

On the Robustness of Musical Timbre Perception Models: From Perceptual to Learned Approaches

Barbara Pascal, Mathieu Lagrange

August 27, 2024

Session: Music Information Retrieval, Analysis and Processing

EUSIPCO 2024, Lyon, France

At the frontier of **digital audio processing** & **psychoacoustic**:

How humans make judgments about their environment based on sounds?

Auditory judgments

Source: Thoret et al., 2021, Nat. Hum. Behav.

At the frontier of **digital audio processing** & **psychoacoustic**:

How humans make judgments about their environment based on sounds?

Focus on **timbre**, the "color" of a sound

- perceived sound quality
- emerging from intricate bundle of acoustic cues
- informs about the sound sources and production mechanisms

At the frontier of **digital audio processing** & **psychoacoustic**:

How humans make judgments about their environment based on sounds?

Auditory judaments

Source: Thoret et al., 2021, Nat. Hum. Behav.

Focus on **timbre**, the "color" of a sound

- perceived sound quality
- emerging from intricate bundle of acoustic cues
- informs about the sound sources and production mechanisms

Important example: the timbre of a musical instrument

Yamaha

 ρ modeling of timbre perception remains a burning topic in cognitive neuroscience

Psychoacoustic experiments and resulting datasets

Audio samples $\{a_1, \ldots, a_\ell\}$, ℓ : number of sounds

- recorded and edited natural instruments sounds
- sounds resynthesized with simplifications or systematic modifications
- simulated and hybrid sounds imitating musical instruments

Psychoacoustic experiments and resulting datasets

Audio samples $\{a_1, \ldots, a_\ell\}$, ℓ : number of sounds

- recorded and edited natural instruments sounds
- sounds resynthesized with simplifications or systematic modifications
- simulated and hybrid sounds imitating musical instruments

Dissimilarity ratings stored in a vector $\mathbf{s} \in [0,1]^{\ell(\ell-1)/2}$

pair of sounds (a_i, a_j) , rating $s_{\{i,j\}} \in [0, 1]$

- $s_{\{i,j\}} = 0$: a_i , a_i exactly similar audio samples
- $s_{\{i,i\}} = 1$: a_i , a_j maximally different audio samples

Ratings are averaged over all participants.

Psychoacoustic experiments and resulting datasets

Audio samples $\{a_1, \ldots, a_\ell\}$, ℓ : number of sounds

- recorded and edited natural instruments sounds
- sounds resynthesized with simplifications or systematic modifications
- simulated and hybrid sounds imitating musical instruments

Dissimilarity ratings stored in a vector $\mathbf{s} \in [0,1]^{\ell(\ell-1)/2}$

pair of sounds (a_i, a_j) , rating $s_{\{i,j\}} \in [0, 1]$

- $s_{\{i,j\}} = 0$: a_i , a_i exactly similar audio samples
- $s_{\{i,i\}} = 1$: a_i , a_j maximally different audio samples

Ratings are averaged over all participants.

Datasets from 17 published studies between 1977 and 2016

- from $\ell_{\min} = 11$ to $\ell_{\max} = 20$
- diversity of sounds: natural, resynthesized, simulated
- 9 to 34 subjects, from naive listeners to confirmed musicians

From Thoret et al., 2021, Nat. Hum. Behav., github.com/EtienneTho/musical-timbre-studies

Multidimensional Scaling (MDS)

- 1. collect dissimilarity ratings
- 2. represent audio samples in a low dimensional space
- 3. so that distances reflect dissimilarities
- 4. correlate latent dimensions with acoustic descriptors
	- \implies broad understanding of timbre acoustic correlates

Source: Thoret et al., 2021, Nat. Hum. Behav.

Multidimensional Scaling (MDS)

- 1. collect dissimilarity ratings
- 2. represent audio samples in a low dimensional space
- 3. so that distances reflect dissimilarities
- 4. correlate latent dimensions with acoustic descriptors
	- \implies broad understanding of timbre acoustic correlates

Source: Thoret et al., 2021, Nat. Hum. Behav.

Limitations of Multidimensional Scaling (MDS)

- arbitrary choices and ad-hoc parameter tuning impair replicability
- many psychophysic acoustic descriptors: only two correlate with MDS dimensions
- only partial explanation due to low descriptive power of these descriptors

Need alternatives to unveil the intricate mechanisms behind timbre perception

Human dissimilarity ratings based on

- complex perceptual judgments
- intricate high-level audio characteristics

very hard to model fully

Human dissimilarity ratings based on

• complex perceptual judgments

very hard to model fully

- intricate high-level audio characteristics
- *.* **Idea:** learn the salient features used by humans to discriminate different timbres (Thoret et al., 2021, Nat. Hum. Behav.)

Human dissimilarity ratings based on

- complex perceptual judgments
- intricate high-level audio characteristics
- *.* **Idea:** learn the salient features used by humans to discriminate different timbres (Thoret et al., 2021, Nat. Hum. Behav.)

Models of the primary auditory cortex: SpectroTemporal Modulations

auditory spectrum: cochlea representation

128 constant-Q asymmetric bandpass filters on log-frequency scale

• cortical representation: STMF representation

2D-Fourier of auditory spectrogram with 11 cycles per octave and 22 frequencies

. **metric learning** to extract features relevant from a perceptual point of view

very hard to model fully

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

• parametric distance in the space of the representation Ψ (e.g., cochlea, STMF)

$$
\mathrm{d}^\Psi_\mathsf{w}(a_i,a_j)^2 = \sum_{k=1}^{n_\Psi} \frac{1}{\mathsf{w}_k^2} \left(\Psi(a_i)_k - \Psi(a_j)_k \right)^2
$$

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

• parametric distance in the space of the representation Ψ (e.g., cochlea, STMF)

$$
\mathsf{d}_{\mathsf{w}}^{\Psi}(a_i,a_j)^2 = \sum_{k=1}^{n_{\Psi}} \frac{1}{\mathsf{w}_k^2} \left(\Psi(a_i)_k - \Psi(a_j)_k \right)^2
$$

• learn weights by maximizing the reward function

$$
w_\star \in \operatorname*{Argmax}_{w \in \mathbb{R}^{n_\Psi}} \mathcal{P}(d_w^\Psi, s)
$$

Pearson correlation (invariant to mean shifts and variance rescalings)

from $P = -1$: perfect anti-correlation, to $P = 1$: perfect correlation \triangleright the **larger** $\mathcal{P}(\mathsf{d}_{\mathsf{w}_{\star}}^{\Psi}, \mathsf{s})$ the <code>better</code> the fit

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

• parametric distance in the space of the representation Ψ (e.g., cochlea, STMF)

$$
\mathsf{d}_{\mathsf{w}}^{\Psi}(a_i,a_j)^2 = \sum_{k=1}^{n_{\Psi}} \frac{1}{\mathsf{w}_k^2} \left(\Psi(a_i)_k - \Psi(a_j)_k \right)^2
$$

• learn weights by maximizing the reward function

$$
w_\star \in \operatorname*{Argmax}_{w \in \mathbb{R}^{n_\Psi}} \mathcal{P}(d_w^\Psi, s)
$$

Pearson correlation (invariant to mean shifts and variance rescalings)

from $P = -1$: perfect anti-correlation, to $P = 1$: perfect correlation \triangleright the **larger** $\mathcal{P}(\mathsf{d}_{\mathsf{w}_{\star}}^{\Psi}, \mathsf{s})$ the <code>better</code> the fit

Illustration: for the auditory spectrum Ψ = cochlea representation

✗ **discarded features**

6/17

Metric learning algorithm: influence of initialization

Objective function $w \mapsto \mathcal{P}(d_w^{\Psi}, s)$ twice differentiable: **quasi-Newton algorithm**

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

- descent-step free;
- $\bullet\,$ optimization in large dimension $n_\Psi\gtrsim 10^4;$
- quadratic convergence in the neighborhood of local optima

Metric learning algorithm: influence of initialization

Objective function $w \mapsto \mathcal{P}(d_w^{\Psi}, s)$ twice differentiable: **quasi-Newton algorithm**

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

- descent-step free;
- $\bullet\,$ optimization in large dimension $n_\Psi\gtrsim 10^4;$
- quadratic convergence in the neighborhood of local optima

Random initialization (Thoret et al., 2021, Nat. Hum. Behav.)

$$
\textbf{w}_k^{[0]} \sim \mathcal{N}(1, 10^{-4})
$$

independent identically distributed

Metric learning algorithm: influence of initialization

Objective function $w \mapsto \mathcal{P}(d_w^{\Psi}, s)$ twice differentiable: **quasi-Newton algorithm**

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

- descent-step free;
- $\bullet\,$ optimization in large dimension $n_\Psi\gtrsim 10^4;$
- quadratic convergence in the neighborhood of local optima

Random initialization (Thoret et al., 2021, Nat. Hum. Behav.)

$$
\textbf{w}_k^{[0]} \sim \mathcal{N}(1, 10^{-4})
$$

independent identically distributed

Warm start

$$
\mathbf{w}^{[0]} \in \underset{\mathbf{w} \in \mathbb{R}_+^{n_{\mathbf{w}}}}{\operatorname{Argmin}} \sum_{\{i,j\}} \left| d_{\mathbf{w}}^{\Psi}(a_i, a_j)^2 - s_{\{i,j\}} \right|^2
$$

Metric learning in representation spaces: explained variance

Performance criterion: $(\Psi_{w_{\star}}, s)^2 \in [0, 1]$ (Thoret et al., 2021, *Nat. Hum. Behav.*) *.* squared Pearson correlation between **learned distance** and **dissimilarity ratings**

Metric learning in representation spaces: explained variance

Performance criterion: $\mathcal{P}(\mathsf{d}_{w_{\star}}^{\Psi}, \mathsf{s})^2 \in [0, 1]$ (Thoret et al., 2021, Nat. Hum. Behav.)

. squared Pearson correlation between **learned distance** and **dissimilarity ratings**

More models of human audio timbre perception

Perceptual representations used by Thoret et al., 2021, Nat. Hum. Behav.

- auditory spectrum: cochlea
- cortical representation: STMF

All representations are averaged over time.

More models of human audio timbre perception

Perceptual representations used by Thoret et al., 2021, Nat. Hum. Behav.

- auditory spectrum: cochlea
- cortical representation: STMF

Time–frequency representations

- Short-Time Fourier Transform: STFT
- Joint time–frequency scattering transform: scattering

All representations are averaged over time.

More models of human audio timbre perception

Perceptual representations used by Thoret et al., 2021, Nat. Hum. Behav.

- auditory spectrum: cochlea
- cortical representation: STMF

Time–frequency representations

- Short-Time Fourier Transform: STFT
- Joint time–frequency scattering transform: scattering

Deep neural network embeddings

- CLAP: trained on general audio for text2speech
- EnCodec: trained on music for compression
- MERT: trained on music for 13 tasks

. averaged (MERTAV) or concatened (MERTCAT)

All representations are averaged over time.

Metric learning in representation spaces: explained variance

Performance criterion: $\mathcal{P}(\mathsf{d}_{w_{\star}}^{\Psi}, \mathsf{s})^2 \in [0, 1]$ (Thoret et al., 2021, Nat. Hum. Behav.)

. squared Pearson correlation between **learned distance** and **dissimilarity ratings**

Correlation between collected dissimilarity scores and learned metrics

- 14 acoustic recordings from Vienna Symphonic Library <https://www.vsl.co.at>
- $m_{\text{subiects}} = 24$ musician participants: musical instruction and playing experience

Correlation between collected dissimilarity scores and learned metrics

Siedenburg et al., 2016, Front. Psychol.: Exp. 2A, Set 1

- 14 acoustic recordings from Vienna Symphonic Library <https://www.vsl.co.at>
- $m_{\text{subiects}} = 24$ musician participants: musical instruction and playing experience

Lakatos et al., 2000, Percept. Psychophys.: Harmonic

- 17 recorded sounds
- $m_{\text{subiects}} = 34$ participants, including 18 musicians

Averaged dissimilarity ratings

⇒ no confidence level on explained variance provided

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- **i)** quantifying robustness of the learning procedure to noisy ratings
- **ii)** comparing robustness for different representations and noise levels

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- **i)** quantifying robustness of the learning procedure to **noisy ratings**
- **ii)** comparing robustness for different representations and noise levels

Random degradation of ratings

$$
\mathsf{y}_{\{i,j\}}^{(\delta)} = \min(1, \max(0, \mathsf{s}_{\{i,j\}} + \delta \cdot \xi)),
$$

y (*δ*) : degraded **s** at noise level *δ*

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- **i)** quantifying robustness of the learning procedure to **noisy ratings**
- **ii)** comparing robustness for different representations and noise levels

Random degradation of ratings

$$
\mathsf{y}_{\{i,j\}}^{(\delta)} = \mathsf{min} \big(\mathsf{1}, \mathsf{max} \big(\mathsf{0}, \mathsf{s}_{\{i,j\}} + \delta \cdot \xi \big) \big),
$$

y (*δ*) : degraded **s** at noise level *δ*

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- **i)** quantifying robustness of the learning procedure to **noisy ratings**
- **ii)** comparing robustness for different representations and noise levels

Random degradation of ratings

$$
\mathsf{y}_{\{i,j\}}^{(\delta)} = \mathsf{min} \big(\mathsf{1}, \mathsf{max} \big(\mathsf{0}, \mathsf{s}_{\{i,j\}} + \delta \cdot \xi \big) \big),
$$

y (*δ*) : degraded **s** at noise level *δ*

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- **i)** quantifying robustness of the learning procedure to **noisy ratings**
- **ii)** comparing robustness for different representations and noise levels

Random degradation of ratings

$$
\mathsf{y}_{\{i,j\}}^{(\delta)} = \mathsf{min} \big(\mathsf{1}, \mathsf{max} \big(\mathsf{0}, \mathsf{s}_{\{i,j\}} + \delta \cdot \xi \big) \big),
$$

y (*δ*) : degraded **s** at noise level *δ*

Experimental setup to quantify robustness

i) learning on **noisy** dissimilarity ratings

$$
\mathbf{w}_{\delta} \in \operatorname*{Argmax}_{\mathbf{w} \in \mathbb{R}^{n_{\Psi}}} \mathcal{P}(\mathsf{d}_{\mathbf{w}}^{\Psi}, \mathbf{y}^{(\delta)})
$$

for 5 realizations of $\mathbf{y}^{(\delta)}$, and 9 values of δ logarithmically spaced in $[0.1, 10]$

 \bm{v} ii) explained variance of averaged ratings by the learned distance $\mathcal{P}(\mathsf{d}_{\mathsf{w}_{\delta}}^{\Psi},\mathsf{s})^2$

sorted ratings $\log_{10} \delta = -1$ $\log_{10} \delta = -0.5$

- 14 acoustic recordings from Vienna Symphonic Library <https://www.vsl.co.at>
- $m_{\text{subiects}} = 24$ musician participants: musical instruction and playing experience

Siedenburg et al., 2016, Front. Psychol.: Exp. 2A, Set 1

- 14 acoustic recordings from Vienna Symphonic Library <https://www.vsl.co.at>
- $m_{\text{subiects}} = 24$ musician participants: musical instruction and playing experience

(P. Aumond et al., 2017,Appl. Sci.) **14/17**

- 14 acoustic recordings from Vienna Symphonic Library <https://www.vsl.co.at>
- $m_{\text{subiects}} = 24$ musician participants: musical instruction and playing experience

Typical standard deviation of human ratings $\overline{\delta} = 0.1 \times \sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 14 acoustic recordings from Vienna Symphonic Library <https://www.vsl.co.at>
- $m_{\text{subiects}} = 24$ musician participants: musical instruction and playing experience

Typical standard deviation of human ratings $\overline{\delta} = 0.1 \times \sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 14 acoustic recordings from Vienna Symphonic Library <https://www.vsl.co.at>
- $m_{\text{subiects}} = 24$ musician participants: musical instruction and playing experience

Typical standard deviation of human ratings $\overline{\delta} = 0.1 \times \sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

Lakatos et al., 2000, Percept. Psychophys.: Harmonic

- 17 recorded sounds
- $m_{\text{subjects}} = 34$ participants, including 18 musicians

Lakatos et al., 2000, Percept. Psychophys.: Harmonic

- 17 recorded sounds
- $m_{\text{subiects}} = 34$ participants, including 18 musicians

Lakatos et al., 2000, Percept. Psychophys.: Harmonic

- 17 recorded sounds
- $m_{\text{subiects}} = 34$ participants, including 18 musicians

(P. Aumond et al., 2017,Appl. Sci.) **15/17**

Lakatos et al., 2000, Percept. Psychophys.: Harmonic

- 17 recorded sounds
- $m_{\text{subiects}} = 34$ participants, including 18 musicians

Typical standard deviation of human ratings $\overline{\delta} = 0.1 \times \sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

Lakatos et al., 2000, Percept. Psychophys.: Harmonic

- 17 recorded sounds
- $m_{\text{subjects}} = 34$ participants, including 18 musicians

Typical standard deviation of human ratings $\overline{\delta} = 0.1 \times \sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

Robustness against degraded ratings: global results

Compared robustness for the different representations

- if $\delta \leq \overline{\delta}$ best explained variance and robustness for metric learned on MERTCAT
- for *δ > δ* explained variance decreases slower for metric learned on STMF
- ∀*δ* metrics learned on CLAP: good explained variance and robustness

 \triangleright quantified by comparison of the areas under the curves $\log_{10}\delta \mapsto \mathcal{P}(\mathsf{d}_{\mathsf{w}_\delta}^\Psi,\mathsf{s})^2$

See paper and companion toolbox github.com/bpascal-fr/timbre-metric-learning

Conclusion and perspectives

Meta-analysis on 17 datasets

- deep embeddings vs. classical time-frequency and perceptual representations
- deep neural networks trained on audio: encode substrate of timbre perception
- corrected and augmented metric learning procedure: **explained variance**
- **robustness** against inter- and intra- subject variability in human ratings

<github.com/bpascal-fr/timbre-metric-learning>

Conclusion and perspectives

Meta-analysis on 17 datasets

- deep embeddings vs. classical time-frequency and perceptual representations
- deep neural networks trained on audio: encode substrate of timbre perception
- corrected and augmented metric learning procedure: **explained variance**
- **robustness** against inter- and intra- subject variability in human ratings

<github.com/bpascal-fr/timbre-metric-learning>

Future work: Tackle open questions in auditory cognitive neuroscience

- training with **all** ratings (no averaging over participants): inter-subject variability
- CLAP, MERTCAT: speech, environmental sounds, animal bioacoustics