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Texture segmentation




Texture segmentation

Purpose: obtain a partition of the image into @ homogeneous regions

Q=0:1...1Q

Q,: pixels corresponding to the g'" texture
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Piecewise monofractal model

Fractals attributes

2

= variance o amplitude of variations

= local regularity h scale invariance

|F(x) = F(y)] < o(x)|x — y[")

NV

h(x)=h =09  h(x)=h =03

Segmentation

2

» o° and h piecewise constant

» region €, characterized by (02, hy)
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Unsupervised texture segmentation

Joint attributes estimation and regularization

Logarithm of wavelet leaders: £;(X) o v( . +J ill _
i 0 log(o regularity

Total Variation (TV) penalization
Pa(v,h) =TV (v) +aTV(h)
with TV(x) = ||Dx||2,1 the isotropic Total Variation involving

® Horizontal and vertical differences D = [D;, D],

® Mixed norm: z = [z1;...,;z], |z|21= ZHZ(Q)”Q
neQ

Z ||V+Jh_ej(x)”2 + )‘Pa(vvh)

J Least-Squares Total Variation
— estimate fractal attributes — favors piecewise constancy
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Joint attributes estimation and regularization

Logarithm of wavelet leaders: £;(X) o v( . +J ill _
i 0 log(o regularity

Total Variation (TV) penalization
Pa(v,h) =TV (v) +aTV(h)
with TV(x) = ||Dx||2,1 the isotropic Total Variation involving

® Horizontal and vertical differences D = [D;, D],

® Mixed norm: z = [z1;...,;z], |z|21= ZHZ(Q)”Q
neQ

~ T . . 2
(v, h) = argmin E v+ jh—£;(X)| + A Po(v, h)
v,h J Least-Squares Total Variation
— estimate fractal attributes — favors piecewise constancy



Unsupervised texture segmentation

Joint attributes estimation and regularization for TV-based segmentation

(v,ﬁ) = argmin S v bGP+ A Pa(v, h)

j Least-Squares Total Variation
— estimate fractal attributes — favors piecewise constancy

Example of Q = 2 class segmentation
Textured True
image X segmentation




Unsupervised texture segmentation

Joint attributes estimation and regularization for TV-based segmentation

(v,ﬁ) = argmin S v bGP+ A Pa(v, h)

j Least-Squares Total Variation
— estimate fractal attributes — favors piecewise constancy

Example of Q = 2 class segmentation
Textured True Joint TV
image X segmentation estimate h




Unsupervised texture segmentation

Joint attributes estimation and regularization for TV-based segmentation

(v,ﬁ) —argmin 3 [v+jh—gX)IP +  APa(v.h)

v,h j Least-Squares Total Variation

— estimate fractal attributes — favors piecewise constancy

Example of Q = 2 class segmentation
Textured True Joint TV Threshold estimate!
image X segmentation estimate h M joine = To(h)

f(Cai, 2013)
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input Neural Network
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—

X denoted Ryg

where § € RY are
the network parameters
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Supervised texture segmentation
Deep learning of Convolutional Neural Networks (CNN)

input Neural Network output
image successive layers estimated label map
— — —~
X denoted Ry Mrcon

where 6 € RW are h‘

the network parameters q

Supervised learning:

— minimization of the loss d summed over a learning dataset
{(X©O, ME)) s=1,...,8}
with X(5): piecewise homogeneous texture, M) true label map

S
f = argmin d (Ro(X®)), M©®



Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Schematic representation of the “simplest” net with 4 - 10° weights
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Neural network architecture

Three proposed networks of increasing number of weights W

® )V = 4.10° weights net: 2 blocks, 1 skip connection
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Neural network architecture

Three proposed networks of increasing number of weights W

® )V = 4.10° weights net: 2 blocks, 1 skip connection

1 v 2 0 F
- >
® )W =2.10° weights net: 3 blocks, 2 skip connections
(13 (2,303 . (F.
Z
s |




Learning dataset of piecewise monofractal textures

Geometry of underlying true label maps
Learning dataset: {(X(S), M(s)) ,s=1,... ,S}, S = 2000 with

X(®): piecewise homogeneous texture, M) true label map
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Learning dataset of piecewise monofractal textures

Geometry of underlying true label maps
Learning dataset: {(X(S), M(S)) ,s=1,... ,S}, S = 2000 with

X(®): piecewise homogeneous texture, M) true label map

Purpose: Texture segmentation with Q € {2,3,4} classes . ..
.. necessary that no shape is learned.

Random segmentation masks
> » ‘
A ® (

Two classes (Q =2)  Three classes (Q = Four classes (

Partition: Q= Ug):lﬂgs), where Qgs) = {Q| M®)(n) = q}



Learning dataset of piecewise monofractal textures

Fractal texture samples
Learning dataset: {(X(S), M(s)) ,s=1,... ,S}, S = 2000 with

X(®): piecewise homogeneous texture, M) true label map
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Learning dataset of piecewise monofractal textures

Fractal texture samples
Learning dataset: {(X(S), M(S)) ,s=1,... ,S}, S = 2000 with
X(®): piecewise homogeneous texture, M) true label map

Texture configuration {(62,hg), a=1,...,Q}

Region Q: fractal texture characterized by (0(2,, hq)
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Learning dataset of piecewise monofractal textures

Fractal texture samples
Learning dataset: {(X(S), M(S)) ,s=1,... ,S}, S = 2000 with
X(®): piecewise homogeneous texture, M) true label map

Texture configuration {(62,hg), a=1,...,Q}

Region Q: fractal texture characterized by (0(2,, hq)
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Unsupervised texture segmentation

Tuning of the regularization parameters (A, «)

=argmin Y ||v+jh—£(X)|?

v,h j Least-Squares
— estimate fractal attributes

+

A Po(v, h)

Total Variation
— favors piecewise constancy
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Unsupervised texture segmentation

Tuning of the regularization parameters (A, «)

(V, E) = argmin Z |v+jh—£(X)? + A Py(v, h)

v,h ol Variation

’ J Least-Squares Total Variation
— estimate fractal attributes — favors piecewise constancy
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— estimate fractal attributes — favors piecewise constancy
Textured True label Segmentation
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Unsupervised texture segmentation

Tuning of the regularization parameters (A, «)

(’\7, E) = argmin Z |v+jh—£(X)? + A Py(v, h)

v,h j Least-Squares Total Variation
— estimate fractal attributes — favors piecewise constancy
Textured True label Segmentation

image X() map M) score

logyo(A)

Grid search minimizing the segmentation error on X(1)
— optimal (AT, af)

— frozen for computing performance on a testing set of 100 images 1



Supervised learning

s
Minimization of the loss 6 = argmin Z d (Rg(X(s))7 M(s)>
1< N4 —

using backward propagation of the gradient
= ADAM optimizer with AMSGrad
= learning rate 2 - 10~*
= batch size 20 images

= 30 epochs
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Supervised learning

S

Minimization of the loss 6 = argmin Z d (Rg(X(s))7 M(S))
1< N4 —

using backward propagation of the gradient
= ADAM optimizer with AMSGrad
= learning rate 2 - 10~*

= batch size 20 images

= 30 epochs

poy= =,
0.
—
=
S 0.6
&

0.4
10° 10
epochs
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Segmentation performance on a testing set of 100 images

Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set
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Segmentation performance on a testing set of 100 images

Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the

testing set

Two regions Q = 2

Config. |
Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
93.2+08% 97.3+£06% 97.4+0.6% 96.9+£0.7%

Config.
Joint TV FCNN 8-10" FCNN 2-10° FCNN 4-10°
97.84+02% 99.1+02% 99.0+0.2%  99.1+0.2%

13



Segmentation performance on a testing set of 100 images

Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
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Config. |

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
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Segmentation performance on a testing set of 100 images

Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the

testing set

Three regions Q@ = 3

Config. |
Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
69.3+28% 97.8+03% 98.1+0.3% 98.0+0.3%

Config.
Joint TV FCNN 8-10" FCNN 2-10° FCNN 4-10°
952+4+3.1% 983+03% 985+0.3% 98.4+0.3%
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Segmentation performance on a testing set of 100 images

Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Four regions Q@ = 4
Config. |

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
586+ 1.5% 97.1+04% 96.8+05% 96.5+0.5%
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Segmentation performance on a testing set of 100 images

Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the

testing set

Four regions Q@ = 4

Config. |
Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
58.6+15% 97.1+0.4% 96.8+0.5% 96.5+0.5%

Config.
Joint TV FCNN 8-10" FCNN 2-10° FCNN 4-10°
649+1.4% 95.7+05% 95.6+0.5% 952+0.6%
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Segmentation performance on a testing set of 100 images

Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Two regions Q = 2

Trained on Config. |, tested on Config. Il

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
79.24+29% 91.2+21% 87.9+25% 81.8+3.8%
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Segmentation performance on a testing set of 100 images

Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Two regions Q = 2

Trained on Config. |, tested on Config. Il

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
79.24+29% 91.2+21% 87.9+25% 81.8+3.8%

Trained on Config. Il, tested on Config. |

Joint TV FCNN 8107 FCNN 2-10° FCNN 4-10°
90.9+2.8% 56.2+13.5% 55.1+14.0% 55.5+13.8%
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Segmentation performance on a testing set of 100 images

Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Three regions Q@ = 3

Trained on Config. |, tested on Config. Il

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
952+12% 65.7+£72% 69.0+7.6% 65.2+£7.2%
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Segmentation performance on a testing set of 100 images

Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Three regions Q@ = 3

Trained on Config. |, tested on Config. Il

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
952+12% 65.7+£72% 69.0+7.6% 65.2+£7.2%

Trained on Config. Il, tested on Config. |

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
66.7£25% 735+82% 749+82% 72.6+8.1%
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Segmentation performance on a testing set of 100 images

Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Four regions Q@ = 4

Trained on Config. |, tested on Config. Il

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
66.3+1.1% 55.6+3.4% 50.8+4.0% 46.4+£3.7%
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Segmentation performance on a testing set of 100 images

Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Four regions Q@ = 4

Trained on Config. |, tested on Config. Il

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
66.3+1.1% 55.6+3.4% 50.8+4.0% 46.4+£3.7%

Trained on Config. Il, tested on Config. |

Joint TV FCNN 8-107 FCNN 2-10° FCNN 4-10°
520+ 1.5% 50.9+3.9% 51.3+43% 50.2+3.8%
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® FCNN provides very accurate texture segmentations
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Conclusion and perspectives

FCNN provides very accurate texture segmentations
Supervised networks outperform unsupervised Joint TV
—> especially when the number of classes @ is large
Reduced complexity VW does not degrade performance
FCNN not robust to mismatch between training and testing sets
— for small Q Joint TV is more robust
FCNN provide very irregular contours

True label map Joint TV FCNN 8- 107

LISTA Learning Iterative Shrinkage and Thresholding Algorithm
— interpretation of sparse coding minimization scheme as a CNN
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