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Texture segmentation

Purpose: obtain a partition of the image into Q homogeneous regions
Ω = Ω1

⊔
. . .
⊔ΩQ

Ωq: pixels corresponding to the qth texture
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Piecewise monofractal model

Fractals attributes
• variance σ2 amplitude of variations

• local regularity h scale invariance

|f (x)− f (y)| ≤ σ(x)|x − y |h(x)

h(x) ≡ h1 = 0.9 h(x) ≡ h2 = 0.3

Segmentation

I σ2 and h piecewise constant

I region Ωq characterized by (σ2
q, hq)
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Unsupervised texture segmentation
Joint attributes estimation and regularization

Logarithm of wavelet leaders: `j(X)

'
2j→0

v
∝log(σ2)

+ j h
regularity

(
v̂ , ĥ

)
= argmin

v,h

∑
j
‖v + jh − `j(X)‖2

Least-Squares
→ estimate fractal attributes

+ λ Pα(v ,h)
Total Variation

→ favors piecewise constancy
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)
= argmin

v,h

∑
j
‖v + jh − `j(X)‖2

Least-Squares
→ estimate fractal attributes

+ λ Pα(v ,h)
Total Variation

→ favors piecewise constancy

4



Unsupervised texture segmentation
Joint attributes estimation and regularization

Logarithm of wavelet leaders: `j(X) '
2j→0

v
∝log(σ2)

+ j h
regularity

Total Variation (TV) penalization

Pα(v ,h) = TV(v) + αTV(h)

with TV(x) = ‖Dx‖2,1 the isotropic Total Variation involving

• Horizontal and vertical differences D = [D1,D2],
• Mixed norm: z = [z1; . . . , ; zI ], ‖z‖2,1 =

∑
n∈Ω
‖z(n)‖2

(
v̂ , ĥ
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Unsupervised texture segmentation
Joint attributes estimation and regularization for TV-based segmentation

(
v̂ , ĥ

)
= argmin

v,h

∑
j
‖v + jh − `j(X)‖2

Least-Squares
→ estimate fractal attributes

+ λ Pα(v ,h)
Total Variation

→ favors piecewise constancy

Example of Q = 2 class segmentation
Textured True

Joint TV Threshold estimate†

image X segmentation

estimate ĥ M̂Joint = TQ(ĥ)

†(Cai, 2013)

5



Unsupervised texture segmentation
Joint attributes estimation and regularization for TV-based segmentation

(
v̂ , ĥ
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Supervised texture segmentation
Deep learning of Convolutional Neural Networks (CNN)

input Neural Network output

image −→ successive layers −→ estimated label map
X denoted Rθ M̂FCN

where θ ∈ RW are
the network parameters

Supervised learning:
−→ minimization of the loss d summed over a learning dataset{(

X (s),M(s)) , s = 1, . . . ,S
}

with X (s): piecewise homogeneous texture, M(s) true label map

θ̂ = arg min
θ∈RW

S∑
s=1

d
(
Rθ(X (s)),M(s)

)
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Neural network architecture
Schematic representation of the “simplest” net with 4 · 105 weights

BLOCK 2 BLOCK F

Textured image X

256× 256 pixels

. . .

Convolution
Activation

. . .

Convolution
Activation

Max. pooling

138× 138× 32

. . .

Convolution
Activation

. . .

Convolution
Activation

Max. pooling

69× 69× 64

. . .

Convolution
Activation

Dropout

. . .

Q filters

Convolution

...

Transposed

convolution

Q filters

138× 138× Q

Σ
(Skip connection)

138× 138× Q

...

Q filters

Activation

Transposed

convolution Segmentation M̂FCN

256× 256 pixels

CNN for texture segmentation
• skip connection with shallow layers
• large number of filters
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Neural network architecture
Three proposed networks of increasing number of weights W

• W = 4 · 105 weights net: 2 blocks, 1 skip connection
1 2 F

Σ

• W = 2 · 106 weights net: 3 blocks, 2 skip connections
1 2 3 F

Σ
Σ

• W = 8 · 107 weights net: 4 blocks, 3 skip connections
1 2 3 4 F

Σ
Σ

Σ
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Learning dataset of piecewise monofractal textures
Geometry of underlying true label maps

Learning dataset:
{(

X (s),M(s)) , s = 1, . . . ,S
}

, S = 2000 with

X (s): piecewise homogeneous texture, M(s) true label map

Purpose: Texture segmentation with Q ∈ {2, 3, 4} classes . . .

. . . necessary that no shape is learned.

Random segmentation masks

Two classes (Q = 2) Three classes (Q = 3) Four classes (Q = 4)

Partition: Ω = ∪Q
q=1Ω(s)

q , where Ω(s)
q =

{
n |M(s)(n) = q

}

9
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Learning dataset of piecewise monofractal textures
Fractal texture samples

Learning dataset:
{(

X (s),M(s)) , s = 1, . . . ,S
}

, S = 2000 with

X (s): piecewise homogeneous texture, M(s) true label map

Texture configuration
{(
σ2

q, hq
)
, q = 1, . . . ,Q

}
Region Ωq: fractal texture characterized by

(
σ2

q, hq
)

Q = 2 Q = 3 Q = 4

Config. I: large ∆h = hq − hq′ , small ∆σ2 = σ2
q − σ2

q′

Config. II: small ∆h = hq − hq′ , large ∆σ2 = σ2
q − σ2

q′
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Unsupervised texture segmentation
Tuning of the regularization parameters (λ, α)(

v̂ , ĥ
)

= argmin
v,h

∑
j
‖v + jh − `j(X)‖2

Least-Squares
→ estimate fractal attributes

+ λ Pα(v ,h)
Total Variation

→ favors piecewise constancy

Textured True label

Segmentation

image X (1) map M(1)

score

Grid search minimizing the segmentation error on X (1)

−→ optimal
(
λ†, α†

)

−→ frozen for computing performance on a testing set of 100 images
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Supervised learning

Minimization of the loss θ̂ = arg min
θ∈RW

S∑
s=1

d
(
Rθ(X (s)),M(s)

)
using backward propagation of the gradient

• ADAM optimizer with AMSGrad
• learning rate 2 · 10−4

• batch size 20 images
• 30 epochs

12
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Segmentation performance on a testing set of 100 images
Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Two regions Q = 2

Config. I

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

93.2± 0.8% 97.3± 0.6% 97.4± 0.6% 96.9± 0.7%

Config. II

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

97.8± 0.2% 99.1± 0.2% 99.0± 0.2% 99.1± 0.2%
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Segmentation performance on a testing set of 100 images
Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Three regions Q = 3

Config. I

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

69.3± 2.8% 97.8± 0.3% 98.1± 0.3% 98.0± 0.3%

Config. II
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Segmentation performance on a testing set of 100 images
Same configuration for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Four regions Q = 4

Config. I

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

58.6± 1.5% 97.1± 0.4% 96.8± 0.5% 96.5± 0.5%

Config. II

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

64.9± 1.4% 95.7± 0.5% 95.6± 0.5% 95.2± 0.6%
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Segmentation performance on a testing set of 100 images
Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Two regions Q = 2

Trained on Config. I, tested on Config. II

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

79.2± 2.9% 91.2± 2.1% 87.9± 2.5% 81.8± 3.8%

Trained on Config. II, tested on Config. I

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

90.9± 2.8% 56.2± 13.5% 55.1± 14.0% 55.5± 13.8%
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Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Three regions Q = 3

Trained on Config. I, tested on Config. II

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

95.2± 1.2% 65.7± 7.2% 69.0± 7.6% 65.2± 7.2%
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Segmentation performance on a testing set of 100 images
Different configurations for the training and testing sets

Percentage of well-classified pixels over testing set averaged over the
testing set

Four regions Q = 4

Trained on Config. I, tested on Config. II

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

66.3± 1.1% 55.6± 3.4% 50.8± 4.0% 46.4± 3.7%

Trained on Config. II, tested on Config. I

Joint TV FCNN 8 · 107 FCNN 2 · 106 FCNN 4 · 105

52.0± 1.5% 50.9± 3.9% 51.3± 4.3% 50.2± 3.8%
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Conclusion and perspectives

• FCNN provides very accurate texture segmentations

• Supervised networks outperform unsupervised Joint TV
−→ especially when the number of classes Q is large

• Reduced complexity W does not degrade performance
• FCNN not robust to mismatch between training and testing sets
−→ for small Q Joint TV is more robust

• FCNN provide very irregular contours

True label map Joint TV FCNN 8 · 107

LISTA Learning Iterative Shrinkage and Thresholding Algorithm
−→ interpretation of sparse coding minimization scheme as a CNN
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