1200{\rm mL/min}$ - $Q_{\rm L}=300{\rm mL/min}$

Écoulement	Zooms	Yuan	ROF-S	Con libres	tours co-localisés
sombre					.20

Liquide : $h_{\rm L} = 0.4$ $\sigma_{\rm sombre}^2 = 10^{-2}$

Gaz : $h_{\rm G} = 0.9$ $\begin{vmatrix} \sigma_{\rm sombre}^2 = 10^{-2} & \text{(bulles sombres)} \\ \sigma_{\rm claire}^2 = 10^{-1} & \text{(bulles claires)}. \end{vmatrix}$

Forte activité : $Q_{\rm G}=1200{\rm mL/min}$ - $Q_{\rm L}=300{\rm mL/min}$

 $\sigma_{\text{sombre}}^2 = 10^{-2}$ Liquide : $h_{\rm L} = 0.4$

 $\sigma_{
m sombre}^2 = 10^{-2}$ (bulles sombres) $\sigma_{
m claire}^2 = 10^{-1}$ (bulles claires). Gaz: $h_{\rm G} = 0.9$

Écoulement multiphasiques en milieu poreux

Laboratoire de Physique, ENS Lyon, V. Vidal, T. Busser, (M. Serres, IFPEN)

Fraction de gaz dans la cellule

Périmètre d'interface

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\boldsymbol{\lambda},\!\boldsymbol{\alpha}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \frac{\lambda}{\lambda} \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\!\boldsymbol{\mathsf{D}}\boldsymbol{v};\boldsymbol{\alpha})$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\frac{\boldsymbol{\lambda},\alpha}{\boldsymbol{\alpha}}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \ \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \frac{\boldsymbol{\lambda}}{\boldsymbol{\mathcal{Q}}}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\!\boldsymbol{\mathsf{D}}\boldsymbol{v};\underline{\boldsymbol{\alpha}})$$

Rég. lin. $\widehat{\pmb{h}}^{\mathrm{RL}}$

$$(\lambda;\alpha)=(0;0)$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\frac{\boldsymbol{\lambda},\alpha}{\boldsymbol{\lambda}}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \ \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \frac{\boldsymbol{\lambda}}{\boldsymbol{\mathcal{Q}}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v};\underline{\alpha})$$

Rég. lin. $\hat{\pmb{h}}^{\mathrm{RL}}$ Estimée $\hat{\pmb{h}}^{\mathrm{C}}$ à contours co-localisés

$$(\lambda; \alpha) = (0; 0)$$
 $(\lambda, \alpha) = (0,5; 0,5)$

trop faible

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\frac{\boldsymbol{\lambda},\alpha}{\boldsymbol{\alpha}}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \ \sum_{\boldsymbol{a}} \lVert \log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v} \rVert^2 + \frac{\boldsymbol{\lambda}}{\boldsymbol{\mathcal{Q}}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v};\underline{\alpha})$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\mathcal{L};\frac{\lambda,\alpha}{\lambda}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \mathcal{L}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \frac{\lambda}{\lambda} \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v};\underline{\alpha})$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\frac{\boldsymbol{\lambda},\alpha}{\boldsymbol{\lambda}}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \ \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \frac{\boldsymbol{\lambda}}{\boldsymbol{\mathcal{Q}}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v};\underline{\alpha})$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\frac{\boldsymbol{\lambda},\alpha}{\boldsymbol{\lambda}}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \ \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \frac{\boldsymbol{\lambda}}{\boldsymbol{\mathcal{Q}}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v};\underline{\alpha})$$

Rég. lin.
$$\widehat{\pmb{h}}^{\rm RL}$$
 Estimée $\widehat{\pmb{h}}^{\rm C}$ à contours co-localisés
$$(\lambda;\alpha) = (0;0) \quad (\lambda,\alpha) = (0,5;0,5) \quad (\lambda^\dagger,\alpha^\dagger) = (11,5;0,8) \quad (\lambda;\alpha) = (500;500)$$
 trop faible optimal trop grand

Que signifie *optimal*? Comment déterminer λ^{\dagger} et α^{\dagger} ?

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\mathcal{L};\lambda,\alpha) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \mathcal{L}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\boldsymbol{h},\mathbf{D}\boldsymbol{v};\alpha)$$

$$\boldsymbol{h} : discriminant, \, \boldsymbol{v} : auxiliaire$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\mathcal{L};\lambda,\alpha) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \mathcal{L}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\mathbf{D}\boldsymbol{h},\mathbf{D}\boldsymbol{v};\alpha)$$

$$\boldsymbol{h} : discriminant, \, \boldsymbol{v} : auxiliaire$$

h : vraie régularité

$$\mathcal{R}(\lambda, \alpha) = \left\| \widehat{\boldsymbol{h}}(\mathcal{L}; \lambda, \alpha) - \overline{\boldsymbol{h}} \right\|^2$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\lambda,\alpha) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\alpha)$$

h : discriminant, **v** : auxiliaire

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\lambda,\alpha) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{D}\boldsymbol{h},\boldsymbol{D}\boldsymbol{v};\alpha)$$

h : discriminant, **v** : auxiliaire

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\lambda,\alpha) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\alpha)$$

$$\boldsymbol{h} : discriminant, \ \boldsymbol{v} : auxiliaire$$

 \bar{h} : inconnue!

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\lambda,\alpha) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\alpha)$$

$$\boldsymbol{h}: discriminant, \, \boldsymbol{v}: auxiliaire$$

 $ar{m{h}}$: inconnue!

Stein Unbiased Risk Estimate (SURE)

Stein Unbiased Risk Estimate (Principe)

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\zeta \sim \mathcal{N}(0, \rho^2 I)$

Stein Unbiased Risk Estimate (Principe)

Observations
$$\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

Stein Unbiased Risk Estimate (Principe)

Observations
$$\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

Erreur quadratique $R(\lambda) \triangleq \mathbb{E}_{\zeta} ||\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \overline{\mathbf{x}}||^2 \stackrel{?}{=} \mathbb{E}_{\zeta} \widehat{R}(\mathbf{y}; \lambda) \overline{\mathbf{x}}$ inconnue

Stein Unbiased Risk Estimate (Principe)

Observations $\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

Erreur quadratique $R(\lambda) \triangleq \mathbb{E}_{\zeta} \| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \bar{\boldsymbol{x}} \|^2 \stackrel{?}{=} \mathbb{E}_{\zeta} \widehat{R}(\boldsymbol{y}; \lambda) \quad \bar{\boldsymbol{x}} \text{ inconnue}$

Théorème (Stein, 1981)

Soit $(\boldsymbol{y};\lambda)\mapsto \widehat{\boldsymbol{x}}(\boldsymbol{y};\lambda)$ un estimateur de $\bar{\boldsymbol{x}}$

- différentiable au sens faible par rapport à y,
- tel que $\zeta \mapsto \langle \widehat{x}(\bar{x}+\zeta;\lambda),\zeta \rangle$ est intégrable par rapport à $\mathcal{N}(\mathbf{0},\rho^2\mathbf{I})$.

$$\widehat{R}(\mathbf{y}; \lambda) \triangleq \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^2 + 2\rho^2 \operatorname{tr}(\partial_{\mathbf{y}}\widehat{\mathbf{x}}(\mathbf{y}; \lambda)) - \rho^2 P$$
$$\Longrightarrow R(\lambda) = \mathbb{E}_{\zeta}[\widehat{R}(\mathbf{y}; \lambda)].$$

Observations $\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{S})$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Ex. des estimateurs $\hat{h}(\mathcal{L}; \lambda, \alpha)$ à contours libres ou co-localisés

$$\log \mathcal{L} = \Phi(ar{\pmb{h}},ar{\pmb{v}}) + \pmb{\zeta}$$

$$\Phi: (\boldsymbol{h}, \boldsymbol{v}) \mapsto \{\log(a)\boldsymbol{h} + \boldsymbol{v}\}_a$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Ex. des estimateurs $\hat{h}(\mathcal{L}; \lambda, \alpha)$ à contours libres ou co-localisés

$$\log \mathcal{L} = \Phi(\bar{\boldsymbol{h}}, \bar{\boldsymbol{v}}) + \zeta$$
 $\zeta \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathcal{S}})$
 $\Phi : (\boldsymbol{h}, \boldsymbol{v}) \mapsto \{\log(a)\boldsymbol{h} + \boldsymbol{v}\}_a$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Ex. des estimateurs $\hat{h}(\mathcal{L}; \lambda, \alpha)$ à contours libres ou co-localisés

$$\log \mathcal{L} = \Phi(ar{\pmb{h}},ar{\pmb{v}}) + \pmb{\zeta}$$

$$oldsymbol{\zeta} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\mathcal{S}})$$

$$oldsymbol{\zeta} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\mathcal{S}}) \qquad \quad \mathcal{R} = \|\widehat{oldsymbol{h}} - ar{oldsymbol{h}}\|^2$$

$$\Phi: (\boldsymbol{h}, \boldsymbol{v}) \mapsto \{\log(a)\boldsymbol{h} + \boldsymbol{v}\}_a$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Ex. des estimateurs $\hat{h}(\mathcal{L}; \lambda, \alpha)$ à contours libres ou co-localisés

$$\log \mathcal{L} = \Phi(\bar{\mathbf{h}}, \bar{\mathbf{v}}) + \zeta \qquad \qquad \zeta \sim \mathcal{N}(\mathbf{0}, \mathcal{S}) \qquad \mathcal{R} = \|\hat{\mathbf{h}} - \bar{\mathbf{h}}\|^2$$

$$\Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_a \qquad \qquad \Pi : (\mathbf{h}, \mathbf{v}) \mapsto (\mathbf{h}, \mathbf{0})$$

Erreur d'estimation projetée $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \hat{\mathbf{x}}(\mathbf{y}; \Lambda) - \Pi \bar{\mathbf{x}}\|^2$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

$$R_{\mathbf{\Pi}}(\mathbf{\Lambda}) \triangleq \mathbb{E}_{\zeta} \|\mathbf{\Pi} \widehat{\mathbf{x}}(\mathbf{y}; \mathbf{\Lambda}) - \mathbf{\Pi} \overline{\mathbf{x}} \|^{2}$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{\Pi} \overline{\boldsymbol{x}} \|^2 \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \overline{\boldsymbol{x}}) \right\|^2 \qquad \quad \boldsymbol{A} \triangleq \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \end{split}$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^2 \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \right\|^2 \qquad \qquad \boldsymbol{\Lambda} \triangleq \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \right\|^2 \end{split}$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

$$R_{\Pi}(\boldsymbol{\Lambda}) \triangleq \mathbb{E}_{\zeta} \| \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{\Pi} \overline{\boldsymbol{x}} \|^{2}$$

$$= \mathbb{E}_{\zeta} \| \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \overline{\boldsymbol{x}}) \|^{2} \qquad \boldsymbol{\Lambda} \triangleq \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top}$$

$$= \mathbb{E}_{\zeta} \| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \overline{\boldsymbol{x}}) \|^{2}$$

$$= \mathbb{E}_{\zeta} \| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \|^{2}$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

$$R_{\Pi}(\boldsymbol{\Lambda}) \triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2}$$

$$= \mathbb{E}_{\zeta} \| \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \|^{2} \qquad \boldsymbol{\Lambda} \triangleq \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top}$$

$$= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \|^{2}$$

$$= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \|^{2}$$

$$= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right]$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{\Pi} \overline{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \overline{\boldsymbol{x}}) \right\|^{2} \qquad \boldsymbol{\Lambda} \triangleq \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \overline{\boldsymbol{x}}) \right\|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \right\|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{\Lambda} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{\Lambda} \boldsymbol{y}, \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\|^{2} \right] \end{split}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \| \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \|^{2} \qquad \boldsymbol{A} \triangleq \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \|^{2} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \|^{2} \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} (\boldsymbol{\Phi} \bar{\boldsymbol{x}} + \boldsymbol{\zeta}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \end{split}$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \| \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \|^{2} \qquad \boldsymbol{A} \triangleq \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \|^{2} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \|^{2} \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \end{split}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} \mathcal{R}_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \right\|^{2} \qquad \boldsymbol{A} \triangleq \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{\zeta}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \mathbb{E}_{\zeta} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - \mathbb{E}_{\zeta} \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \end{split}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \| \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \|^{2} \qquad \boldsymbol{A} \triangleq \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \|^{2} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \|^{2} \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \qquad \boldsymbol{\zeta}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \mathbb{E}_{\zeta} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - \operatorname{tr} \left(\boldsymbol{A} \boldsymbol{\mathcal{S}} \boldsymbol{A}^{\top} \right) \end{split}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \right\|^{2} \qquad \boldsymbol{A} \triangleq \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{\zeta}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \| \boldsymbol{A} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \mathbb{E}_{\zeta} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - \frac{\operatorname{tr} \left(\boldsymbol{A} \boldsymbol{S} \boldsymbol{A}^{\top}\right)}{\operatorname{accessible}} \end{split}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \mathbf{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\mathbf{\Phi} : \mathbb{R}^{P \times N}$ et $\mathbf{\zeta} \sim \mathcal{N}(\mathbf{0}, \mathbf{S})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \right\|^{2} \qquad \boldsymbol{A} \triangleq \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{\zeta}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \mathbb{E}_{\zeta} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - \underline{\operatorname{tr} \left(\boldsymbol{A} \boldsymbol{\mathcal{S}} \boldsymbol{A}^{\top}\right)}_{\text{accessible}} \end{split}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \right\|^{2} \qquad \boldsymbol{A} \triangleq \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \right\|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \right\|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \qquad \boldsymbol{\zeta}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \mathbb{E}_{\boldsymbol{\zeta}} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - \underbrace{\operatorname{tr} \left(\boldsymbol{A} \boldsymbol{\mathcal{S}} \boldsymbol{A}^{\top} \right)}_{\text{accessible}} \end{aligned}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \mathbf{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\mathbf{\zeta} \sim \mathcal{N}(\mathbf{0}, \mathbf{S})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\boldsymbol{\zeta}} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \right\|^{2} \qquad \boldsymbol{A} \triangleq \Pi (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \right\|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \right\|^{2} \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left[\left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{A} \qquad \boldsymbol{\zeta}, \boldsymbol{A} \boldsymbol{\zeta} \right\rangle + \left\| \boldsymbol{A} \boldsymbol{\zeta} \right\|^{2} \right] \\ &= \mathbb{E}_{\boldsymbol{\zeta}} \left\| \boldsymbol{A} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \mathbb{E}_{\boldsymbol{\zeta}} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle - \frac{\operatorname{tr} \left(\boldsymbol{A} \boldsymbol{S} \boldsymbol{A}^{\top}\right)}{\operatorname{accessible}} \\ &\mathbb{E}_{\boldsymbol{\zeta}} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle = \mathbb{E}_{\boldsymbol{\zeta}} \left\langle \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A} \boldsymbol{\zeta} \right\rangle \end{split}$$

Observations
$$\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$$
, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} R_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \Pi \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \Pi \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \| \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}(\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \|^{2} \qquad \boldsymbol{A} \triangleq \Pi(\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \|^{2} \\ &= \mathbb{E}_{\zeta} \| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \|^{2} \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{A}\zeta \right\rangle + \| \boldsymbol{A}\zeta \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A}\zeta \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{y}, \boldsymbol{A}\zeta \right\rangle + \| \boldsymbol{A}\zeta \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A}\zeta \right\rangle - 2 \left\langle \boldsymbol{A} \boldsymbol{\zeta}, \boldsymbol{A}\zeta \right\rangle + \| \boldsymbol{A}\zeta \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{A}(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \|^{2} + 2 \mathbb{E}_{\zeta} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A}\zeta \right\rangle - \frac{1}{\alpha \text{ccessible}} \\ \mathbb{E}_{\zeta} \left\langle \boldsymbol{A} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A}\zeta \right\rangle = \mathbb{E}_{\zeta} \left\langle \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{A}\zeta \right\rangle \\ &= \int \left\langle \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{\Phi} \bar{\boldsymbol{x}} + \zeta; \boldsymbol{\lambda}), \boldsymbol{A}\zeta \right\rangle \exp(-\frac{\zeta^{\top} \mathcal{S}^{-1}\zeta}{2}) \, \mathrm{d}\zeta \end{split}$$

Observations $\mathbf{y} = \mathbf{\Phi}\bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}} \in \mathbb{R}^N$, $\bar{\mathbf{\Phi}} : \mathbb{R}^{P \times N}$ et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\mathcal{S}})$

$$\begin{split} \mathcal{R}_{\Pi}(\boldsymbol{\Lambda}) &\triangleq \mathbb{E}_{\zeta} \| \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{\Pi} \bar{\boldsymbol{x}} \|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} (\widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \bar{\boldsymbol{x}}) \right\|^{2} \qquad \boldsymbol{\Lambda} \triangleq \boldsymbol{\Pi} (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{y} - \boldsymbol{\Phi} \bar{\boldsymbol{x}}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y} + \boldsymbol{\zeta}) \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle + \|\boldsymbol{\Lambda} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \left\langle \boldsymbol{\Lambda} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{\Lambda} \boldsymbol{y}, \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle + \|\boldsymbol{\Lambda} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left[\|\boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \mathbb{E}_{\zeta} \left\langle \boldsymbol{\Lambda} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle - 2 \left\langle \boldsymbol{\Lambda} \boldsymbol{\zeta} \cdot \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle + \|\boldsymbol{\Lambda} \boldsymbol{\zeta} \|^{2} \right] \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) - \boldsymbol{y}) \right\|^{2} + 2 \mathbb{E}_{\zeta} \left\langle \boldsymbol{\Lambda} \boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle - \text{tr} \left(\boldsymbol{\Lambda} \boldsymbol{S} \boldsymbol{\Lambda}^{\top}\right) \\ &= \mathbb{E}_{\zeta} \left\| \boldsymbol{\Lambda} (\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle = \mathbb{E}_{\zeta} \left\langle \boldsymbol{\Pi} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle \\ &= \int \left\langle \boldsymbol{\Pi} \widehat{\boldsymbol{x}} (\boldsymbol{\Phi} \bar{\boldsymbol{x}} + \boldsymbol{\zeta}; \boldsymbol{\lambda}), \boldsymbol{\Lambda} \boldsymbol{\zeta} \right\rangle \exp(-\frac{\boldsymbol{\zeta}^{\top} \boldsymbol{\mathcal{S}}^{-1} \boldsymbol{\zeta}}{2}) \, \mathrm{d} \boldsymbol{\zeta} \\ &(\text{I.P.P. gén.}) = \mathbb{E}_{\zeta} \text{tr} \left(\boldsymbol{\mathcal{S}} \boldsymbol{\Lambda}^{\top} \boldsymbol{\Pi} \boldsymbol{\partial}_{\boldsymbol{y}} \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) \right) \end{split}$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Ex. des estimateurs $\hat{h}(\mathcal{L}; \lambda, \alpha)$ à contours libres ou co-localisés

$$\log \mathcal{L} = \Phi(\bar{\mathbf{h}}, \bar{\mathbf{v}}) + \zeta \qquad \qquad \zeta \sim \mathcal{N}(\mathbf{0}, \mathcal{S}) \qquad \mathcal{R} = \|\hat{\mathbf{h}} - \bar{\mathbf{h}}\|^2$$

$$\Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_a \qquad \qquad \Pi : (\mathbf{h}, \mathbf{v}) \mapsto (\mathbf{h}, \mathbf{0})$$

Erreur d'estimation projetée $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \hat{\mathbf{x}}(\mathbf{y}; \Lambda) - \Pi \bar{\mathbf{x}}\|^2$

Théorème (Pascal, 2020)

Soit $(oldsymbol{y}; oldsymbol{\Lambda}) \mapsto \widehat{oldsymbol{x}}(oldsymbol{y}; oldsymbol{\Lambda})$ un estimateur de $ar{oldsymbol{x}}$

- différentiable au sens faible par rapport à y,
- tel que $\zeta \mapsto \langle \Pi \widehat{\mathbf{x}}(\bar{\mathbf{x}} + \zeta; \lambda), \mathbf{A}\zeta \rangle$ est intégrable par rapport à $\mathcal{N}(\mathbf{0}, \mathcal{S})$.

$$\widehat{R}(\boldsymbol{\Lambda}) \triangleq \left\| \mathbf{A}(\boldsymbol{\Phi}\widehat{\mathbf{x}}(\mathbf{y};\boldsymbol{\Lambda}) - \mathbf{y}) \right\|^2 + 2\mathrm{tr}\left(\boldsymbol{\mathcal{S}}\mathbf{A}^{\top}\boldsymbol{\Pi}\partial_{\mathbf{y}}\widehat{\mathbf{x}}(\mathbf{y};\boldsymbol{\Lambda})\right) - \mathrm{tr}\left(\mathbf{A}\boldsymbol{\mathcal{S}}\mathbf{A}^{\top}\right)$$

$$\Longrightarrow R_{\boldsymbol{\Pi}}(\boldsymbol{\Lambda}) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\boldsymbol{\Lambda})].$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Ex. des estimateurs $\hat{h}(\mathcal{L}; \lambda, \alpha)$ à contours libres ou co-localisés

$$\log \mathcal{L} = \Phi(\bar{\mathbf{h}}, \bar{\mathbf{v}}) + \zeta \qquad \qquad \zeta \sim \mathcal{N}(\mathbf{0}, \mathcal{S}) \qquad \mathcal{R} = \|\hat{\mathbf{h}} - \bar{\mathbf{h}}\|^2$$

$$\Phi : (\mathbf{h}, \mathbf{v}) \mapsto \{\log(a)\mathbf{h} + \mathbf{v}\}_a \qquad \qquad \Pi : (\mathbf{h}, \mathbf{v}) \mapsto (\mathbf{h}, \mathbf{0})$$

Erreur d'estimation projetée $R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \|\Pi \hat{\mathbf{x}}(\mathbf{y}; \Lambda) - \Pi \bar{\mathbf{x}}\|^2$

Théorème (Pascal, 2020)

Soit $(\pmb{y};\pmb{\Lambda})\mapsto \widehat{\pmb{x}}(\pmb{y};\pmb{\Lambda})$ un estimateur de $ar{\pmb{x}}$

- différentiable au sens faible par rapport à y,
- tel que $\zeta \mapsto \langle \Pi \widehat{\mathbf{x}}(\bar{\mathbf{x}} + \zeta; \lambda), \mathbf{A}\zeta \rangle$ est intégrable par rapport à $\mathcal{N}(\mathbf{0}, \mathcal{S})$.

$$\widehat{R}(\boldsymbol{\Lambda}) \triangleq \|\mathbf{A}(\boldsymbol{\Phi}\widehat{\mathbf{x}}(\mathbf{y};\boldsymbol{\Lambda}) - \mathbf{y})\|^{2} + 2\operatorname{tr}\left(\boldsymbol{\mathcal{S}}\mathbf{A}^{\top}\boldsymbol{\Pi}\partial_{\mathbf{y}}\widehat{\mathbf{x}}(\mathbf{y};\boldsymbol{\Lambda})\right) - \operatorname{tr}\left(\mathbf{A}\boldsymbol{\mathcal{S}}\mathbf{A}^{\top}\right)$$
$$\Longrightarrow R_{\boldsymbol{\Pi}}(\boldsymbol{\Lambda}) = \mathbb{E}_{\boldsymbol{\zeta}}[\widehat{R}(\boldsymbol{\Lambda})].$$

Degrés de liberté
$$\operatorname{dof} \triangleq \operatorname{tr} \left(\mathcal{S} \mathbf{A}^{\top} \mathbf{\Pi} \partial_{\mathbf{y}} \widehat{\mathbf{x}}(\mathbf{y}; \mathbf{\Lambda}) \right)$$

Degrés de liberté
$$\mathrm{dof} riangleq \mathrm{tr} \left(\mathcal{S} \mathsf{A}^ op \Pi \partial_y \widehat{\mathsf{x}}(y; \Lambda)
ight)$$

• Stratégie de Monte Carlo (MC) $M \in \mathbb{R}^{P \times P}$ de grande taille $\operatorname{tr}(M) = \mathbb{E}_{\varepsilon} \langle M \varepsilon, \varepsilon \rangle, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, I_P)$

Degrés de liberté
$$\operatorname{dof} \triangleq \operatorname{tr} \left(\mathcal{S} \mathsf{A}^{\top} \Pi \partial_{y} \widehat{\mathsf{x}}(y; \Lambda) \right)$$

- Stratégie de Monte Carlo (MC) $\mathbf{M} \in \mathbb{R}^{P \times P}$ de grande taille $\mathrm{tr}(\mathbf{M}) = \mathbb{E}_{\varepsilon} \langle \mathbf{M} \varepsilon, \varepsilon \rangle, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_P)$
- Différences Finies (DF) Jacobienne inaccessible $\partial_{\pmb{y}}\widehat{\pmb{x}}\left[\pmb{\varepsilon}\right] \underset{\nu \to 0}{\simeq} \frac{1}{\nu}\left(\widehat{\pmb{x}}(\pmb{y} + \nu \pmb{\varepsilon}; \pmb{\Lambda}) \widehat{\pmb{x}}(\pmb{y}; \pmb{\Lambda})\right)$

Degrés de liberté
$$\operatorname{dof} \triangleq \operatorname{tr} \left(\mathcal{S} \mathbf{A}^{\top} \mathbf{\Pi} \partial_{\mathbf{y}} \widehat{\mathbf{x}}(\mathbf{y}; \mathbf{\Lambda}) \right)$$

- Stratégie de Monte Carlo (MC) $\mathbf{M} \in \mathbb{R}^{P \times P}$ de grande taille $\mathrm{tr}(\mathbf{M}) = \mathbb{E}_{\boldsymbol{\varepsilon}} \langle \mathbf{M} \boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \rangle$, $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_P)$
- Différences Finies (DF) Jacobienne inaccessible $\partial_{\pmb{y}}\widehat{\pmb{x}}\left[\pmb{\varepsilon}\right] \underset{\nu \to 0}{\simeq} \frac{1}{\nu}\left(\widehat{\pmb{x}}(\pmb{y} + \nu \pmb{\varepsilon}; \pmb{\Lambda}) \widehat{\pmb{x}}(\pmb{y}; \pmb{\Lambda})\right)$

Proposition (Pascal, 2020)

Soit $(y;\Lambda)\mapsto \widehat{\pmb{x}}(y;\Lambda)$ un estimateur de $ar{\pmb{x}}$

- uniformément lipschitzien par rapport à y,
- tel que $\forall \Lambda \in \mathbb{R}^L$, $\widehat{\mathbf{x}}(\mathbf{0}_P; \Lambda) = \mathbf{0}_N$. Alors

$$\mathbb{E}_{\boldsymbol{\zeta}}\left[\operatorname{dof}\right] = \lim_{\nu \to 0} \mathbb{E}_{\boldsymbol{\zeta}, \boldsymbol{\varepsilon}}\left[\frac{1}{\nu} \left\langle \boldsymbol{\mathcal{S}} \boldsymbol{\mathsf{A}}^{\top} \boldsymbol{\Pi}\left(\widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu \boldsymbol{\varepsilon}; \boldsymbol{\Lambda}) - \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda})\right), \boldsymbol{\varepsilon} \right\rangle\right]$$

Stein Unbiased Risk Estimate (Calcul)

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Erreur d'estimation projetée
$$R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \| \Pi \hat{x}(y; \Lambda) - \Pi \bar{x} \|^2$$

SURE généralisé Différences Finies Monte Carlo

$$\widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \mid \boldsymbol{\mathcal{S}}) \triangleq \left\| \boldsymbol{\mathsf{A}} \left(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y} \right) \right\|^2 + \frac{2}{\nu} \left\langle \boldsymbol{\mathcal{S}} \boldsymbol{\mathsf{A}}^\top \boldsymbol{\Pi} \left(\widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu \boldsymbol{\varepsilon}; \boldsymbol{\Lambda}) - \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\Lambda}) \right), \boldsymbol{\varepsilon} \right\rangle - \operatorname{tr} \left(\boldsymbol{\mathsf{A}} \boldsymbol{\mathcal{S}} \boldsymbol{\mathsf{A}}^\top \right)$$

Stein Unbiased Risk Estimate (Calcul)

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(0, S)$

Erreur d'estimation projetée
$$R_{\Pi}(\Lambda) \triangleq \mathbb{E}_{\zeta} \| \frac{\Pi \hat{x}(y; \Lambda) - \Pi \bar{x} \|^2$$

SURE généralisé Différences Finies Monte Carlo

$$\widehat{R}_{\nu,\varepsilon}(\mathbf{y};\mathbf{\Lambda} \mid \mathbf{\mathcal{S}}) \triangleq \left\| \mathbf{A} \left(\mathbf{\Phi} \widehat{\mathbf{x}}(\mathbf{y};\mathbf{\Lambda}) - \mathbf{y} \right) \right\|^2 + \frac{2}{\nu} \left\langle \mathbf{\mathcal{S}} \mathbf{A}^\top \mathbf{\Pi} \left(\widehat{\mathbf{x}}(\mathbf{y} + \nu \mathbf{\varepsilon}; \mathbf{\Lambda}) - \widehat{\mathbf{x}}(\mathbf{y}; \mathbf{\Lambda}) \right), \mathbf{\varepsilon} \right\rangle - \operatorname{tr} \left(\mathbf{A} \mathbf{\mathcal{S}} \mathbf{A}^\top \right)$$

Théorème (Pascal, 2020)

Soit $(y;\Lambda)\mapsto \widehat{\pmb{x}}(\pmb{y};\Lambda)$ un estimateur de $ar{\pmb{x}}$

- uniformément lipschitzien par rapport à y,
- tel que $\forall \Lambda \in \mathbb{R}^L$, $\widehat{\mathbf{x}}(\mathbf{0}_P; \Lambda) = \mathbf{0}_N$. Alors

$$R_{\Pi}(\boldsymbol{\Lambda}) = \lim_{
u o 0} \mathbb{E}_{\boldsymbol{\zeta}, oldsymbol{arepsilon}} \left[\widehat{R}_{
u, oldsymbol{arepsilon}}(oldsymbol{y}; oldsymbol{\Lambda} \,|\, oldsymbol{\mathcal{S}})
ight]$$

Réglage des paramètres (Recherche systématique)

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\boldsymbol{\alpha})$$

 $\bar{\boldsymbol{h}}$: inconnue!

 $\widehat{R}_{\nu,\varepsilon}(\mathcal{L};\lambda,\alpha|\mathcal{S})$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\boldsymbol{\alpha})$$

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\boldsymbol{\alpha})$$

Réglage des paramètres (Recherche systématique)

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\boldsymbol{\alpha})$$

$$\left(\widehat{\pmb{h}}^{\mathsf{L}}, \widehat{\pmb{\nu}}^{\mathsf{L}}\right) (\mathcal{L}; \pmb{\Lambda}) = \underset{\pmb{h}, \pmb{\nu}}{\operatorname{argmin}} \sum_{\pmb{h}, \pmb{\nu}} \|\log \mathcal{L}_{\mathsf{a}, \cdot} - \log(\mathsf{a}) \pmb{h} - \pmb{\nu}\|^2 + \lambda \mathcal{Q}_{\mathsf{L}}(\pmb{\mathsf{D}} \pmb{h}, \pmb{\mathsf{D}} \pmb{\nu}; \alpha)$$

Exemple

Recherche systématique des paramètres de régularisation

$$\left(\widehat{\boldsymbol{h}}^{\mathsf{L}},\widehat{\boldsymbol{v}}^{\mathsf{L}}\right)\left(\boldsymbol{\mathcal{L}};\boldsymbol{\Lambda}\right) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a},\boldsymbol{v}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},\cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}_{\mathsf{L}}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\!\boldsymbol{\mathsf{D}}\boldsymbol{v};\alpha)$$

Exemple

Recherche systématique des paramètres de régularisation

$$\left(\widehat{\boldsymbol{h}}^{\mathsf{L}},\widehat{\boldsymbol{v}}^{\mathsf{L}}\right)\left(\boldsymbol{\mathcal{L}};\boldsymbol{\Lambda}\right) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a},\boldsymbol{v}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},\cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}_{\mathsf{L}}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\!\boldsymbol{\mathsf{D}}\boldsymbol{v};\alpha)$$

$$\widehat{\mathbf{h}}^{\mathsf{L}}(\mathcal{L};\widehat{\lambda}^{\dagger},\widehat{lpha}^{\dagger})$$
(grille)

Recherche systématique des paramètres de régularisation

$$\left(\widehat{\boldsymbol{h}}^{\mathsf{L}}, \widehat{\boldsymbol{v}}^{\mathsf{L}}\right) (\boldsymbol{\mathcal{L}}; \boldsymbol{\Lambda}) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{h}, \boldsymbol{v}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a}) \boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}_{\mathsf{L}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v}; \boldsymbol{\alpha})$$

 $15 \times 15 = 225$ paramètres \longrightarrow recherche sur grille très coûteuse

$$\textbf{Observations} \quad \textbf{\textit{y}} = \boldsymbol{\Phi} \bar{\textbf{\textit{x}}} + \boldsymbol{\zeta} \in \mathbb{R}^{\textit{P}}, \quad \bar{\textbf{\textit{x}}} \in \mathbb{R}^{\textit{N}}, \ \boldsymbol{\Phi} : \mathbb{R}^{\textit{P} \times \textit{N}} \ \text{et} \ \boldsymbol{\zeta} \sim \mathcal{N}(\textbf{0}, \boldsymbol{\mathcal{S}})$$

SURE généralisé DFMC
$$\lim_{\nu \to 0} \mathbb{E}_{\zeta, \varepsilon} \widehat{R}_{\nu, \varepsilon}(\mathbf{\emph{y}}; \mathbf{\Lambda} \,|\, \mathbf{\emph{S}}) = R_{\Pi}(\mathbf{\Lambda})$$

$$\textbf{Observations} \quad \textbf{\textit{y}} = \boldsymbol{\Phi} \bar{\textbf{\textit{x}}} + \boldsymbol{\zeta} \in \mathbb{R}^{\textit{P}}, \quad \bar{\textbf{\textit{x}}} \in \mathbb{R}^{\textit{N}}, \ \boldsymbol{\Phi} : \mathbb{R}^{\textit{P} \times \textit{N}} \ \text{et} \ \boldsymbol{\zeta} \sim \mathcal{N}(\textbf{0}, \boldsymbol{\mathcal{S}})$$

$$\mbox{SURE g\'en\'eralis\'e DFMC} \quad \lim_{\nu \to 0} \mathbb{E}_{\boldsymbol{\zeta},\varepsilon} \widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) = R_{\boldsymbol{\Pi}}(\boldsymbol{\Lambda})$$

$$\operatorname{\mathsf{But}} : \min_{oldsymbol{\Lambda}} \widehat{R}_{
u, oldsymbol{arepsilon}}(oldsymbol{y}; oldsymbol{\Lambda} \,|\, oldsymbol{\mathcal{S}})$$

pour y, S donnés

$$\textbf{Observations} \quad \textbf{\textit{y}} = \boldsymbol{\Phi} \bar{\textbf{\textit{x}}} + \boldsymbol{\zeta} \in \mathbb{R}^{\textit{P}}, \quad \bar{\textbf{\textit{x}}} \in \mathbb{R}^{\textit{N}}, \ \boldsymbol{\Phi} : \mathbb{R}^{\textit{P} \times \textit{N}} \ \text{et} \ \boldsymbol{\zeta} \sim \mathcal{N}(\textbf{0}, \boldsymbol{\mathcal{S}})$$

$$\mbox{SURE g\'en\'eralis\'e DFMC} \quad \lim_{\nu \to 0} \mathbb{E}_{\boldsymbol{\zeta},\varepsilon} \widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) = R_{\boldsymbol{\Pi}}(\boldsymbol{\Lambda})$$

$$\operatorname{f But}: \operatorname{minimiser} \, \widehat R_{
u, oldsymbol{arepsilon}}({oldsymbol{y}}; {oldsymbol{\Lambda}} \, | \, {oldsymbol{\mathcal{S}}}) \equiv \widehat R({oldsymbol{\Lambda}}) \quad ext{ pour } {oldsymbol{y}}, \, {oldsymbol{\mathcal{S}}} \, ext{ donnés}$$

$$\textbf{Observations} \quad \textbf{\textit{y}} = \boldsymbol{\Phi} \bar{\textbf{\textit{x}}} + \boldsymbol{\zeta} \in \mathbb{R}^{\textit{P}}, \quad \bar{\textbf{\textit{x}}} \in \mathbb{R}^{\textit{N}}, \ \boldsymbol{\Phi} : \mathbb{R}^{\textit{P} \times \textit{N}} \ \text{et} \ \boldsymbol{\zeta} \sim \mathcal{N}(\textbf{0}, \boldsymbol{\mathcal{S}})$$

$$\mbox{SURE généralisé DFMC} \quad \lim_{\nu \to 0} \mathbb{E}_{\boldsymbol{\zeta}, \varepsilon} \widehat{R}_{\nu, \varepsilon}(\boldsymbol{y}; \boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) = R_{\boldsymbol{\Pi}}(\boldsymbol{\Lambda})$$

$$\operatorname{\textbf{But}}: \underset{oldsymbol{\Lambda}}{\operatorname{minimiser}} \ \widehat{R}_{
u, oldsymbol{arepsilon}}(oldsymbol{y}; oldsymbol{\Lambda} \, | \, oldsymbol{\mathcal{S}}) \equiv \widehat{R}(oldsymbol{\Lambda}) \quad ext{ pour } oldsymbol{y}, \, oldsymbol{\mathcal{S}} \ ext{donnés}$$

Quasi-Newton de Broyden-Fletcher-Goldfarb-Shanno (Nocedal, 2006)

$$\begin{aligned} & \textbf{for } t = 0,1,\dots \\ & \textbf{d}^{[t]} = -\textbf{H}^{[t]} \partial_{\boldsymbol{\Lambda}} \widehat{R} \big(\boldsymbol{\Lambda}^{[t]} \big) & \textit{direction de descente} \\ & \alpha^{[t]} \in \mathop{\mathrm{Argmin}}_{\alpha \in \mathbb{R}} \widehat{R} \big(\boldsymbol{\Lambda}^{[t]} + \alpha \textbf{d}^{[t]} \big) & \textit{recherche sur une ligne} \\ & \boldsymbol{\Lambda}^{[t+1]} = \boldsymbol{\Lambda}^{[t]} + \alpha^{[t]} \textbf{d}^{[t]} & \\ & \boldsymbol{u}^{[t]} = \partial_{\boldsymbol{\Lambda}} \widehat{R} \big(\boldsymbol{\Lambda}^{[t+1]} \big) - \partial_{\boldsymbol{\Lambda}} \widehat{R} \big(\boldsymbol{\Lambda}^{[t]} \big) & \textit{variation du gradient} \\ & \boldsymbol{H}^{[t+1]} = \mathrm{BFGS} \big(\boldsymbol{H}^{[t]}, \boldsymbol{d}^{[t]}, \boldsymbol{u}^{[t]} \big) & \textit{mise à jour "hessienne inverse"} \end{aligned}$$

Observations
$$y = \Phi \bar{x} + \zeta \in \mathbb{R}^P$$
, $\bar{x} \in \mathbb{R}^N$, $\Phi : \mathbb{R}^{P \times N}$ et $\zeta \sim \mathcal{N}(\mathbf{0}, \mathcal{S})$

$$\mbox{SURE généralisé DFMC} \quad \lim_{\nu \to 0} \mathbb{E}_{\boldsymbol{\zeta}, \varepsilon} \widehat{R}_{\nu, \varepsilon}(\boldsymbol{y}; \boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) = R_{\boldsymbol{\Pi}}(\boldsymbol{\Lambda})$$

$$\mathbf{But}: \underset{\boldsymbol{\Lambda}}{\mathrm{minimiser}} \ \widehat{R}_{\nu,\boldsymbol{\varepsilon}}(\boldsymbol{y};\boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) \equiv \widehat{R}(\boldsymbol{\Lambda}) \quad \text{ pour } \boldsymbol{y}, \ \boldsymbol{\mathcal{S}} \ \mathsf{donn\acute{e}s}$$

Quasi-Newton de Broyden-Fletcher-Goldfarb-Shanno (Nocedal, 2006)

$$\begin{aligned} &\textbf{for} \ \ t = 0, 1, \dots \\ & \boldsymbol{d}^{[t]} = -\boldsymbol{H}^{[t]} \partial_{\boldsymbol{\Lambda}} \widehat{R}(\boldsymbol{\Lambda}^{[t]}) & \textit{direction de descente} \\ & \alpha^{[t]} \in \mathop{\mathrm{Argmin}}_{\alpha \in \mathbb{R}} \widehat{R}(\boldsymbol{\Lambda}^{[t]} + \alpha \boldsymbol{d}^{[t]}) & \textit{recherche sur une ligne} \\ & \boldsymbol{\Lambda}^{[t+1]} = \boldsymbol{\Lambda}^{[t]} + \alpha^{[t]} \boldsymbol{d}^{[t]} & \\ & \boldsymbol{u}^{[t]} = \partial_{\boldsymbol{\Lambda}} \widehat{R}(\boldsymbol{\Lambda}^{[t+1]}) - \partial_{\boldsymbol{\Lambda}} \widehat{R}(\boldsymbol{\Lambda}^{[t]}) & \textit{variation du gradient} \\ & \boldsymbol{H}^{[t+1]} = \mathrm{BFGS}(\boldsymbol{H}^{[t]}, \boldsymbol{d}^{[t]}, \boldsymbol{u}^{[t]}) & \textit{mise à jour "hessienne inverse"} \end{aligned}$$

Stein Unbiased GrAdient Risk estimate

SURE généralisé DFMC

$$\begin{split} \widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) &= \left\| \boldsymbol{A} \left(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y} \right) \right\|^2 + \\ \frac{2}{\nu} \left\langle \boldsymbol{\mathcal{S}} \boldsymbol{A}^\top \boldsymbol{\Pi} \left(\widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu \boldsymbol{\varepsilon};\boldsymbol{\Lambda}) - \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) \right), \boldsymbol{\varepsilon} \right\rangle - \operatorname{tr} \left(\boldsymbol{A} \boldsymbol{\mathcal{S}} \boldsymbol{A}^\top \right) \end{split}$$

Stein Unbiased GrAdient Risk estimate

SURE généralisé DFMC

$$\begin{split} \widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) &= \left\| \boldsymbol{A} \left(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y} \right) \right\|^2 + \\ \frac{2}{\nu} \left\langle \boldsymbol{\mathcal{S}} \boldsymbol{A}^\top \boldsymbol{\Pi} \left(\widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu \boldsymbol{\varepsilon};\boldsymbol{\Lambda}) - \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) \right), \boldsymbol{\varepsilon} \right\rangle - \operatorname{tr} \left(\boldsymbol{A} \boldsymbol{\mathcal{S}} \boldsymbol{A}^\top \right) \end{split}$$

SUGAR généralisé Différences Finies Monte Carlo

$$\begin{split} \partial_{\boldsymbol{\Lambda}} \widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) &= 2 \left(\boldsymbol{\Lambda} \boldsymbol{\Phi} \partial_{\boldsymbol{\Lambda}} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) \right)^{\top} \boldsymbol{\Lambda} \left(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y} \right) \\ &+ \frac{2}{\nu} \left\langle \boldsymbol{\mathcal{S}} \boldsymbol{\Lambda}^{\top} \boldsymbol{\Pi} \left(\partial_{\boldsymbol{\Lambda}} \widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu \boldsymbol{\varepsilon};\boldsymbol{\Lambda}) - \partial_{\boldsymbol{\Lambda}} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) \right), \boldsymbol{\varepsilon} \right\rangle \end{split}$$

Stein Unbiased GrAdient Risk estimate

SURE généralisé DFMC

$$\begin{split} \widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda}\,|\,\boldsymbol{\mathcal{S}}) &= \left\|\boldsymbol{\mathsf{A}}\left(\boldsymbol{\Phi}\widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y}\right)\right\|^2 + \\ \frac{2}{\nu}\left\langle \boldsymbol{\mathcal{S}}\boldsymbol{\mathsf{A}}^{\top}\boldsymbol{\Pi}\left(\widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu\boldsymbol{\varepsilon};\boldsymbol{\Lambda}) - \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda})\right),\boldsymbol{\varepsilon}\right\rangle - \operatorname{tr}\left(\boldsymbol{\mathsf{A}}\boldsymbol{\mathcal{S}}\boldsymbol{\mathsf{A}}^{\top}\right) \end{split}$$

SUGAR généralisé Différences Finies Monte Carlo

$$\begin{split} \partial_{\boldsymbol{\Lambda}} \widehat{R}_{\nu,\varepsilon}(\boldsymbol{y};\boldsymbol{\Lambda} \,|\, \boldsymbol{\mathcal{S}}) &= 2 \left(\boldsymbol{\Lambda} \boldsymbol{\Phi} \partial_{\boldsymbol{\Lambda}} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) \right)^{\top} \boldsymbol{\Lambda} \left(\boldsymbol{\Phi} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) - \boldsymbol{y} \right) \\ &+ \frac{2}{\nu} \left\langle \boldsymbol{\mathcal{S}} \boldsymbol{\Lambda}^{\top} \boldsymbol{\Pi} \left(\partial_{\boldsymbol{\Lambda}} \widehat{\boldsymbol{x}}(\boldsymbol{y} + \nu \boldsymbol{\varepsilon};\boldsymbol{\Lambda}) - \partial_{\boldsymbol{\Lambda}} \widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\Lambda}) \right), \boldsymbol{\varepsilon} \right\rangle \end{split}$$

Théorème (Pascal, 2020)

Soit $(oldsymbol{y}; oldsymbol{\Lambda}) \mapsto \widehat{oldsymbol{x}}(oldsymbol{y}; oldsymbol{\Lambda})$ un estimateur de $ar{oldsymbol{x}}$

- uniformément lipschitzien par rapport à y
- tel que $\forall \mathbf{\Lambda} \in \mathbb{R}^L$, $\widehat{\mathbf{x}}(\mathbf{0}_P; \mathbf{\Lambda}) = \mathbf{0}_N$,
- uniformément L-lipschitzien par rapport à Λ , L indép. de y. Alors

$$\partial_{m{\Lambda}} R_{m{\Pi}}(m{\Lambda}) = \lim_{
u o 0} \mathbb{E}_{m{\zeta}, m{arepsilon}} \left[\partial_{m{\Lambda}} \widehat{R}_{
u, m{arepsilon}}(m{y}; m{\Lambda} \,|\, m{\mathcal{S}})
ight]$$

Réglage des paramètres (Recherche automatique)

$$\left(\widehat{\boldsymbol{h}},\widehat{\boldsymbol{v}}\right)(\boldsymbol{\mathcal{L}};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \underset{\boldsymbol{h},\boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{a}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a},.} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}(\boldsymbol{\mathsf{D}}\boldsymbol{h},\boldsymbol{\mathsf{D}}\boldsymbol{v};\boldsymbol{\alpha})$$

Recherche automatique des paramètres de régularisation

$$\left(\widehat{\boldsymbol{h}}^{\mathsf{L}}, \widehat{\boldsymbol{v}}^{\mathsf{L}}\right) (\boldsymbol{\mathcal{L}}; \boldsymbol{\Lambda}) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{h}, \boldsymbol{v}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a}) \boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}_{\mathsf{L}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v}; \boldsymbol{\alpha})$$

Recherche automatique des paramètres de régularisation

$$\left(\widehat{\boldsymbol{h}}^{\mathsf{L}}, \widehat{\boldsymbol{v}}^{\mathsf{L}}\right) (\boldsymbol{\mathcal{L}}; \boldsymbol{\Lambda}) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{h}, \boldsymbol{v}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a}) \boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}_{\mathsf{L}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v}; \boldsymbol{\alpha})$$

Exemple

Recherche automatique des paramètres de régularisation

$$\left(\widehat{\boldsymbol{h}}^{\mathsf{L}}, \widehat{\boldsymbol{v}}^{\mathsf{L}}\right) (\boldsymbol{\mathcal{L}}; \boldsymbol{\Lambda}) = \underset{\boldsymbol{h}, \boldsymbol{v}}{\operatorname{argmin}} \sum_{\boldsymbol{h}, \boldsymbol{v}} \|\log \boldsymbol{\mathcal{L}}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a}) \boldsymbol{h} - \boldsymbol{v}\|^2 + \lambda \mathcal{Q}_{\mathsf{L}}(\boldsymbol{\mathsf{D}}\boldsymbol{h}, \boldsymbol{\mathsf{D}}\boldsymbol{v}; \boldsymbol{\alpha})$$

40 appels de l'estimateurs v.s. 225 sur une grille

• Régularité et variance locale [ICIP, 2018]

- Régularité et variance locale [ICIP, 2018]
 - > aptes à caractériser des textures réelles

- Régularité et variance locale [ICIP, 2018]
 - > aptes à caractériser des textures réelles
 - ▶ attributs complémentaires → capacité à discriminer finement

- Régularité et variance locale [ICIP, 2018]
 - > aptes à caractériser des textures réelles
 - ▶ attributs complémentaires → capacité à discriminer finement
- Estimation et régularisation simultanées [ACHA, 2019]

- Régularité et variance locale [ICIP, 2018]
 - > aptes à caractériser des textures réelles
 - ▶ attributs complémentaires → capacité à discriminer finement
- Estimation et régularisation simultanées [ACHA, 2019]
 - ▶ forte diminution de l'erreur d'estimation

- Régularité et variance locale [ICIP, 2018]
 - > aptes à caractériser des textures réelles
 - ▶ attributs complémentaires → capacité à discriminer finement
- Estimation et régularisation simultanées [ACHA, 2019]
 - ▶ forte diminution de l'erreur d'estimation
 - contours précis et réguliers grâce à la pénalisation co-localisée

- Régularité et variance locale [ICIP, 2018]
 - > aptes à caractériser des textures réelles
 - ▶ attributs complémentaires → capacité à discriminer finement
- Estimation et régularisation simultanées [ACHA, 2019]
 - ▶ forte diminution de l'erreur d'estimation
 - > contours précis et réguliers grâce à la pénalisation co-localisée
- Algorithmes rapides et réglage automatique des paramètres [JMIV, 2020]

- Régularité et variance locale [ICIP, 2018]
 - > aptes à caractériser des textures réelles
 - ▶ attributs complémentaires → capacité à discriminer finement
- Estimation et régularisation simultanées [ACHA, 2019]
 - ▶ forte diminution de l'erreur d'estimation
 - > contours précis et réguliers grâce à la pénalisation co-localisée
- Algorithmes rapides et réglage automatique des paramètres [JMIV, 2020]
 - possibilité de traiter de gros volumes de données

- Régularité et variance locale [ICIP, 2018]
 - aptes à caractériser des textures réelles
 - ▶ attributs complémentaires → capacité à discriminer finement
- Estimation et régularisation simultanées [ACHA, 2019]
 - ▶ forte diminution de l'erreur d'estimation
 - > contours précis et réguliers grâce à la pénalisation co-localisée
- Algorithmes rapides et réglage automatique des paramètres [JMIV, 2020]
 - possibilité de traiter de gros volumes de données
 - objectivité et reproductibilité
- → En cours : traitement automatisé de séries temporelles issues de l'étude des écoulements multiphasiques [Ann. Telecom, 2020]

• Synthèse de textures monofractales par morceaux [ACHA, 2019]

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ▶ segmentation et attributs prescrits → performances

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ▶ segmentation et attributs prescrits → performances
 - possibilité de générer de grosses bases de données

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ▶ segmentation et attributs prescrits → performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ightharpoonup segmentation et attributs prescrits ightarrow performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]
 - stratégie FISTA pour accélérer l'algorithme forward-backward

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ► segmentation et attributs prescrits → performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]
 - stratégie FISTA pour accélérer l'algorithme forward-backward
 - calcul du gap de dualité et choix d'un critère d'arrêt

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ▶ segmentation et attributs prescrits → performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]
 - stratégie FISTA pour accélérer l'algorithme forward-backward
 - > calcul du gap de dualité et choix d'un critère d'arrêt
- Réseaux convolutionnels pour la segmentation de textures [EUSIPCO, 2020]

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ightharpoonup segmentation et attributs prescrits \rightarrow performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]
 - stratégie FISTA pour accélérer l'algorithme forward-backward
 - > calcul du gap de dualité et choix d'un critère d'arrêt
- Réseaux convolutionnels pour la segmentation de textures [EUSIPCO, 2020]
 - performance et robustesse

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ► segmentation et attributs prescrits → performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]
 - stratégie FISTA pour accélérer l'algorithme forward-backward
 - calcul du gap de dualité et choix d'un critère d'arrêt
- Réseaux convolutionnels pour la segmentation de textures [EUSIPCO, 2020]
 - performance et robustesse
 - comparaison coûts de calcul et mémoire

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ▶ segmentation et attributs prescrits → performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]
 - stratégie FISTA pour accélérer l'algorithme forward-backward
 - calcul du gap de dualité et choix d'un critère d'arrêt
- Réseaux convolutionnels pour la segmentation de textures [EUSIPCO, 2020]
 - performance et robustesse
 - comparaison coûts de calcul et mémoire
- Application à la physique du formalisme de Stein généralisé [Ann. Telecom, 2020]
 - ightharpoonup segmentation de texture ightarrow écoulements multiphasiques

- Synthèse de textures monofractales par morceaux [ACHA, 2019]
 - ▶ segmentation et attributs prescrits → performances
 - possibilité de générer de grosses bases de données
- Comparaison d'algorithmes proximaux [ACHA, 2019]
 - stratégie FISTA pour accélérer l'algorithme forward-backward
 - calcul du gap de dualité et choix d'un critère d'arrêt
- Réseaux convolutionnels pour la segmentation de textures [EUSIPCO, 2020]
 - performance et robustesse
 - comparaison coûts de calcul et mémoire
- Application à la physique du formalisme de Stein généralisé [Ann. Telecom, 2020]
 - ightharpoonup segmentation de texture ightarrow écoulements multiphasiques
 - ▶ débruitage linéaire par morceaux → frottement solide

Grazie

Thank you

Gracias

Définition du gap de dualité

$$\underset{\boldsymbol{h}, \boldsymbol{v}}{\text{minimiser}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2}{\text{Moindres Carrés}} + \lambda \frac{\mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \alpha)}{\text{Variation Totale}}$$

$$\lambda \ \frac{\mathcal{Q}(\mathbf{D}\boldsymbol{h}, \mathbf{D}\boldsymbol{v}; \alpha)}{\mathbf{Variation Totale}}$$

non lisse

Primal
$$\min_{\mathbf{x}} \operatorname{MC}(\mathbf{x}) + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x})$$

Définition du gap de dualité

$$\underset{h,\mathbf{v}}{\text{minimiser}} \sum_{a} \frac{\|\log \mathcal{L}_{a,.} - \log(a)\mathbf{h} - \mathbf{v}\|^{2}}{\text{Moindres Carrés}} + \lambda \frac{\mathcal{Q}(\mathsf{D}\mathbf{h}, \mathsf{D}\mathbf{v}; \alpha)}{\mathsf{Variation Totale}}$$

$$\begin{array}{ll} \textbf{Primal} & \min_{\textbf{x}} \ \operatorname{MC}(\textbf{x}) + \lambda \mathcal{Q}(\textbf{D}\textbf{x}) \\ \textbf{Dual} & \max - \operatorname{MC}^*(-\textbf{D}^\top\textbf{y}) - (\lambda \mathcal{Q})^*(\textbf{y}) \end{array}$$

Définition du gap de dualité

$$\underset{\boldsymbol{h}, \boldsymbol{v}}{\text{minimiser}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2}{\text{Moindres Carrés}} + \lambda \frac{\mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \alpha)}{\text{Variation Totale}}$$

$$\lambda \frac{\mathcal{Q}(\mathbf{D} h, \mathbf{D} \mathbf{v}; \alpha)}{\mathbf{Variation Totale}}$$

non lisse

Primal
$$\min_{\mathbf{x}} \mathrm{MC}(\mathbf{x}) + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x})$$

Dual
$$\max_{\mathbf{y}} - \mathrm{MC}^*(-\mathbf{D}^\top \mathbf{y}) - (\lambda \mathcal{Q})^*(\mathbf{y})$$

Proposition (Bauschke, 2011)

Soit
$$\delta(\mathbf{x}; \mathbf{y}) \triangleq \mathcal{P}(\mathbf{x}) - \mathcal{D}(\mathbf{y})$$
 le gap de dualité,

Définition du gap de dualité

$$\underset{\boldsymbol{h}, \boldsymbol{v}}{\text{minimiser}} \sum_{\boldsymbol{a}} \frac{\|\log \mathcal{L}_{\boldsymbol{a}, \cdot} - \log(\boldsymbol{a})\boldsymbol{h} - \boldsymbol{v}\|^2}{\text{Moindres Carrés}} + \lambda \frac{\mathcal{Q}(\mathsf{D}\boldsymbol{h}, \mathsf{D}\boldsymbol{v}; \alpha)}{\text{Variation Totale}}$$

$$\lambda \frac{\mathcal{Q}(\mathbf{D} h, \mathbf{D} \mathbf{v}; \alpha)}{\mathbf{Variation Totale}}$$

non lisse

Primal
$$\min \operatorname{MC}(x) + \lambda \mathcal{Q}(\mathbf{D}x)$$

Dual
$$\max_{\mathbf{y}} - \mathrm{MC}^*(-\mathbf{D}^\top \mathbf{y}) - (\lambda \mathcal{Q})^*(\mathbf{y})$$

Proposition (Bauschke, 2011)

Soit
$$\delta(\mathbf{x}; \mathbf{y}) \triangleq \mathcal{P}(\mathbf{x}) - \mathcal{D}(\mathbf{y})$$
 le gap de dualité,
$$\delta(\widehat{\mathbf{x}}; \widehat{\mathbf{y}}) = \mathcal{P}(\widehat{\mathbf{x}}) - \mathcal{D}(\widehat{\mathbf{y}}) = 0$$

$$\mathrm{MC}^*(\textbf{\textit{h}},\textbf{\textit{v}}) = \sup_{\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}} \langle \widetilde{\textbf{\textit{h}}},\textbf{\textit{h}} \rangle + \langle \widetilde{\textbf{\textit{v}}},\textbf{\textit{v}} \rangle - \mathrm{MC}(\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}) = \langle \overline{\textbf{\textit{h}}},\textbf{\textit{h}} \rangle + \langle \overline{\textbf{\textit{v}}},\textbf{\textit{v}} \rangle - \mathrm{MC}(\overline{\textbf{\textit{h}}},\overline{\textbf{\textit{v}}}).$$

$$\mathrm{MC}^*(\boldsymbol{h}, \boldsymbol{v}) = \sup_{\widetilde{\boldsymbol{h}}, \widetilde{\boldsymbol{v}}} \langle \widetilde{\boldsymbol{h}}, \boldsymbol{h} \rangle + \langle \widetilde{\boldsymbol{v}}, \boldsymbol{v} \rangle - \mathrm{MC}(\widetilde{\boldsymbol{h}}, \widetilde{\boldsymbol{v}}) = \langle \overline{\boldsymbol{h}}, \boldsymbol{h} \rangle + \langle \overline{\boldsymbol{v}}, \boldsymbol{v} \rangle - \mathrm{MC}(\overline{\boldsymbol{h}}, \overline{\boldsymbol{v}}).$$
 (si le sup est atteint)

Condition d'optimalité

$$\begin{cases} & \boldsymbol{h} - 2\sum_{a}\log(a)\left(\bar{\boldsymbol{v}} + \log(a)\bar{\boldsymbol{h}} - \log\boldsymbol{\mathcal{L}}_{a,.}\right) = 0\\ & \boldsymbol{v} - 2\sum_{a}\left(\bar{\boldsymbol{v}} + \log(a)\bar{\boldsymbol{h}} - \log\boldsymbol{\mathcal{L}}_{a,.}\right) = 0 \end{cases}$$

$$\mathrm{MC}^*(\boldsymbol{h}, \boldsymbol{v}) = \sup_{\widetilde{\boldsymbol{h}}, \widetilde{\boldsymbol{v}}} \langle \widetilde{\boldsymbol{h}}, \boldsymbol{h} \rangle + \langle \widetilde{\boldsymbol{v}}, \boldsymbol{v} \rangle - \mathrm{MC}(\widetilde{\boldsymbol{h}}, \widetilde{\boldsymbol{v}}) = \langle \overline{\boldsymbol{h}}, \boldsymbol{h} \rangle + \langle \overline{\boldsymbol{v}}, \boldsymbol{v} \rangle - \mathrm{MC}(\overline{\boldsymbol{h}}, \overline{\boldsymbol{v}}).$$
 (si le sup est atteint)

Condition d'optimalité

$$\begin{cases} & \boldsymbol{h} - 2\sum_{a}\log(a)\left(\bar{\boldsymbol{v}} + \log(a)\bar{\boldsymbol{h}} - \log\boldsymbol{\mathcal{L}}_{a,.}\right) = 0 \iff \Phi^*\Phi\left(\frac{\bar{\boldsymbol{h}}}{\bar{\boldsymbol{v}}}\right) = \begin{pmatrix} \boldsymbol{h}/2 + \boldsymbol{\mathcal{G}} \\ \boldsymbol{v} - 2\sum_{a}\left(\bar{\boldsymbol{v}} + \log(a)\bar{\boldsymbol{h}} - \log\boldsymbol{\mathcal{L}}_{a,.}\right) = 0 \end{cases}$$

$$\mathcal{T} = \sum_{a}\log\boldsymbol{\mathcal{L}}_{a,.} \quad \text{and} \quad \mathcal{G} = \sum_{a}\log(a)\log\boldsymbol{\mathcal{L}}_{a,.},$$

$$\mathrm{MC}^*(\textbf{\textit{h}},\textbf{\textit{v}}) = \sup_{\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}} \langle \widetilde{\textbf{\textit{h}}},\textbf{\textit{h}} \rangle + \langle \widetilde{\textbf{\textit{v}}},\textbf{\textit{v}} \rangle - \mathrm{MC}(\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}) = \langle \overline{\textbf{\textit{h}}},\textbf{\textit{h}} \rangle + \langle \overline{\textbf{\textit{v}}},\textbf{\textit{v}} \rangle - \mathrm{MC}(\overline{\textbf{\textit{h}}},\overline{\textbf{\textit{v}}}).$$

Condition d'optimalité

$$\begin{cases} \mathbf{h} - 2\sum_{a} \log(a) \left(\bar{\mathbf{v}} + \log(a) \bar{\mathbf{h}} - \log \mathcal{L}_{a,.} \right) = 0 \iff \Phi^* \Phi \begin{pmatrix} \bar{\mathbf{h}} \\ \bar{\mathbf{v}} \end{pmatrix} = \begin{pmatrix} \mathbf{h}/2 + \mathcal{G} \\ \bar{\mathbf{v}}/2 + \mathcal{T} \end{pmatrix} \\ \mathcal{T} = \sum_{a} \log \mathcal{L}_{a,.} \quad \text{and} \quad \mathcal{G} = \sum_{a} \log(a) \log \mathcal{L}_{a,.}, \end{cases}$$

$$\forall m = \{0,1,2\}, S_m = \sum_{a} (\log a)^m, \quad \Phi^* \Phi = \begin{pmatrix} S_2 \mathbf{I} & S_1 \mathbf{I} \\ S_1 \mathbf{I} & S_0 \mathbf{I} \end{pmatrix}$$

$$\mathrm{MC}^*(\textbf{\textit{h}},\textbf{\textit{v}}) = \sup_{\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}} \langle \widetilde{\textbf{\textit{h}}},\textbf{\textit{h}} \rangle + \langle \widetilde{\textbf{\textit{v}}},\textbf{\textit{v}} \rangle - \mathrm{MC}(\widetilde{\textbf{\textit{h}}},\widetilde{\textbf{\textit{v}}}) = \langle \overline{\textbf{\textit{h}}},\textbf{\textit{h}} \rangle + \langle \overline{\textbf{\textit{v}}},\textbf{\textit{v}} \rangle - \mathrm{MC}(\overline{\textbf{\textit{h}}},\overline{\textbf{\textit{v}}}).$$

Condition d'optimalité

$$\begin{cases} h - 2\sum_{a}\log(a)\left(\bar{\mathbf{v}} + \log(a)\bar{\mathbf{h}} - \log \mathcal{L}_{a,.}\right) = 0 \iff \Phi^*\Phi\begin{pmatrix}\bar{\mathbf{h}}\\\bar{\mathbf{v}}\end{pmatrix} = \begin{pmatrix}\mathbf{h}/2 + \mathcal{G}\\\mathbf{v}/2 + \mathcal{T}\end{pmatrix}$$
$$\mathbf{v} - 2\sum_{a}\left(\bar{\mathbf{v}} + \log(a)\bar{\mathbf{h}} - \log \mathcal{L}_{a,.}\right) = 0$$

$$\mathcal{T} = \sum_a \log \mathcal{L}_{a,.}$$
 and $\mathcal{G} = \sum_a \log(a) \log \mathcal{L}_{a,.},$

$$\forall m = \{0,1,2\}, S_m = \sum_{a} (\log a)^m, \quad \Phi^*\Phi = \begin{pmatrix} S_2 \mathbf{I} & S_1 \mathbf{I} \\ S_1 \mathbf{I} & S_0 \mathbf{I} \end{pmatrix}$$

$$\mathrm{MC}^*(\pmb{h},\pmb{v}) = rac{1}{4} \langle (\pmb{h},\pmb{v}), (\pmb{\Phi}^*\pmb{\Phi})^{-1}(\pmb{h},\pmb{v})
angle + \langle (\mathcal{G},\mathcal{T}), (\pmb{\Phi}^*\pmb{\Phi})^{-1}(\pmb{h},\pmb{v})
angle + \mathcal{C}$$

où $\mathcal C$ est une constante dépendant uniquement de $\mathcal L$.

Architecture pour la segmentation de texture Avec connexions résiduelles

Critère d'arrêt

Performances de segmentation Configuration I

	2 classes	3 classes	4 classes	
Entraîné sur la Config. I, testé sur la Config. I				
Segmentation à contours \ll libres \gg	$93,\!2\pm0,\!8\%$	$69.3\pm2.8\%$	$58.6\pm1.5\%$	
Entraîné sur 2000 images Réseau à $8\cdot 10^7$ poids / $P=2000$ Réseau à $2\cdot 10^6$ poids / $P=2000$ Réseau à $4\cdot 10^5$ poids / $P=2000$	$97.3 \pm 0.6\% 97.4 \pm 0.6\% 96.9 \pm 0.7\%$	$97.8 \pm 0.3\% \\ 98.1 \pm 0.3\% \\ 98.0 \pm 0.3\%$	$97.1 \pm 0.4\% \\ 96.8 \pm 0.5\% \\ 96.5 \pm 0.5\%$	
Entraîné sur 20 images Réseau à $8\cdot 10^7$ poids / $P=20$ Réseau à $2\cdot 10^6$ poids / $P=20$ Réseau à $4\cdot 10^5$ poids / $P=20$	$\begin{array}{c} 95.5 \pm 0.9\% \\ 95.4 \pm 1.1\% \\ 96.6 \pm 0.7\% \end{array}$	$\begin{array}{c} 97.5 \pm 0.4\% \\ 97.4 \pm 0.5\% \\ 98.0 \pm 0.4\% \end{array}$	$\begin{array}{c} 95.4 \pm 0.8\% \\ 95.9 \pm 0.7\% \\ 96.5 \pm 0.5\% \end{array}$	

Performances de segmentation Configuration II

	2 classes	3 classes	4 classes	
Entraîné sur la Config. II, testé sur la Config. II				
Segmentation à contours \ll libres \gg	$97.8 \pm 0.2\%$	$95,2 \pm 3,1\%$	$64.9\pm1.4\%$	
Entraîné sur 2000 images Réseau à $8\cdot 10^7$ poids / $P=2000$ Réseau à $2\cdot 10^6$ poids / $P=2000$ Réseau à $4\cdot 10^5$ poids / $P=2000$	$99.1 \pm 0.2\%$ $99.0 \pm 0.2\%$ $99.1 \pm 0.2\%$	$98,3 \pm 0,3\% \\ 98,5 \pm 0,3\% \\ 98,4 \pm 0,3\%$	$95,7 \pm 0,5\% \\ 95,6 \pm 0,5\% \\ 95,2 \pm 0,6\%$	
Entraîné sur 20 images Réseau à $8 \cdot 10^7$ poids / $P = 20$ Réseau à $2 \cdot 10^6$ poids / $P = 20$ Réseau à $4 \cdot 10^5$ poids / $P = 20$	$98,8 \pm 0,2\% \\ 98,6 \pm 0,3\% \\ 98,8 \pm 0,3\%$	$97,9 \pm 0,3\%$ $97,4 \pm 0,4\%$ $98,3 \pm 0,3\%$	$94,5 \pm 0,7\% \\ 93,0 \pm 0,9\% \\ 94,8 \pm 0,6\%$	

Robustesse Entraîné sur la Config. I, testé sur la Config. II

	2 classes	3 classes	4 classes	
Entraîné sur la Config. I, testé sur la Config. II				
$ \overline{ \ \ \text{Segmentation à contours} \ll \text{libres} \gg } $	$79,2 \pm 2,9\%$	$95,2 \pm 1,2\%$	$66,3 \pm 1,1\%$	
Entraîné sur 2000 images Réseau à $8\cdot 10^7$ poids / $P=2000$ Réseau à $2\cdot 10^6$ poids / $P=2000$ Réseau à $4\cdot 10^5$ poids / $P=2000$	$91,2 \pm 2,1\% \\ 87,9 \pm 2,5\% \\ 81,8 \pm 3,8\%$	65,7 ± 7,2% 69,0 ± 7,6% 65,2 ± 7,2%	55,6 ± 3,4% 50,8 ± 4,0% 46,4 ± 3,7%	
Entraîné sur 20 images Réseau à $8 \cdot 10^7$ poids / $P = 20$ Réseau à $2 \cdot 10^6$ poids / $P = 20$ Réseau à $4 \cdot 10^5$ poids / $P = 20$	$\begin{array}{c} 91.4 \pm 1.6\% \\ 92.4 \pm 1.6\% \\ 86.3 \pm 2.6\% \end{array}$	$63,3 \pm 7,1\%$ $65,6 \pm 7,4\%$ $64,9 \pm 7,2\%$	54,7 ± 3,3% 44,4 ± 3,4% 48,4 ± 3,8%	

Robustesse Entraîné sur la Config. II, testé sur la Config. I

	2 classes	2 classes 3 classes		
Entraîné sur la Config. II, testé sur la Config. I				
Segmentation à contours ≪ libres ≫	$90.9\pm2.8\%$	$66.7\pm2.5\%$	$52,\!0\pm1,\!5\%$	
Entraîné sur 2000 images Réseau à $8\cdot 10^7$ poids / $P=2000$ Réseau à $2\cdot 10^6$ poids / $P=2000$ Réseau à $5\cdot 10^5$ poids / $P=2000$	$56,2 \pm 13,5\%$ $55,1 \pm 14.0\%$ $55,5 \pm 13,8\%$	$73.5 \pm 8.2\%$ $74.9 \pm 8.2\%$ $72.6 \pm 8.1\%$	50,9 ± 3,9% 51,3 ± 4,3% 50,2 ± 3.8%	
Entraîné sur 20 images Réseau à $8\cdot 10^7$ poids / $P=20$ Réseau à $2\cdot 10^6$ poids / $P=20$ Réseau à $5\cdot 10^5$ poids / $P=20$	$57.1 \pm 13.3\%$ $55.3 \pm 14.0\%$ $62.3 \pm 11.5\%$	$71.1 \pm 8.2\% \\ 71.7 \pm 8.4\% \\ 71.0 \pm 8.2\%$	$52.6 \pm 3.8\% \\ 49.6 \pm 4.2\% \\ 54.1 \pm 3.7\%$	

Convergence de la phase d'entraînement

Évolution du score de segmentation des trois réseaux au cours de l'entraînement sur la Config. I, avec deux classes k=2

Comparaison effort de calcul ${\mathcal C}$

	\mathcal{W}	Р	\mathcal{I}	С
Segmentation à contours « libres »	2	1	10 ⁷	2 10 ⁷
Réseau à $8 \cdot 10^7$ poids / $P = \{20,2000\}$ Réseau à $2 \cdot 10^6$ poids / $P = \{20,2000\}$ Réseau à $4 \cdot 10^5$ poids / $P = \{20,2000\}$	$2 \cdot 10^6$	{20,2000}	{3000,30}	$1,2\cdot 10^{11}$

ullet ${\mathcal W}$: nombre de poids

• P : taille base d'entraînement

ullet ${\cal I}$: nombre d'*epochs*

Réseaux de neurones convolutionnels†

[†] V. Andrearczyk, https://arxiv.org/abs/1703.05230

Réseaux de neurones convolutionnels†

† V. Andrearczyk, https://arxiv.org/abs/1703.05230

Observations $\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Observations $\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Observations $\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

Observations $\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

Erreur quadratique $R(\lambda) \triangleq \mathbb{E}_{\zeta} ||\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \overline{\mathbf{x}}||^2 = \mathbb{E}_{\zeta} \widehat{R}(\mathbf{y}; \lambda)$ $\overline{\mathbf{x}}$ inconnue

Observations $\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$R(\lambda) = \mathbb{E}_{\zeta} \|\widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} + \boldsymbol{y} - \bar{\boldsymbol{x}}\|^2$$

Observations $\mathbf{y} = \bar{\mathbf{x}} + \boldsymbol{\zeta} \in \mathbb{R}^P$, $\bar{\mathbf{x}}$: vérité et $\boldsymbol{\zeta} \sim \mathcal{N}(\mathbf{0}, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$R(\lambda) = \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y} + \mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}, \mathbf{y} - \bar{\mathbf{x}} \rangle + \mathbb{E}_{\zeta} \|\mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\langle \sim \mathcal{N}(0, \rho^2 | 1) \rangle$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$R(\lambda) = \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y} + \mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}, \mathbf{y} - \bar{\mathbf{x}} \rangle + \mathbb{E}_{\zeta} \|\mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda), \zeta \rangle - 2\mathbb{E}_{\zeta} \langle \bar{\mathbf{x}} + \zeta, \zeta \rangle + \mathbb{E}_{\zeta} \|\zeta\|^{2}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\langle \sim \mathcal{N}(0, \rho^2 | 1) \rangle$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$R(\lambda) = \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y} + \mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}, \mathbf{y} - \bar{\mathbf{x}} \rangle + \mathbb{E}_{\zeta} \|\mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda), \zeta \rangle - 2\mathbb{E}_{\zeta} \langle \zeta, \zeta \rangle + \mathbb{E}_{\zeta} \|\zeta\|^{2}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\langle \sim \mathcal{N}(0, \rho^2 | 1) \rangle$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$R(\lambda) = \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y} + \mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}, \mathbf{y} - \bar{\mathbf{x}} \rangle + \mathbb{E}_{\zeta} \|\mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda), \zeta \rangle - 2\mathbb{E}_{\zeta} \langle \zeta, \zeta \rangle + \mathbb{E}_{\zeta} \|\zeta\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda), \zeta \rangle - \underline{\mathbb{E}_{\zeta} \|\zeta\|^{2}}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\zeta \sim \mathcal{N}(0, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$\begin{split} R(\lambda) &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} + \boldsymbol{y} - \bar{\boldsymbol{x}} \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y}, \boldsymbol{y} - \bar{\boldsymbol{x}} \right\rangle + \mathbb{E}_{\zeta} \left\| \boldsymbol{y} - \bar{\boldsymbol{x}} \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda), \zeta \right\rangle - 2\mathbb{E}_{\zeta} \left\langle \boldsymbol{\zeta}, \zeta \right\rangle + \mathbb{E}_{\zeta} \left\| \zeta \right\|^{2} \\ &= \mathbb{E}_{\zeta} \underline{\left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2}} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda), \zeta \right\rangle - \underline{\mathbb{E}_{\zeta} \left\| \zeta \right\|^{2}} \\ &= \mathbb{E}_{\zeta} \underline{\left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2}} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda), \zeta \right\rangle - \underline{\mathbb{E}_{\zeta} \left\| \zeta \right\|^{2}} \end{split}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\zeta \sim \mathcal{N}(0, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$\begin{split} R(\lambda) &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} + \boldsymbol{y} - \bar{\boldsymbol{x}} \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y}, \boldsymbol{y} - \bar{\boldsymbol{x}} \right\rangle + \mathbb{E}_{\zeta} \left\| \boldsymbol{y} - \bar{\boldsymbol{x}} \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda), \zeta \right\rangle - 2\mathbb{E}_{\zeta} \left\langle \zeta, \zeta \right\rangle + \mathbb{E}_{\zeta} \left\| \zeta \right\|^{2} \\ &= \mathbb{E}_{\zeta} \underbrace{\left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2}}_{\text{accessible}} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda), \zeta \right\rangle - \underbrace{\mathbb{E}_{\zeta} \left\| \zeta \right\|^{2}}_{\rho^{2}P} \end{split}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\langle \sim \mathcal{N}(0, \rho^2 | 1) \rangle$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

$$\begin{split} R(\lambda) &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} + \boldsymbol{y} - \bar{\boldsymbol{x}} \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y}, \boldsymbol{y} - \bar{\boldsymbol{x}} \right\rangle + \mathbb{E}_{\zeta} \left\| \boldsymbol{y} - \bar{\boldsymbol{x}} \right\|^{2} \\ &= \mathbb{E}_{\zeta} \left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda), \zeta \right\rangle - 2\mathbb{E}_{\zeta} \left\langle \zeta, \zeta \right\rangle + \mathbb{E}_{\zeta} \left\| \zeta \right\|^{2} \\ &= \mathbb{E}_{\zeta} \frac{\left\| \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda) - \boldsymbol{y} \right\|^{2}}{\text{accessible}} + 2\mathbb{E}_{\zeta} \left\langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \lambda), \zeta \right\rangle - \frac{\mathbb{E}_{\zeta} \left\| \zeta \right\|^{2}}{\rho^{2} P} \end{split}$$

$$\mathbb{E}_{\boldsymbol{\zeta}} \langle \widehat{\boldsymbol{x}}(\boldsymbol{y}; \boldsymbol{\lambda}), \boldsymbol{\zeta} \rangle = \int \langle \widehat{\boldsymbol{x}}(\bar{\boldsymbol{x}} + \boldsymbol{\zeta}; \boldsymbol{\lambda}), \boldsymbol{\zeta} \rangle \exp(-\frac{\|\boldsymbol{\zeta}\|^2}{2\rho^2}) \, \mathrm{d}\boldsymbol{\zeta}$$

Observations $y = \bar{x} + \zeta \in \mathbb{R}^P$, \bar{x} : vérité et $\zeta \sim \mathcal{N}(0, \rho^2 \mathbf{I})$

Estimateur paramétrique $(y; \lambda) \mapsto \widehat{x}(y; \lambda)$

Ex.
$$\widehat{\mathbf{x}}(\mathbf{y}; \lambda) = \begin{cases} \left(\mathbf{I} + \lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{y} & \text{(linéaire)} \\ \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{x}\|^{2} + \lambda \mathcal{Q}(\mathbf{D}\mathbf{x}) & \text{(non linéaire)} \end{cases}$$

Erreur quadratique $R(\lambda) \triangleq \mathbb{E}_{\zeta} ||\widehat{x}(y; \lambda) - \overline{x}||^2 = \mathbb{E}_{\zeta} \widehat{R}(y; \lambda) \overline{x}$ inconnue

$$R(\lambda) = \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y} + \mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}, \mathbf{y} - \bar{\mathbf{x}} \rangle + \mathbb{E}_{\zeta} \|\mathbf{y} - \bar{\mathbf{x}}\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda), \zeta \rangle - 2\mathbb{E}_{\zeta} \langle \zeta, \zeta \rangle + \mathbb{E}_{\zeta} \|\zeta\|^{2}$$

$$= \mathbb{E}_{\zeta} \|\widehat{\mathbf{x}}(\mathbf{y}; \lambda) - \mathbf{y}\|^{2} + 2\mathbb{E}_{\zeta} \langle \widehat{\mathbf{x}}(\mathbf{y}; \lambda), \zeta \rangle - \underline{\mathbb{E}_{\zeta} \|\zeta\|^{2}}$$
accessible

 $\mathbb{E}_{\boldsymbol{\zeta}}\langle\widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\lambda}),\!\boldsymbol{\zeta}\rangle = \int \langle\widehat{\boldsymbol{x}}(\bar{\boldsymbol{x}}+\boldsymbol{\zeta};\boldsymbol{\lambda}),\!\boldsymbol{\zeta}\rangle \exp(-\frac{\|\boldsymbol{\zeta}\|^2}{2\rho^2}) \,\mathrm{d}\boldsymbol{\zeta} \stackrel{\text{I.P.P.}}{=} \rho^2 \mathbb{E}_{\boldsymbol{\zeta}} \mathrm{tr}\left(\partial_{\boldsymbol{y}}\widehat{\boldsymbol{x}}(\boldsymbol{y};\boldsymbol{\lambda})\right)$

Estimateur séquentiel et différentiation récursive

$$\Lambda \triangleq (\lambda, \alpha), \quad \mathbf{U}_{\Lambda} : (\mathbf{h}, \mathbf{v}) \mapsto \lambda[\alpha \mathbf{D} \mathbf{h}, \mathbf{D} \mathbf{v}]$$

Primal-dual accéléré

$$\widetilde{\mathbf{z}}^{n} = \mathbf{z}^{n} + \tau_{n} \mathbf{U}_{\Lambda} \mathbf{w}^{n}$$

$$\mathbf{z}^{n+1} = \operatorname{prox}_{\tau_{n} \left(\| \cdot \|_{2,1} \right)^{*}} \left(\widetilde{\mathbf{z}}^{n} \right)$$

$$\widetilde{\mathbf{x}}^{n} = \mathbf{x}^{n} - \sigma_{n} \mathbf{U}_{\Lambda}^{*} \mathbf{z}^{n+1}$$

$$\mathbf{x}^{n+1} = \operatorname{prox}_{\sigma_{n} \| \mathbf{D} \mathcal{L} - \mathbf{\Phi} \cdot \|_{2}^{2}} \left(\widetilde{\mathbf{x}}^{n} \right)$$

$$\theta_{n} = \left(1 + 2\mu \sigma_{n} \right)^{-\frac{1}{2}},$$

$$\tau_{n+1} = \tau_{n} / \theta_{n}, \ \sigma_{n+1} = \theta_{n} \sigma_{n}$$

$$\mathbf{w}^{n+1} = \mathbf{x}^{n} + \theta^{n} \left(\mathbf{x}^{n+1} - \mathbf{x}^{n} \right)$$

Primal-dual accéléré différentié

$$\begin{split} &\partial_{\Lambda}\widetilde{\mathbf{z}}^{n} = \partial_{\Lambda}\mathbf{z}^{n} + \tau_{n}\mathbf{U}_{\Lambda}\partial_{\Lambda}\mathbf{w}^{n} + \tau_{n}\partial_{\Lambda}\mathbf{U}_{\Lambda}\mathbf{w}^{n} \\ &\partial_{\Lambda}\mathbf{z}^{n+1} = \partial_{\tilde{\mathbf{z}}}\mathrm{prox}_{\tau_{n}\left(\|\cdot\|_{2,1}\right)^{*}}\left(\widetilde{\mathbf{z}}^{n}\right)\left[\partial_{\Lambda}\widetilde{\mathbf{z}}^{n}\right] \\ &\partial_{\Lambda}\widetilde{\mathbf{x}}^{n} = \partial_{\Lambda}\mathbf{x}^{n} - \sigma_{n}\mathbf{U}_{\Lambda}^{*}\partial_{\Lambda}\mathbf{z}^{n+1} - \sigma_{n}\partial_{\Lambda}\mathbf{U}_{\Lambda}\mathbf{z}^{n+1} \\ &\partial_{\Lambda}\mathbf{x}^{n+1} = \partial_{\tilde{\mathbf{x}}}\mathrm{prox}_{\sigma_{n}\|\mathbf{D}\mathcal{L} - \Phi \cdot \|_{2}^{2}}\left(\widetilde{\mathbf{x}}^{n}\right)\left[\partial_{\Lambda}\widetilde{\mathbf{x}}^{n}\right] \end{split}$$

$$\partial_{\pmb{\Lambda}} \pmb{w}^{n+1} = \partial_{\pmb{\Lambda}} \pmb{x}^n + \theta^n \left(\partial_{\pmb{\Lambda}} \pmb{x}^{n+1} - \partial_{\pmb{\Lambda}} \pmb{x}^n \right)$$

Recherche automatique des paramètres de régularisation Moyenne sur dix réalisations de texture

Matrice de covariance estimée ${\cal S}$

$$\widehat{\lambda}^{\mathsf{qN}} = 1,74 \pm 0,43$$
 $\widehat{lpha}^{\mathsf{qN}} = 9,62 \pm 0,70$

Recherche automatique des paramètres de régularisation Moyenne sur dix réalisations de texture

Matrice de covariance estimée ${\cal S}$

$$\widehat{\lambda}^{\mathsf{qN}} = 1.74 \pm 0.43$$
 $\widehat{\alpha}^{\mathsf{qN}} = 9.62 \pm 0.70$

Recherche automatique des paramètres de régularisation

Moyenne sur dix réalisations de texture

Matrice de covariance estimée $\widehat{\mathcal{S}}$

$$\widehat{\lambda}^{\mathsf{qN}} = 1,68 \pm 0,37$$
 $\widehat{\alpha}^{\mathsf{qN}} = 6,70 \pm 0,58$

Recherche automatique des paramètres de régularisation

Moyenne sur dix réalisations de texture

Matrice de covariance estimée $\widehat{\mathcal{S}}$

$$\hat{\lambda}^{qN} = 1,68 \pm 0,37$$
 $\hat{\alpha}^{qN} = 6,70 \pm 0,58$

Initialisation quasi-Newton

• Hyperparamètres ${m \Lambda}^{[0]} = \left(\lambda^{[0]}, \! lpha^{[0]}
ight)$, avec

$$\lambda^{[0]} = \frac{\mathrm{tr}(\mathcal{S})}{2\,\mathrm{TV}(\widehat{\pmb{\nu}}^{\mathrm{RL}}(\mathcal{L}))}, \quad \text{ et } \quad \alpha^{[0]} = \frac{\mathrm{TV}(\widehat{\pmb{\nu}}^{\mathrm{RL}}(\mathcal{L}))}{\mathrm{TV}(\widehat{\pmb{h}}^{\mathrm{RL}}(\mathcal{L}))}.$$

Approximation de l'inverse de la hessienne

$$m{H}^{[0]} = \mathrm{diag}\left(\left|rac{\kappa\lambda^{[0]}}{\partial_{\lambda}\widehat{R}_{
u,m{arepsilon}}(m{\mathcal{L}};m{\Lambda}^{[0]}|m{\mathcal{S}})}
ight|, \left|rac{\kappalpha^{[0]}}{\partial_{lpha}\widehat{R}_{
u,m{arepsilon}}(m{\mathcal{L}};m{\Lambda}^{[0]}|m{\mathcal{S}})}
ight|
ight).$$