
On the Robustness of Musical Timbre Perception Models:
From Perceptual to Learned Approaches

Barbara Pascal, Mathieu Lagrange

August 27, 2024

Session: Music Information Retrieval, Analysis and Processing

EUSIPCO 2024, Lyon, France



Revealing acoustic substrate of human timbre perception

At the frontier of digital audio processing & psychoacoustic:

How humans make judgments about their environment based on sounds?

Source: Thoret et al., 2021, Nat. Hum. Behav.

Focus on timbre, the “color” of a sound
• perceived sound quality
• emerging from intricate bundle of acoustic cues
• informs about the sound sources and production mechanisms

Important example: the timbre of a musical instrument

. modeling of timbre perception remains a burning topic in cognitive neuroscience
Yamaha
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Psychoacoustic experiments and resulting datasets

Audio samples {a1, . . . , a`}, `: number of sounds
• recorded and edited natural instruments sounds
• sounds resynthesized with simplifications or systematic modifications
• simulated and hybrid sounds imitating musical instruments

Dissimilarity ratings stored in a vector s ∈ [0, 1]`(`−1)/2

pair of sounds (ai , aj), rating s{i,j} ∈ [0, 1]

• s{i,j} = 0: ai , aj exactly similar audio samples
• s{i,j} = 1: ai , aj maximally different audio samples

Ratings are averaged over all participants.

Datasets from 17 published studies between 1977 and 2016
• from `min = 11 to `max = 20
• diversity of sounds: natural, resynthesized, simulated
• 9 to 34 subjects, from naive listeners to confirmed musicians

From Thoret et al., 2021, Nat. Hum. Behav., github.com/EtienneTho/musical-timbre-studies
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Revealing acoustic substrate of human timbre perception

Multidimensional Scaling (MDS)
1. collect dissimilarity ratings
2. represent audio samples in a low dimensional space
3. so that distances reflect dissimilarities
4. correlate latent dimensions with acoustic descriptors

=⇒ broad understanding of timbre acoustic correlates
Source: Thoret et al., 2021, Nat. Hum. Behav.

Limitations of Multidimensional Scaling (MDS)
• arbitrary choices and ad-hoc parameter tuning impair replicability
• many psychophysic acoustic descriptors: only two correlate with MDS dimensions
• only partial explanation due to low descriptive power of these descriptors

Need alternatives to unveil the intricate mechanisms behind timbre perception

4/17



Revealing acoustic substrate of human timbre perception

Multidimensional Scaling (MDS)
1. collect dissimilarity ratings
2. represent audio samples in a low dimensional space
3. so that distances reflect dissimilarities
4. correlate latent dimensions with acoustic descriptors

=⇒ broad understanding of timbre acoustic correlates
Source: Thoret et al., 2021, Nat. Hum. Behav.

Limitations of Multidimensional Scaling (MDS)
• arbitrary choices and ad-hoc parameter tuning impair replicability
• many psychophysic acoustic descriptors: only two correlate with MDS dimensions
• only partial explanation due to low descriptive power of these descriptors

Need alternatives to unveil the intricate mechanisms behind timbre perception

4/17



Revealing acoustic substrate of human timbre perception

Human dissimilarity ratings based on
• complex perceptual judgments
• intricate high-level audio characteristics

very hard to model fully

. Idea: learn the salient features used by humans to discriminate different timbres
(Thoret et al., 2021, Nat. Hum. Behav.)

Models of the primary auditory cortex: SpectroTemporal Modulations
• auditory spectrum: cochlea representation

128 constant-Q asymmetric bandpass filters on log-frequency scale
• cortical representation: STMF representation

2D-Fourier of auditory spectrogram with 11 cycles per octave and 22 frequencies

. metric learning to extract features relevant from a perceptual point of view
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Revealing acoustic substrate of human timbre perception

Metric learning framework: design a distance d such that d(ai , aj) ∼ si,j

• parametric distance in the space of the representation Ψ (e.g., cochlea, STMF)

dΨ
w(ai , aj)2 =

nΨ∑
k=1

1
w2
k

(Ψ(ai)k −Ψ(aj)k)2

• learn weights by maximizing the reward function

w? ∈ Argmax
w∈RnΨ

P(dΨ
w , s)

Pearson correlation (invariant to mean shifts and variance rescalings)
from P = −1: perfect anti-correlation, to P = 1: perfect correlation

. the larger P(dΨ
w? , s) the better the fit

Illustration: for the auditory spectrum Ψ = cochlea representation
3 relevant features

25 50 75 100 125

feature index k
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107

w
?

Siedenburg et al. (2016): Exp. 2A, Set 1

7 discarded features

25 50 75 100 125

feature index k
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Siedenburg et al. (2016): Exp. 2A, Set 1
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Metric learning algorithm: influence of initialization

Objective function w 7→ P(dΨ
w , s) twice differentiable: quasi-Newton algorithm

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

• descent-step free;
• optimization in large dimension nΨ & 104;
• quadratic convergence in the neighborhood of local optima

Random initialization

w[0]
k ∼ N (1, 10−4)

independent identically distributed

Warm start

w[0] ∈ Argmin
w∈RnΨ

+

∑
{i,j}

∣∣dΨ
w(ai , aj)2 − s{i,j}

∣∣2

(Thoret et al., 2021, Nat. Hum. Behav.)

7/17



Metric learning algorithm: influence of initialization

Objective function w 7→ P(dΨ
w , s) twice differentiable: quasi-Newton algorithm

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

• descent-step free;
• optimization in large dimension nΨ & 104;
• quadratic convergence in the neighborhood of local optima

Random initialization

w[0]
k ∼ N (1, 10−4)

independent identically distributed

Warm start

w[0] ∈ Argmin
w∈RnΨ

+

∑
{i,j}

∣∣dΨ
w(ai , aj)2 − s{i,j}

∣∣2

100 101 102

`: number of iterations

0.2

0.4

0.6

0.8

P
(d

Ψ w
(`

),
s)

random init.

(Thoret et al., 2021, Nat. Hum. Behav.)

7/17



Metric learning algorithm: influence of initialization

Objective function w 7→ P(dΨ
w , s) twice differentiable: quasi-Newton algorithm

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

• descent-step free;
• optimization in large dimension nΨ & 104;
• quadratic convergence in the neighborhood of local optima

Random initialization

w[0]
k ∼ N (1, 10−4)

independent identically distributed

Warm start

w[0] ∈ Argmin
w∈RnΨ

+

∑
{i,j}

∣∣dΨ
w(ai , aj)2 − s{i,j}

∣∣2
100 101 102

`: number of iterations

0.2

0.4

0.6

0.8

P
(d

Ψ w
(`

),
s)

random init.

warm init.

(Thoret et al., 2021, Nat. Hum. Behav.)

7/17



Metric learning in representation spaces: explained variance

Performance criterion: P(dΨ
w? , s)

2 ∈ [0, 1] (Thoret et al., 2021, Nat. Hum. Behav.)

. squared Pearson correlation between learned distance and dissimilarity ratings

perceptual

17 datasets from studies between 1977 and 2016

cochlea STMF
nΨ = 128 nΨ = 30976

Grey, 1977

0.48 0.84

Grey et al., 1978

0.11 0.33

Iverson et al., 1993: Whole

0.16 0.87

Iverson et al., 1993: Onset

0.07 0.22

Iverson et al., 1993: Remainder

0.03 0.27

McAdams et al., 1995

0.30 0.77

Lakatos et al., 2000: Harmonic

0.19 0.85

Lakatos et al., 2000: Percussive

0.18 0.27

Lakatos et al., 2000: Combined

0.13 0.33

Barthet et al., 2010

0.74 0.98

Patil et al., 2012: A3

0.62 0.97

Patil et al., 2012: DX4

0.66 0.99

Patil et al., 2012: GD4

0.46 0.95

Siedenburg et al., 2016: Exp 2A, Set 1

0.62 0.95

Siedenburg et al., 2016: Exp 2A, Set 2

0.73 0.99

Siedenburg et al., 2016: Exp 2A, Set 3

0.10 0.53

Siedenburg et al., 2016: Exp 2B, Set 3

0.07 0.46

Median

0.18 0.77

Interquartile range

0.44 0.62
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More models of human audio timbre perception

Perceptual representations used by Thoret et al., 2021, Nat. Hum. Behav.
• auditory spectrum: cochlea
• cortical representation: STMF

Time–frequency representations
• Short-Time Fourier Transform: STFT
• Joint time–frequency scattering transform: scattering

Deep neural network embeddings
• CLAP: trained on general audio for text2speech
• EnCodec: trained on music for compression
• MERT: trained on music for 13 tasks

. averaged (MERTAV) or concatened (MERTCAT)

All representations are averaged over time.

cochlea STMF

STFT scattering CLAP EnCodec MERTAV MERTCAT

nΨ 128 30976

513 2204 1024 128 768 9984
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Metric learning in representation spaces: explained variance

Performance criterion: P(dΨ
w? , s)

2 ∈ [0, 1] (Thoret et al., 2021, Nat. Hum. Behav.)

. squared Pearson correlation between learned distance and dissimilarity ratings

perceptual deep
17 datasets from studies between 1977 and 2016 cochlea STMF MERTCAT

nΨ = 128 nΨ = 30976 nΨ = 9984
Grey, 1977 0.48 0.84 1.00
Grey et al., 1978 0.11 0.33 0.77
Iverson et al., 1993: Whole 0.16 0.87 0.95
Iverson et al., 1993: Onset 0.07 0.22 0.93
Iverson et al., 1993: Remainder 0.03 0.27 0.87
McAdams et al., 1995 0.30 0.77 0.97
Lakatos et al., 2000: Harmonic 0.19 0.85 0.98
Lakatos et al., 2000: Percussive 0.18 0.27 0.97
Lakatos et al., 2000: Combined 0.13 0.33 0.94
Barthet et al., 2010 0.74 0.98 0.65
Patil et al., 2012: A3 0.62 0.97 1.00
Patil et al., 2012: DX4 0.66 0.99 1.00
Patil et al., 2012: GD4 0.46 0.95 1.00
Siedenburg et al., 2016: Exp 2A, Set 1 0.62 0.95 1.00
Siedenburg et al., 2016: Exp 2A, Set 2 0.73 0.99 1.00
Siedenburg et al., 2016: Exp 2A, Set 3 0.10 0.53 1.00
Siedenburg et al., 2016: Exp 2B, Set 3 0.07 0.46 1.00
Median 0.18 0.77 0.97
Interquartile range 0.44 0.62 0.06
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Correlation between collected dissimilarity scores and learned metrics

Siedenburg et al., 2016, Front. Psychol.: Exp. 2A, Set 1
• 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at

• msubjects = 24 musician participants: musical instruction and playing experience

STFT cochlea scattering STMF CLAP EnCodec MERTAV MERTCAT

0.40 0.62 0.31 0.95 0.76 0.23 0.11 1.00

Lakatos et al., 2000, Percept. Psychophys.: Harmonic
• 17 recorded sounds
• msubjects = 34 participants, including 18 musicians

STFT cochlea scattering STMF CLAP EnCodec MERTAV MERTCAT

0.31 0.19 0.16 0.85 0.74 0.31 0.08 0.98
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Robustness of the learning procedure against degraded ratings

Averaged dissimilarity ratings
=⇒ no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both
• between different subjects
• for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by
i) quantifying robustness of the learning procedure to noisy ratings
ii) comparing robustness for different representations and noise levels

Random degradation of ratings

y(δ)
{i,j} = min(1,max(0, s{i,j} + δ · ξ)),

ξ ∼ N (0, 1) i.i.d. , δ > 0: noise std

y(δ): degraded s at noise level δ
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Robustness of the learning procedure against degraded ratings

Random degradation of ratings

y(δ)
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Experimental setup to quantify robustness

i) learning on noisy dissimilarity ratings

wδ ∈ Argmax
w∈RnΨ

P(dΨ
w , y(δ))

for 5 realizations of y(δ), and 9 values of δ logarithmically spaced in [0.1, 10]

ii) explained variance of averaged ratings by the learned distance P(dΨ
wδ , s)

2
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Robustness of the learning procedure against degraded ratings

Siedenburg et al., 2016, Front. Psychol.: Exp. 2A, Set 1
• 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
• msubjects = 24 musician participants: musical instruction and playing experience

Typical standard deviation of human ratings δ = 0.1×√msubjects
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Robustness of the learning procedure against degraded ratings

Lakatos et al., 2000, Percept. Psychophys.: Harmonic
• 17 recorded sounds
• msubjects = 34 participants, including 18 musicians
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Robustness against degraded ratings: global results

Compared robustness for the different representations
• if δ ≤ δ best explained variance and robustness for metric learned on MERTCAT
• for δ > δ explained variance decreases slower for metric learned on STMF
• ∀δ metrics learned on CLAP: good explained variance and robustness

CLAP STMF MERTCAT

nΨ = 1024 nΨ = 30976 nΨ = 9984

. quantified by comparison of the areas under the curves log10 δ 7→ P(dΨ
wδ , s)

2

See paper and companion toolbox github.com/bpascal-fr/timbre-metric-learning
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Conclusion and perspectives

Meta-analysis on 17 datasets
• deep embeddings vs. classical time-frequency and perceptual representations
• deep neural networks trained on audio: encode substrate of timbre perception
• corrected and augmented metric learning procedure: explained variance
• robustness against inter- and intra- subject variability in human ratings

github.com/bpascal-fr/timbre-metric-learning

Future work: Tackle open questions in auditory cognitive neuroscience
• training with all ratings (no averaging over participants): inter-subject variability
• CLAP, MERTCAT: speech, environmental sounds, animal bioacoustics
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