

Scale-free Texture Segmentation: Expert Feature-based versus Deep Learning strategies

B. Pascal¹, V. Mauduit¹, N. Pustelnik¹, P. Abry¹

28th European Signal Processing Conference (EUSIPCO 2020) 18 - 22 January 2021

¹ Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France, firstname.lastname@ens-lyon.fr

Work supported by CBP (Blaise Pascal Center) with the use of SIDUS (Single Instance Distributing Universal System) implemented by E. Quemener.

Texture segmentation

Texture segmentation

Purpose: obtain a partition of the image into Q homogeneous regions $\Omega = \Omega_1 \bigsqcup \ldots \bigsqcup \Omega_Q$ Ω_q : pixels corresponding to the $q^{\rm th}$ texture

Fractals attributes

• variance σ^2 amplitude of variations

Fractals attributes

- local regularity h scale invariance

• variance σ^2 amplitude of variations

Fractals attributes

н.

variance σ^2 amplitude of variations

local regularity h н.

scale invariance

$$|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$$

Fractals attributes

н.

н.

variance σ^2 amplitude of variations local regularity *h* scale invariance $|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0.3$$

Fractals attributes

- variance σ^2 amplitude of variations local regularity h scale invariance $|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$.3

$$h(x) \equiv h_1 = 0.9 \qquad h(x) \equiv h_2 = 0$$

Segmentation

 $\triangleright \sigma^2$ and *h* piecewise constant

$$(\sigma_1^2, h_1)$$

wytwin (σ_1^2, h_1)
 (σ_2^2, h_2)

Fractals attributes

- variance σ^2 amplitude of variations local regularity *h* scale invariance $|f(x) - f(y)| \le \sigma(x)|x - y|^{h(x)}$ $h(x) \equiv h_1 = 0.9$ $h(x) \equiv h_2 = 0.3$

Segmentation

- $\triangleright \sigma^2$ and *h* piecewise constant
- ▶ region Ω_q characterized by (σ_q^2, h_q)

$$(\sigma_1^2,h_1)$$

Joint attributes estimation and regularization

Logarithm of wavelet *leaders*: $\ell_j(\boldsymbol{X})$

Joint attributes estimation and regularization

Logarithm of wavelet *leaders*: $\ell_j(\mathbf{X}) \simeq \mathbf{v}_{2^j \to 0} \mathbf{v}_{\operatorname{color}(\sigma^2)} + j \mathbf{h}_{\operatorname{regularity}}$

$$\sum_{j} \frac{\|\mathbf{v} + j\mathbf{h} - \ell_j(\mathbf{X})\|^2}{\text{Least-Squares}} \\ \rightarrow \text{estimate fractal attributes}$$

Joint attributes estimation and regularization

Logarithm of wavelet *leaders*:
$$\ell_j(\mathbf{X}) \simeq \mathbf{v}_{2^j \to 0} \simeq \mathbf{v}_{(\sigma^2)} + j \frac{\mathbf{h}}{\mathbf{h}}_{\text{regularity}}$$

Total Variation (TV) penalization

$$\mathcal{P}_{\alpha}(\mathbf{v}, \mathbf{h}) = \mathrm{TV}(\mathbf{v}) + \alpha \mathrm{TV}(\mathbf{h})$$

with $TV(\mathbf{x}) = \|\mathbf{D}\mathbf{x}\|_{2,1}$ the isotropic Total Variation involving

- Horizontal and vertical differences $\mathbf{D} = [\mathbf{D}_1, \mathbf{D}_2]$,
- Mixed norm: $\mathbf{z} = [\mathbf{z}_1; ...,; \mathbf{z}_l], \quad \|\mathbf{z}\|_{2,1} = \sum \|\mathbf{z}(\underline{n})\|_2$ $n \in \Omega$

$$\sum_{j=1}^{k} \frac{\|\mathbf{v}+j\mathbf{h}-\ell_j(\mathbf{X})\|}{2}$$

 $\frac{|\mathbf{v} + j\mathbf{h} - \ell_j(\mathbf{X})||^2}{\text{Least-Squares}} + \frac{\lambda \ \mathcal{P}_{\alpha}(\mathbf{v}, \mathbf{h})}{\text{Total Variation}} \rightarrow \frac{1}{\text{favors piecewise constancy}}$

Joint attributes estimation and regularization

Logarithm of wavelet *leaders*:
$$\ell_j(\mathbf{X}) \simeq \mathbf{v}_{2^j \to 0} = i \int_{\text{regularity}} h_{\text{regularity}}$$

Total Variation (TV) penalization

$$\mathcal{P}_{\alpha}(\mathbf{v}, \mathbf{h}) = \mathrm{TV}(\mathbf{v}) + \alpha \mathrm{TV}(\mathbf{h})$$

with $TV(\mathbf{x}) = \|\mathbf{D}\mathbf{x}\|_{2,1}$ the isotropic Total Variation involving

Horizontal and vertical differences D = [D₁, D₂],

• Mixed norm:
$$\mathbf{z} = [\mathbf{z}_1; \dots, ; \mathbf{z}_l], \quad \|\mathbf{z}\|_{2,1} = \sum_{\underline{n} \in \Omega} \|\mathbf{z}(\underline{n})\|_2$$

$$\left(\widehat{\boldsymbol{\nu}}, \widehat{\boldsymbol{h}} \right) = \underset{\boldsymbol{\nu}, \boldsymbol{h}}{\operatorname{argmin}} \sum_{j} \underbrace{ \| \boldsymbol{\nu} + j\boldsymbol{h} - \boldsymbol{\ell}_j(\boldsymbol{X}) \|^2}_{\text{Least-Squares}} + \underbrace{ \lambda \ \mathcal{P}_{\alpha}(\boldsymbol{\nu}, \boldsymbol{h})}_{\text{Total Variation}} \\ \rightarrow \text{ estimate fractal attributes} + \underbrace{ \lambda \ \mathcal{P}_{\alpha}(\boldsymbol{\nu}, \boldsymbol{h})}_{\text{Favors piecewise constancy}}$$

Joint attributes estimation and regularization for TV-based segmentation

$$\left(\widehat{\boldsymbol{v}}, \widehat{\boldsymbol{h}}\right) = \operatorname*{argmin}_{\boldsymbol{v}, \boldsymbol{h}} \sum_{j} \frac{\|\boldsymbol{v} + j\boldsymbol{h} - \ell_j(\boldsymbol{X})\|^2}{|\operatorname{Least-Squares}|} +$$

$$\lambda \mathcal{P}_{\alpha}(\mathbf{v}, \mathbf{h})$$

Total Variation favors piecewise constancy

Example of Q = 2 class segmentation

Textured	True
image X	segmentation

Joint attributes estimation and regularization for TV-based segmentation

$$(\widehat{\boldsymbol{v}}, \widehat{\boldsymbol{h}}) = \underset{\boldsymbol{v}, \boldsymbol{h}}{\operatorname{argmin}} \sum_{j} \frac{\|\boldsymbol{v}+j\boldsymbol{h}-\ell_{j}(\boldsymbol{X})\|^{2}}{\operatorname{Least-Squares}} + \lambda \frac{\mathcal{P}_{\alpha}(\boldsymbol{v}, \boldsymbol{h})}{\operatorname{Total Variation}} \rightarrow \underset{j \neq \text{favors piecewise constancy}}{\operatorname{Total Variation}}$$

Example of
$$Q = 2$$
 class segmentation

Textured	True	<i>Joint</i> TV
image X	segmentation	estimate $\widehat{m{h}}$

Joint attributes estimation and regularization for TV-based segmentation

$$\left(\widehat{\boldsymbol{v}}, \widehat{\boldsymbol{h}}\right) = \underset{\boldsymbol{v}, \boldsymbol{h}}{\operatorname{argmin}} \sum_{j} \frac{\|\boldsymbol{v}+j\boldsymbol{h}-\ell_j(\boldsymbol{X})\|^2}{\underset{\boldsymbol{c} \neq \text{ start-Squares}}{\operatorname{Total Variation}}} + \frac{\lambda \mathcal{P}_{\alpha}(\boldsymbol{v}, \boldsymbol{h})}{\underset{\boldsymbol{T} \text{ total Variation}}{\operatorname{Total Variation}}}$$

Example of Q = 2 class segmentation

TexturedTrueJoint TVThreshold estimate[†]image \boldsymbol{X} segmentationestimate $\widehat{\boldsymbol{h}}$ $\widehat{\boldsymbol{M}}_{Joint} = \mathcal{T}_Q(\widehat{\boldsymbol{h}})$

†(Cai, 2013)

Supervised texture segmentation Deep learning of Convolutional Neural Networks (CNN)

Deep learning of Convolutional Neural Networks (CNN)

input			
image X			

Deep learning of Convolutional Neural Networks (CNN)

input	Neural Network
image X	\longrightarrow successive layers denoted $\mathcal{R}_{ heta}$
	where $ heta \in \mathbb{R}^{\mathcal{W}}$ are the network parameters

Deep learning of Convolutional Neural Networks (CNN)

input	Neural Network	output
image X	${\longrightarrow}$ successive layers denoted $\mathcal{R}_{ heta}$	$\longrightarrow rac{estimated label map}{\widehat{\pmb{M}}_{\mathrm{FCN}}}$
	where $ heta \in \mathbb{R}^{\mathcal{W}}$ are the network parameters	87

Deep learning of Convolutional Neural Networks (CNN)

input	Neural Network	output
image X		$\longrightarrow rac{estimated label map}{\widehat{\pmb{M}}_{\mathrm{FCN}}}$
	where $\theta \in \mathbb{R}^{\mathcal{W}}$ are the network parameters	87.

Supervised learning:

 $\begin{array}{l} \longrightarrow \mbox{ minimization of the loss d summed over a learning dataset} \\ \left\{ \left(\pmb{X}^{(s)}, \pmb{M}^{(s)} \right), \, s = 1, \ldots, \mathcal{S} \right\} \\ \mbox{ with $\pmb{X}^{(s)}$: piecewise homogeneous texture, $\pmb{M}^{(s)}$ true label map} \label{eq:mass_static_stat$

Deep learning of Convolutional Neural Networks (CNN)

input	Neural Network	output
image X	\longrightarrow successive layers denoted $\mathcal{R}_{ heta}$	$\longrightarrow rac{estimated label map}{\widehat{\pmb{M}}_{\mathrm{FCN}}}$
	where $ heta \in \mathbb{R}^{\mathcal{W}}$ are the network parameters	87

Supervised learning:

 \longrightarrow minimization of the loss d summed over a learning dataset

$$\left\{ \left(\pmb{X}^{(s)}, \pmb{M}^{(s)} \right), \, s = 1, \dots, \mathcal{S} \right\}$$
 with $\pmb{X}^{(s)}$: piecewise homogeneous texture, $\boldsymbol{M}^{(s)}$ true label map

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^{\mathcal{W}}} \sum_{s=1}^{\mathcal{S}} d\left(\mathcal{R}_{\theta}(\boldsymbol{X}^{(s)}), \boldsymbol{M}^{(s)}\right)$$

Schematic representation of the "simplest" net with $4\cdot 10^5$ weights

Textured image **X**

 256×256 pixels

Schematic representation of the "simplest" net with $4 \cdot 10^5$ weights

Schematic representation of the "simplest" net with $4 \cdot 10^5$ weights

Neural network architecture Schematic representation of the "simplest" net with $4 \cdot 10^5$ weights

138 × 138 × Q

Neural network architecture Schematic representation of the "simplest" net with $4 \cdot 10^5$ weights

Neural network architecture Schematic representation of the "simplest" net with $4 \cdot 10^5$ weights

Neural network architecture Schematic representation of the "simplest" net with $4 \cdot 10^5$ weights

Three proposed networks of increasing number of weights $\ensuremath{\mathcal{W}}$

• $\mathcal{W}=4\cdot 10^5$ weights net: 2 blocks, 1 skip connection

Three proposed networks of increasing number of weights $\ensuremath{\mathcal{W}}$

• $\mathcal{W}=4\cdot 10^5$ weights net: 2 blocks, 1 skip connection

• $W = 2 \cdot 10^6$ weights net: 3 blocks, 2 skip connections

Three proposed networks of increasing number of weights $\ensuremath{\mathcal{W}}$

• $\mathcal{W}=4\cdot 10^5$ weights net: 2 blocks, 1 skip connection

• $\mathcal{W} = 2 \cdot 10^6$ weights net: 3 blocks, 2 skip connections

• $W = 8 \cdot 10^7$ weights net: 4 blocks, 3 skip connections

Learning dataset of piecewise monofractal textures Geometry of underlying true label maps

Learning dataset: $\{ (\boldsymbol{X}^{(s)}, \boldsymbol{M}^{(s)}), s = 1, \dots, S \}$, S = 2000 with

 $\pmb{X}^{(s)}$: piecewise homogeneous texture, $\pmb{M}^{(s)}$ true label map
Learning dataset: $\{ (\boldsymbol{X}^{(s)}, \boldsymbol{M}^{(s)}), s = 1, \dots, S \}$, S = 2000 with

 $X^{(s)}$: piecewise homogeneous texture, $M^{(s)}$ true label map

Learning dataset: $\{ (\mathbf{X}^{(s)}, \mathbf{M}^{(s)}), s = 1, \dots, S \}$, S = 2000 with

 $X^{(s)}$: piecewise homogeneous texture, $M^{(s)}$ true label map

Purpose: **Texture** segmentation with $Q \in \{2, 3, 4\}$ classes ...

 $\underline{\text{Learning dataset:}} \ \left\{ \left(\boldsymbol{X}^{(s)}, \boldsymbol{M}^{(s)} \right), \, s = 1, \dots, \mathcal{S} \right\}, \, \mathcal{S} = 2000 \text{ with}$

 $\boldsymbol{X}^{(s)}$: piecewise homogeneous texture, $\boldsymbol{M}^{(s)}$ true label map

Purpose: **Texture** segmentation with $Q \in \{2, 3, 4\}$ classes . . .

... necessary that no **shape** is learned.

 $\underline{\text{Learning dataset:}} \ \left\{ \left(\boldsymbol{X}^{(s)}, \boldsymbol{M}^{(s)} \right), \, s = 1, \dots, \mathcal{S} \right\}, \, \mathcal{S} = 2000 \text{ with}$

 $X^{(s)}$: piecewise homogeneous texture, $M^{(s)}$ true label map

<u>Purpose:</u> **Texture** segmentation with $Q \in \{2, 3, 4\}$ classes necessary that no **shape** is learned.

Random segmentation masks

 $\underline{\text{Learning dataset:}} \ \left\{ \left(\boldsymbol{X}^{(s)}, \boldsymbol{M}^{(s)} \right), \, s = 1, \dots, \mathcal{S} \right\}, \, \mathcal{S} = 2000 \text{ with}$

 $\boldsymbol{X}^{(s)}$: piecewise homogeneous texture, $\boldsymbol{M}^{(s)}$ true label map

<u>Purpose:</u> **Texture** segmentation with $Q \in \{2, 3, 4\}$ classes necessary that no **shape** is learned.

Random segmentation masks

Two classes (Q = 2) Three classes (Q = 3) Four classes (Q = 4)
Partition:
$$\Omega = \bigcup_{q=1}^{Q} \Omega_q^{(s)}$$
, where $\Omega_q^{(s)} = \left\{ \underline{n} \mid M^{(s)}(\underline{n}) = q \right\}$

Learning dataset: $\{(\boldsymbol{X}^{(s)}, \boldsymbol{M}^{(s)}), s = 1, \dots, S\}$, S = 2000 with

 $X^{(s)}$: piecewise homogeneous texture, $M^{(s)}$ true label map

Learning dataset: $\{(\mathbf{X}^{(s)}, \mathbf{M}^{(s)}), s = 1, \dots, S\}$, S = 2000 with

 $X^{(s)}$: piecewise homogeneous texture, $M^{(s)}$ true label map

Texture configuration

$$\left\{\left(\sigma_{q}^{2},h_{q}
ight),\,q=1,\ldots,Q
ight\}$$

Region Ω_q : fractal texture characterized by (σ_q^2, h_q)

Learning dataset: $\{(\mathbf{X}^{(s)}, \mathbf{M}^{(s)}), s = 1, ..., S\}$, S = 2000 with

 $X^{(s)}$: piecewise homogeneous texture, $M^{(s)}$ true label map

Texture configuration

 $\left\{\left(\sigma_{q}^{2},h_{q}
ight),\,q=1,\ldots,Q
ight\}$

Region Ω_q : fractal texture characterized by (σ_q^2, h_q)

Learning dataset: $\{(\mathbf{X}^{(s)}, \mathbf{M}^{(s)}), s = 1, ..., S\}$, S = 2000 with

 $X^{(s)}$: piecewise homogeneous texture, $M^{(s)}$ true label map

Texture configuration

 $\left\{\left(\sigma_{q}^{2},h_{q}
ight),\ q=1,\ldots,Q
ight\}$

Region Ω_q : fractal texture characterized by (σ_q^2, h_q)

Tuning of the regularization parameters (λ, α)

$$\left(\widehat{\pmb{v}}, \widehat{\pmb{h}}\right) = \operatorname*{argmin}_{\pmb{v}, \pmb{h}} \sum_{j} \frac{\|\pmb{v} + j\pmb{h} - \ell_j(\pmb{X})\|^2}{\text{Least-Squares}} +$$

 \rightarrow estimate fractal attributes

$$\lambda \mathcal{P}_{\alpha}(\mathbf{v}, \mathbf{h})$$

 $\begin{array}{c} \textbf{Total Variation} \\ \rightarrow \text{ favors piecewise constancy} \end{array}$

Tuning of the regularization parameters (λ, α)

$$\begin{aligned} & \left(\hat{\boldsymbol{v}}, \hat{\boldsymbol{h}} \right) = \underset{\boldsymbol{v}, \boldsymbol{h}}{\operatorname{argmin}} \sum_{j} \underbrace{ \frac{\|\boldsymbol{v} + j\boldsymbol{h} - \ell_j(\boldsymbol{X})\|^2}{\operatorname{Least-Squares}}}_{\rightarrow \text{ estimate fractal attributes}} + \underbrace{ \begin{array}{c} \lambda \mathcal{P}_{\alpha}(\boldsymbol{v}, \boldsymbol{h}) \\ \text{Total Variation} \\ \rightarrow \text{ favors piecewise constancy} \end{aligned} \\ & \text{Textured} \\ & \text{image } \boldsymbol{X}^{(1)} \\ & \text{map } \boldsymbol{M}^{(1)} \end{aligned}$$

Tuning of the regularization parameters (λ, α)

Tuning of the regularization parameters (λ, α)

Grid search minimizing the segmentation error on $\mathbf{X}^{(1)}$ \longrightarrow optimal $(\lambda^{\dagger}, \alpha^{\dagger})$

Tuning of the regularization parameters (λ, α)

Grid search minimizing the segmentation error on $X^{(1)}$

- \rightarrow optimal $(\lambda^{\dagger}, \alpha^{\dagger})$
- \longrightarrow frozen for computing performance on a testing set of 100 images

Supervised learning

$$\text{Minimization of the loss} \quad \widehat{\theta} = \argmin_{\theta \in \mathbb{R}^{\mathcal{W}}} \sum_{s=1}^{\mathcal{S}} d\left(\mathcal{R}_{\theta}(\boldsymbol{X}^{(s)}), \boldsymbol{M}^{(s)}\right)$$

using backward propagation of the gradient

- ADAM optimizer with AMSGrad
- learning rate $2 \cdot 10^{-4}$
- batch size 20 images
- 30 epochs

Supervised learning

$$\text{Minimization of the loss} \quad \widehat{\theta} = \argmin_{\theta \in \mathbb{R}^{\mathcal{W}}} \sum_{s=1}^{\mathcal{S}} d\left(\mathcal{R}_{\theta}(\boldsymbol{X}^{(s)}), \boldsymbol{M}^{(s)}\right)$$

using backward propagation of the gradient

- ADAM optimizer with AMSGrad
- learning rate $2 \cdot 10^{-4}$
- batch size 20 images
- 30 epochs

Percentage of well-classified pixels over testing set averaged over the testing set

Percentage of well-classified pixels over testing set averaged over the testing set

Two regions Q = 2

Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$93.2\pm0.8\%$	$97.3\pm0.6\%$	$97.4\pm0.6\%$	$96.9\pm0.7\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Two regions Q = 2

Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$93.2\pm0.8\%$	$97.3\pm0.6\%$	$97.4\pm0.6\%$	$96.9\pm0.7\%$

Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$97.8\pm0.2\%$	$99.1\pm0.2\%$	$99.0\pm0.2\%$	$99.1\pm0.2\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Three regions Q = 3

Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$69.3\pm2.8\%$	$97.8\pm0.3\%$	$98.1\pm0.3\%$	$98.0\pm0.3\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Three regions Q = 3

Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$69.3\pm2.8\%$	$97.8\pm0.3\%$	$98.1\pm0.3\%$	$98.0\pm0.3\%$

Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$95.2\pm3.1\%$	$98.3\pm0.3\%$	$98.5\pm0.3\%$	$98.4\pm0.3\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Four regions Q = 4

Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$58.6 \pm 1.5\%$	$97.1\pm0.4\%$	$96.8\pm0.5\%$	$96.5\pm0.5\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Four regions Q = 4

Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$58.6 \pm 1.5\%$	$97.1\pm0.4\%$	$96.8\pm0.5\%$	$96.5\pm0.5\%$

Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$64.9 \pm 1.4\%$	$95.7\pm0.5\%$	$95.6\pm0.5\%$	$95.2\pm0.6\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Two regions Q = 2

Trained on Config. I, tested on Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$79.2\pm2.9\%$	$91.2\pm2.1\%$	$87.9 \pm \mathbf{2.5\%}$	$81.8\pm3.8\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Two regions Q = 2

Trained on Config. I, tested on Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$79.2\pm2.9\%$	$91.2\pm2.1\%$	$87.9 \pm \mathbf{2.5\%}$	$81.8\pm3.8\%$

Trained on Config. II, tested on Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^{6}$	FCNN $4 \cdot 10^5$
$90.9\pm2.8\%$	$56.2\pm13.5\%$	$55.1\pm14.0\%$	$55.5\pm13.8\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Three regions Q = 3

Trained on Config. I, tested on Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$95.2\pm1.2\%$	$65.7\pm7.2\%$	$69.0\pm7.6\%$	$65.2\pm7.2\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Three regions Q = 3

Trained on Config. I, tested on Config. II

<i>Joint</i> TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$95.2\pm1.2\%$	$65.7\pm7.2\%$	$69.0\pm7.6\%$	$65.2\pm7.2\%$

Trained on Config. II, tested on Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$66.7\pm2.5\%$	$73.5\pm8.2\%$	$74.9\pm8.2\%$	$72.6\pm8.1\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Four regions Q = 4

Trained on Config. I, tested on Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$66.3\pm1.1\%$	$55.6\pm3.4\%$	$50.8\pm4.0\%$	$46.4\pm3.7\%$

Percentage of well-classified pixels over testing set averaged over the testing set

Four regions Q = 4

Trained on Config. I, tested on Config. II

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	$FCNN\ 4\cdot 10^5$
$66.3\pm1.1\%$	$55.6\pm3.4\%$	$50.8\pm4.0\%$	$46.4\pm3.7\%$

Trained on Config. II, tested on Config. I

Joint TV	FCNN $8 \cdot 10^7$	FCNN $2 \cdot 10^6$	FCNN $4 \cdot 10^5$
$52.0 \pm 1.5\%$	$50.9\pm3.9\%$	$51.3\pm4.3\%$	$50.2\pm3.8\%$

• FCNN provides very accurate texture segmentations

- FCNN provides very accurate texture segmentations
- Supervised networks outperform unsupervised Joint TV

- FCNN provides very accurate texture segmentations
- Supervised networks outperform unsupervised *Joint* TV
 → especially when the number of classes *Q* is large

- FCNN provides very accurate texture segmentations
- Supervised networks outperform unsupervised Joint TV
 → especially when the number of classes Q is large
- Reduced complexity $\mathcal W$ does not degrade performance

- FCNN provides very accurate texture segmentations
- Supervised networks outperform unsupervised Joint TV
 → especially when the number of classes Q is large
- Reduced complexity ${\mathcal W}$ does not degrade performance
- FCNN not robust to mismatch between training and testing sets

- FCNN provides very accurate texture segmentations
- Supervised networks outperform unsupervised Joint TV
 → especially when the number of classes Q is large
- Reduced complexity ${\mathcal W}$ does not degrade performance
- FCNN not robust to mismatch between training and testing sets
 - \longrightarrow for small *Q Joint* TV is more robust

- FCNN provides very accurate texture segmentations
- Supervised networks outperform unsupervised Joint TV
 → especially when the number of classes Q is large
- Reduced complexity ${\mathcal W}$ does not degrade performance
- FCNN not robust to mismatch between training and testing sets
 - \longrightarrow for small *Q Joint* TV is more robust
- FCNN provide very irregular contours

True label map

Joint TV

FCNN 8 · 107
Conclusion and perspectives

- FCNN provides very accurate texture segmentations
- Supervised networks outperform unsupervised Joint TV
 → especially when the number of classes Q is large
- Reduced complexity $\mathcal W$ does not degrade performance
- FCNN not robust to mismatch between training and testing sets
 - \longrightarrow for small *Q Joint* TV is more robust
- FCNN provide very irregular contours

LISTA Learning Iterative Shrinkage and Thresholding Algorithm \rightarrow interpretation of sparse coding minimization scheme as a CNN