

On the Robustness of Musical Timbre Perception Models: From Perceptual to Learned Approaches

Barbara Pascal, Mathieu Lagrange

August 27, 2024

Session: Music Information Retrieval, Analysis and Processing

EUSIPCO 2024, Lyon, France

At the frontier of digital audio processing & psychoacoustic:

How humans make judgments about their environment based on sounds?

Auditory judgments

Source: Thoret et al., 2021, Nat. Hum. Behav.

At the frontier of digital audio processing & psychoacoustic:

How humans make judgments about their environment based on sounds?

Focus on timbre, the "color" of a sound

- perceived sound quality
- emerging from intricate bundle of acoustic cues
- informs about the sound sources and production mechanisms

At the frontier of digital audio processing & psychoacoustic:

How humans make judgments about their environment based on sounds?

Auditory judgments

Source: Thoret et al., 2021, Nat. Hum. Behav.

Focus on timbre, the "color" of a sound

- perceived sound quality
- emerging from intricate bundle of acoustic cues
- informs about the sound sources and production mechanisms

Important example: the timbre of a musical instrument

Yamaha

 \triangleright modeling of timbre perception remains a burning topic in cognitive neuroscience

Psychoacoustic experiments and resulting datasets

Audio samples $\{a_1, \ldots, a_\ell\}$, ℓ : number of sounds

- recorded and edited natural instruments sounds
- sounds resynthesized with simplifications or systematic modifications
- simulated and hybrid sounds imitating musical instruments

Psychoacoustic experiments and resulting datasets

Audio samples $\{a_1, \ldots, a_\ell\}$, ℓ : number of sounds

- recorded and edited natural instruments sounds
- sounds resynthesized with simplifications or systematic modifications
- · simulated and hybrid sounds imitating musical instruments

Dissimilarity ratings stored in a vector $\bm{s} \in [0,1]^{\ell(\ell-1)/2}$

pair of sounds (a_i, a_j) , rating $s_{\{i, j\}} \in [0, 1]$

- $s_{\{i,j\}} = 0$: a_i, a_j exactly similar audio samples
- s_{i,j} = 1: a_i, a_j maximally different audio samples

Ratings are averaged over all participants.

Psychoacoustic experiments and resulting datasets

Audio samples $\{a_1, \ldots, a_\ell\}$, ℓ : number of sounds

- recorded and edited natural instruments sounds
- sounds resynthesized with simplifications or systematic modifications
- · simulated and hybrid sounds imitating musical instruments

Dissimilarity ratings stored in a vector $\mathbf{s} \in [0,1]^{\ell(\ell-1)/2}$

pair of sounds (a_i, a_j) , rating $s_{\{i,j\}} \in [0, 1]$

- $s_{\{i,j\}} = 0$: a_i, a_j exactly similar audio samples
- $s_{\{i,j\}} = 1$: a_i, a_j maximally different audio samples

Ratings are averaged over all participants.

Datasets from 17 published studies between 1977 and 2016

- from $\ell_{\text{min}}=11$ to $\ell_{\text{max}}=20$
- diversity of sounds: natural, resynthesized, simulated
- 9 to 34 subjects, from naive listeners to confirmed musicians

From Thoret et al., 2021, Nat. Hum. Behav., github.com/EtienneTho/musical-timbre-studies

Multidimensional Scaling (MDS)

- 1. collect dissimilarity ratings
- 2. represent audio samples in a low dimensional space
- 3. so that distances reflect dissimilarities
- 4. correlate latent dimensions with acoustic descriptors
 - \Longrightarrow broad understanding of timbre acoustic correlates

Source: Thoret et al., 2021, Nat. Hum. Behav.

Multidimensional Scaling (MDS)

- 1. collect dissimilarity ratings
- 2. represent audio samples in a low dimensional space
- 3. so that distances reflect dissimilarities
- 4. correlate latent dimensions with acoustic descriptors
 - \Longrightarrow broad understanding of timbre acoustic correlates

Source: Thoret et al., 2021, Nat. Hum. Behav.

Limitations of Multidimensional Scaling (MDS)

- arbitrary choices and ad-hoc parameter tuning impair replicability
- many psychophysic acoustic descriptors: only two correlate with MDS dimensions
- only partial explanation due to low descriptive power of these descriptors

Need alternatives to unveil the intricate mechanisms behind timbre perception

Human dissimilarity ratings based on

- complex perceptual judgments
- intricate high-level audio characteristics

very hard to model fully

Human dissimilarity ratings based on

complex perceptual judgments

very hard to model fully

- intricate high-level audio characteristics
- ▷ Idea: learn the salient features used by humans to discriminate different timbres

(Thoret et al., 2021, Nat. Hum. Behav.)

Human dissimilarity ratings based on

- complex perceptual judgments
- intricate high-level audio characteristics
- ▷ Idea: learn the salient features used by humans to discriminate different timbres (Thoret et al., 2021, *Nat. Hum. Behav.*)

Models of the primary auditory cortex: SpectroTemporal Modulations

auditory spectrum: cochlea representation

128 constant-Q asymmetric bandpass filters on log-frequency scale

• cortical representation: STMF representation

2D-Fourier of auditory spectrogram with 11 cycles per octave and 22 frequencies

 \triangleright metric learning to extract features relevant from a perceptual point of view

very hard to model fully

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

• parametric distance in the space of the representation Ψ (e.g., cochlea, STMF)

$$\mathsf{d}^{\Psi}_{\mathsf{w}}(a_i,a_j)^2 = \sum_{k=1}^{n_{\Psi}} rac{1}{\mathsf{w}_k^2} \left(\Psi(a_i)_k - \Psi(a_j)_k
ight)^2$$

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

• parametric distance in the space of the representation Ψ (e.g., cochlea, STMF)

$$\mathsf{d}^{\Psi}_{f w}(a_i,a_j)^2 = \sum_{k=1}^{n_{\Psi}} rac{1}{w_k^2} \left(\Psi(a_i)_k - \Psi(a_j)_k
ight)^2$$

• learn weights by maximizing the reward function

$$\boldsymbol{w}_{\star} \in \operatorname*{Argmax}_{\boldsymbol{w} \in \mathbb{R}^{n_{\Psi}}} \mathcal{P}(\boldsymbol{d}_{\boldsymbol{w}}^{\Psi}, \boldsymbol{s})$$

Pearson correlation (invariant to mean shifts and variance rescalings)

from $\mathcal{P} = -1$: perfect anti-correlation, to $\mathcal{P} = 1$: perfect correlation \triangleright the larger $\mathcal{P}(d_{w_{+}}^{\psi}, s)$ the better the fit

Metric learning framework: design a distance d such that $d(a_i, a_j) \sim s_{i,j}$

• parametric distance in the space of the representation Ψ (e.g., cochlea, STMF)

$$\mathsf{d}^{\Psi}_{f w}(a_i,a_j)^2 = \sum_{k=1}^{n_{\Psi}} rac{1}{w_k^2} \left(\Psi(a_i)_k - \Psi(a_j)_k
ight)^2$$

learn weights by maximizing the reward function

$$\boldsymbol{w}_{\star} \in \operatorname*{Argmax}_{\boldsymbol{w} \in \mathbb{R}^{n_{\Psi}}} \mathcal{P}(\boldsymbol{d}_{\boldsymbol{w}}^{\Psi}, \boldsymbol{s})$$

Pearson correlation (invariant to mean shifts and variance rescalings)

from $\mathcal{P} = -1$: perfect anti-correlation, to $\mathcal{P} = 1$: perfect correlation \triangleright the larger $\mathcal{P}(d_{w_*}^{\psi}, s)$ the better the fit

Illustration: for the auditory spectrum $\Psi = \text{cochlea representation}$

X discarded features

6/17

Metric learning algorithm: influence of initialization

Objective function $\mathbf{w} \mapsto \mathcal{P}(d_{\mathbf{w}}^{\psi}, \mathbf{s})$ twice differentiable: quasi-Newton algorithm

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

- descent-step free;
- optimization in large dimension $n_{\Psi} \gtrsim 10^4$;
- quadratic convergence in the neighborhood of local optima

Metric learning algorithm: influence of initialization

Objective function $\mathbf{w} \mapsto \mathcal{P}(d_{\mathbf{w}}^{\Psi}, \mathbf{s})$ twice differentiable: quasi-Newton algorithm

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

- descent-step free;
- optimization in large dimension $n_{\Psi} \gtrsim 10^4$;
- quadratic convergence in the neighborhood of local optima

Random initialization (Thoret et al., 2021, Nat. Hum. Behav.)

$$\mathbf{w}_k^{[0]} \sim \mathcal{N}(1, 10^{-4})$$

independent identically distributed

Metric learning algorithm: influence of initialization

Objective function $\mathbf{w} \mapsto \mathcal{P}(d_{\mathbf{w}}^{\Psi}, \mathbf{s})$ twice differentiable: quasi-Newton algorithm

Limited memory Boyden-Fletcher-Golfarb-Shanno algorithm with box constraints

- descent-step free;
- optimization in large dimension $n_{\Psi} \gtrsim 10^4$;
- quadratic convergence in the neighborhood of local optima

Random initialization (Thoret et al., 2021, Nat. Hum. Behav.)

$$\mathbf{w}_k^{[0]} \sim \mathcal{N}(1, 10^{-4})$$

independent identically distributed

Warm start

$$\boldsymbol{w}^{[0]} \in \mathop{\mathrm{Argmin}}_{\boldsymbol{w} \in \mathbb{R}_+^{n_{\boldsymbol{\psi}}}} \sum_{\{i,j\}} \left| \boldsymbol{d}^{\boldsymbol{\psi}}_{\boldsymbol{w}}(\textbf{\textit{a}}_i, \textbf{\textit{a}}_j)^2 - \boldsymbol{s}_{\{i,j\}} \right|^2$$

Metric learning in representation spaces: explained variance

Performance criterion: $\mathcal{P}(d_{w_{\star}}^{\Psi}, s)^2 \in [0, 1]$ (Thoret et al., 2021, *Nat. Hum. Behav.*) \triangleright squared Pearson correlation between learned distance and dissimilarity ratings

Metric learning in representation spaces: explained variance

Performance criterion: $\mathcal{P}(d_{w_{\star}}^{\Psi}, s)^2 \in [0, 1]$ (Thoret et al., 2021, *Nat. Hum. Behav.*)

> squared Pearson correlation between learned distance and dissimilarity ratings

	perc	eptual
17 datasets from studies between 1977 and 2016	$\operatorname{cochlea} n_{\Psi} = 128$	$\begin{array}{l} STMF\\ n_{\Psi} = 30976 \end{array}$
Grey, 1977	0.48	0.84
Grey et al., 1978	0.11	0.33
Iverson et al., 1993: Whole	0.16	0.87
lverson et al., 1993: Onset	0.07	0.22
lverson et al., 1993: Remainder	0.03	0.27
McAdams et al., 1995	0.30	0.77
Lakatos et al., 2000: Harmonic	0.19	0.85
Lakatos et al., 2000: Percussive	0.18	0.27
Lakatos et al., 2000: Combined	0.13	0.33
Barthet et al., 2010	0.74	0.98
Patil et al., 2012: A3	0.62	0.97
Patil et al., 2012: DX4	0.66	0.99
Patil et al., 2012: GD4	0.46	0.95
Siedenburg et al., 2016: Exp 2A, Set 1	0.62	0.95
Siedenburg et al., 2016: Exp 2A, Set 2	0.73	0.99
Siedenburg et al., 2016: Exp 2A, Set 3	0.10	0.53
Siedenburg et al., 2016: Exp 2B, Set 3	0.07	0.46
Median	0.18	0.77
Interquartile range	0.44	0.62

More models of human audio timbre perception

Perceptual representations used by Thoret et al., 2021, Nat. Hum. Behav.

- auditory spectrum: cochlea
- cortical representation: STMF

All representations are averaged over time.

	cochlea	STMF	
nψ	128	30976	

More models of human audio timbre perception

Perceptual representations used by Thoret et al., 2021, Nat. Hum. Behav.

- auditory spectrum: cochlea
- cortical representation: STMF

Time-frequency representations

- Short-Time Fourier Transform: STFT
- Joint time-frequency scattering transform: scattering

All representations are averaged over time.

	cochlea	STMF	STFT	scattering	
nΨ	128	30976	513	2204	

More models of human audio timbre perception

Perceptual representations used by Thoret et al., 2021, Nat. Hum. Behav.

- auditory spectrum: cochlea
- cortical representation: STMF

Time-frequency representations

- Short-Time Fourier Transform: STFT
- Joint time-frequency scattering transform: scattering

Deep neural network embeddings

- CLAP: trained on general audio for text2speech
- EnCodec: trained on music for compression
- MERT: trained on music for 13 tasks

▷ averaged (MERTAV) or concatened (MERTCAT)

All representations are averaged over time.

n_{Ψ} 128 30976 513 2204 1024 128 768 9984		cochlea	STMF	STFT	scattering	CLAP	EnCodec	MERTAV	MERTCAT
	nψ	128	30976	513	2204	1024	128	768	9984

Metric learning in representation spaces: explained variance

Performance criterion: $\mathcal{P}(d_{w_{\star}}^{\Psi}, s)^2 \in [0, 1]$ (Thoret et al., 2021, *Nat. Hum. Behav.*)

> squared Pearson correlation between learned distance and dissimilarity ratings

	perc	eptual	deep
17 datasets from studies between 1977 and 2016	cochlea	STMF	MERTCAT
The datasets from statles between 1977 and 2010	$n_{\Psi} = 128$	$n_{\Psi} = 30976$	$n_{\Psi} = 9984$
Grey, 1977	0.48	0.84	1.00
Grey et al., 1978	0.11	0.33	0.77
lverson et al., 1993: Whole	0.16	0.87	0.95
lverson et al., 1993: Onset	0.07	0.22	0.93
lverson et al., 1993: Remainder	0.03	0.27	0.87
McAdams et al., 1995	0.30	0.77	0.97
Lakatos et al., 2000: Harmonic	0.19	0.85	0.98
Lakatos et al., 2000: Percussive	0.18	0.27	0.97
Lakatos et al., 2000: Combined	0.13	0.33	0.94
Barthet et al., 2010	0.74	0.98	0.65
Patil et al., 2012: A3	0.62	0.97	1.00
Patil et al., 2012: DX4	0.66	0.99	1.00
Patil et al., 2012: GD4	0.46	0.95	1.00
Siedenburg et al., 2016: Exp 2A, Set 1	0.62	0.95	1.00
Siedenburg et al., 2016: Exp 2A, Set 2	0.73	0.99	1.00
Siedenburg et al., 2016: Exp 2A, Set 3	0.10	0.53	1.00
Siedenburg et al., 2016: Exp 2B, Set 3	0.07	0.46	1.00
Median	0.18	0.77	0.97
Interquartile range	0.44	0.62	0.06

Correlation between collected dissimilarity scores and learned metrics

- 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
- $m_{\rm subjects} = 24$ musician participants: musical instruction and playing experience

STFT	cochlea	scattering	STMF	CLAP	EnCodec	MERTAV	MERTCAT
0.40	0.62	0.31	0.95	0.76	0.23	0.11	1.00

Correlation between collected dissimilarity scores and learned metrics

Siedenburg et al., 2016, Front. Psychol.: Exp. 2A, Set 1

- 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
- $m_{\rm subjects} = 24$ musician participants: musical instruction and playing experience

STFT	cochlea	scattering	STMF	CLAP	EnCodec	MERTAV	MERTCAT
0.40	0.62	0.31	0.95	0.76	0.23	0.11	1.00

- 17 recorded sounds
- $m_{\rm subjects} = 34$ participants, including 18 musicians

STFT	cochlea	scattering	STMF	CLAP	EnCodec	MERTAV	MERTCAT
0.31	0.19	0.16	0.85	0.74	0.31	0.08	0.98

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- i) quantifying robustness of the learning procedure to noisy ratings
- ii) comparing robustness for different representations and noise levels

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- i) quantifying robustness of the learning procedure to noisy ratings
- ii) comparing robustness for different representations and noise levels

Random degradation of ratings

$$\mathsf{y}_{\{i,j\}}^{(\delta)} = \mathsf{min}(1,\mathsf{max}(\mathsf{0},\mathsf{s}_{\{i,j\}}+\delta\cdot\xi)),$$

 $\xi \sim \mathcal{N}(\mathbf{0},\mathbf{1})$ i.i.d. , $\delta > \mathbf{0}:$ noise std

 $\mathbf{y}^{(\delta)}:$ degraded \mathbf{s} at noise level δ

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- i) quantifying robustness of the learning procedure to noisy ratings
- ii) comparing robustness for different representations and noise levels

Random degradation of ratings

$$\mathsf{y}_{\{i,j\}}^{(\delta)} = \mathsf{min}(1,\mathsf{max}(\mathsf{0},\mathsf{s}_{\{i,j\}}+\delta\cdot\xi)),$$

 $\xi \sim \mathcal{N}(\mathbf{0},\mathbf{1})$ i.i.d. , $\delta > \mathbf{0}:$ noise std

 $\mathbf{y}^{(\delta)}:$ degraded \mathbf{s} at noise level δ

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- i) quantifying robustness of the learning procedure to noisy ratings
- ii) comparing robustness for different representations and noise levels

Random degradation of ratings

$$\mathsf{y}_{\{i,j\}}^{(\delta)} = \mathsf{min}(1,\mathsf{max}(0,\mathsf{s}_{\{i,j\}}+\delta\cdot\xi)),$$

 $\xi \sim \mathcal{N}(\mathbf{0},\mathbf{1})$ i.i.d. , $\delta > \mathbf{0}:$ noise std

 $[\]mathbf{y}^{(\delta)}:$ degraded \mathbf{s} at noise level δ

Averaged dissimilarity ratings

 \implies no confidence level on explained variance provided

Fluctuations in dissimilarity ratings: very large, both

- between different subjects
- for a subject, between different times and orders of presentation of sound pairs

Complement and extend the reported explained variance performance by

- i) quantifying robustness of the learning procedure to noisy ratings
- ii) comparing robustness for different representations and noise levels

Random degradation of ratings

$$\mathsf{y}_{\{i,j\}}^{(\delta)} = \mathsf{min}(1,\mathsf{max}(\mathsf{0},\mathsf{s}_{\{i,j\}}+\delta\cdot\xi)),$$

 $\xi \sim \mathcal{N}(\mathbf{0},\mathbf{1})$ i.i.d. , $\delta > \mathbf{0}:$ noise std

 $\mathbf{y}^{(\delta)}:$ degraded \mathbf{s} at noise level δ

Experimental setup to quantify robustness

i) learning on noisy dissimilarity ratings

$$\mathbf{w}_{\delta} \in \operatorname*{Argmax}_{\mathbf{w} \in \mathbb{R}^{n_{\Psi}}} \mathcal{P}(\mathsf{d}^{\Psi}_{\mathbf{w}}, \mathbf{y}^{(\delta)})$$

for 5 realizations of $\mathbf{y}^{(\delta)}$, and 9 values of δ logarithmically spaced in [0.1, 10]

ii) explained variance of averaged ratings by the learned distance $\mathcal{P}(d_{w_\delta}^{\psi},s)^2$

- 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
- $m_{\rm subjects} = 24$ musician participants: musical instruction and playing experience

- 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
- $m_{\rm subjects} = 24$ musician participants: musical instruction and playing experience

Typical standard deviation of human ratings $\overline{\delta}=0.1 imes\sqrt{m_{
m subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
- $m_{\rm subjects} = 24$ musician participants: musical instruction and playing experience

Typical standard deviation of human ratings $\overline{\delta}=0.1\times\sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
- $m_{\rm subjects} = 24$ musician participants: musical instruction and playing experience

Typical standard deviation of human ratings $\overline{\delta}=0.1 imes\sqrt{m_{
m subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 14 acoustic recordings from Vienna Symphonic Library https://www.vsl.co.at
- $m_{\rm subjects} = 24$ musician participants: musical instruction and playing experience

Typical standard deviation of human ratings $\overline{\delta}=0.1\times\sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 17 recorded sounds
- $m_{\rm subjects} = 34$ participants, including 18 musicians

- 17 recorded sounds
- $m_{\rm subjects} = 34$ participants, including 18 musicians

- 17 recorded sounds
- $m_{\rm subjects} = 34$ participants, including 18 musicians

Typical standard deviation of human ratings $\overline{\delta} = 0.1 \times \sqrt{m_{
m subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 17 recorded sounds
- $m_{\rm subjects} = 34$ participants, including 18 musicians

Typical standard deviation of human ratings $\overline{\delta}=0.1\times\sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

- 17 recorded sounds
- $m_{\rm subjects} = 34$ participants, including 18 musicians

Typical standard deviation of human ratings $\overline{\delta}=0.1\times\sqrt{m_{\rm subjects}}$ (P. Aumond et al., 2017,Appl. Sci.)

Robustness against degraded ratings: global results

Compared robustness for the different representations

- if $\delta \leq \overline{\delta}$ best explained variance and robustness for metric learned on MERTCAT
- for $\delta > \overline{\delta}$ explained variance decreases slower for metric learned on STMF
- $\forall \delta$ metrics learned on CLAP: good explained variance and robustness

CLAP	STMF	MERTCAT
$n_{\Psi} = 1024$	$n_{\Psi} = 30976$	$n_{\Psi} = 9984$

 $\triangleright \text{ quantified by comparison of the areas under the curves } \log_{10} \delta \mapsto \mathcal{P}(\mathsf{d}_{\mathbf{w}_{\delta}}^{\Psi}, \mathbf{s})^2$

See paper and companion toolbox github.com/bpascal-fr/timbre-metric-learning

Conclusion and perspectives

Meta-analysis on 17 datasets

- deep embeddings vs. classical time-frequency and perceptual representations
- deep neural networks trained on audio: encode substrate of timbre perception
- corrected and augmented metric learning procedure: explained variance
- robustness against inter- and intra- subject variability in human ratings

github.com/bpascal-fr/timbre-metric-learning

Conclusion and perspectives

Meta-analysis on 17 datasets

- deep embeddings vs. classical time-frequency and perceptual representations
- deep neural networks trained on audio: encode substrate of timbre perception
- corrected and augmented metric learning procedure: explained variance
- robustness against inter- and intra- subject variability in human ratings

github.com/bpascal-fr/timbre-metric-learning

Future work: Tackle open questions in auditory cognitive neuroscience

- training with all ratings (no averaging over participants): inter-subject variability
- CLAP, MERTCAT: speech, environmental sounds, animal bioacoustics