

Detectability of patches in fractal textures for assessing Hölder exponent-based breast cancer risk evaluation

<u>B. Pascal¹</u>, H. Biermé^{2,†}

Partially supported by Grant ANR-19-CE40-0005 "MISTIC"

1. Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France barbara.pascal@cnrs.fr

2. Université de Tours, CNRS, UMR 7013, Institut Denis Poisson, France hermine.bierme@univ-tours.fr

Aims and contributions

Early detection of breast cancer is key to survival. The local Hölder exponent distribution in a mammogram enables to quantify breast tissue disruption, and hence to assess breast cancer risk. This work proposes a systematic study of the detectability of disrupted tissues embedded inside fatty vs. dense microenvironments leveraging simulated piecewise homogeneous fractal textures modeling breast tissues. **Contributions:**

- Novel filtered fractional Brownian field (filtered fBf) model for stationary isotropic fractal textures.
- Simulations on synthetic piecewise homogeneous filtered fBf and fractional Gaussian field (fGf) textures: segmentation of a patch.
- Quantification of the detectability of simulated disrupted tissues $H_{\rm p} = 0.5$ in simulated fatty $H_{\rm b} = 0.3$ vs. dense $H_{\rm b} = 0.65$ tissues.

Outcomes:

- High detection performance for large patches of disrupted tissues in **fatty** environments, with a drop in accuracy for small patches.
- For **dense** environments detection performance are good and decrease slowly with the patch size.

Mammogram provided by **CompUMaine** from (Gerasimova-Chechkina et al., 2021, Front. Physiol.)

Fractal texture models

Fractional Brownian field (fBf)

 $\mathsf{B}_{H}(\underline{x}) = \int_{\mathbb{T}^{2}} \frac{\mathrm{e}^{-1\underline{x}\cdot\underline{\omega}} - 1}{\|_{(\mathcal{U})}\|_{H+1}} \,\mathrm{d}\widetilde{\mathsf{W}}(\underline{\omega})$

(Mandelbrot & Van Ness, 1968, SIAM Rev.)

Stationary self-similar fields -

Fractional Gaussian field (fGf) $\mathsf{G}_H(\underline{x}) = \mathsf{B}_H(\underline{x} + \underline{e}_1) + \mathsf{B}_H(\underline{x} + \underline{e}_2) - 2\mathsf{B}_H(\underline{x})$ (Pascal et al., 2021, Appl. Comput. Harm. Anal.)

Filtered fractional Brownian field

 $\mathsf{C}_{H}(\underline{x}) = \langle \mathsf{B}_{H}, \mathsf{u}_{x} \rangle$, u high-pass filter

 $\langle \cdot, \cdot \rangle$ scalar product in $L^2(\mathbb{R}^2)$

Filter u from (Biermé et al., 2024, *Preprint*)

Hölder exponent-based texture segmentation

Local Hölder exponent: for a field $\mathsf{F}: \mathbb{R}^2 \to \mathbb{R}$ and $\underline{x}_0 \in \mathbb{R}^2$, $h(\underline{x}_0)$ defined as the largest exponent $\alpha > 0$ such that there exists a constant χ and a polynomial $\mathcal{P}_{\underline{x}_0}$ of degree lower than α such that for \underline{x} in a neighborhood of \underline{x}_0 : $|\mathsf{F}(x) - \mathcal{P}_{\underline{x}_0}(\underline{x})| \le \chi ||\underline{x} - \underline{x}_0||^{\alpha}$. For B_H , G_H and C_H : $\forall \underline{x} \in \mathbb{R}^2$, $h(\underline{x}) = H$.

Multiscale analysis and wavelet leaders: (Mallat, 1999, *Elsevier*) scaling function ϕ , mother wavelet $\psi \Longrightarrow \mathcal{Y}_{\mathsf{F}}^{(m)}(j,\underline{k}) = 2^{-j} \langle \mathsf{F}, \psi_{j,k}^{(m)} \rangle ; \text{ leaders: } \mathcal{L}_{j,\underline{k}} = \sup\{|2^{j}\mathcal{Y}_{j',k'}^{(m)}|, \lambda_{j',\underline{k}'} \subset 3\lambda_{j,\underline{k}}, m = 1, 2, 3\}$ $\mathcal{L}_{j,k} \simeq \eta(\underline{x}) 2^{jh(\underline{x})}$ as $2^j \to 0$ (Jaffard, 2004, Proc. Symp. Pure Math.) \implies Linear Regression on $\log_2 \mathcal{L}_{j,k}$: local estimate $\widehat{h}^{\mathsf{LR}}(\underline{x})$.

Threshold Rudin-Osher-Fatemi estimator: 2D discrete gradient operator D

 $\widehat{h}^{\mathsf{ROF}} = \operatorname{argmin}_{h} \|h - \widehat{h}^{\mathsf{LR}}\|_{2}^{2} + \lambda \|\mathbf{D}h\|_{2,1} \& \text{ iterative thresholding} \Longrightarrow \mathcal{T}\widehat{h}^{\mathsf{ROF}}.$

(Nelson et al., 2016, IEEE Trans. Image Process.; B. Pascal et al., 2018, ICASSP); Cai et al., 2013, SIAM J. Imaging Sci.; Pascal et al., 2021, Appl. Comput. Harm. Anal.)

Stein-based automated parameter tuning: adapted Generalized Stein Unbiased Risk Estimate $\mathsf{GSURE}(\lambda) = \left\| \widehat{\boldsymbol{h}}^{\mathsf{ROF}} - \widehat{\boldsymbol{h}}^{\mathsf{LR}} \right\|^2 + 2\mathrm{Tr}\left(\boldsymbol{\mathcal{S}}\boldsymbol{J}\right) - \mathrm{Tr}(\boldsymbol{\mathcal{S}}) \text{ not explicitly depending on } \overline{\boldsymbol{h}}$ J: Jacobian matrix of \hat{h}^{ROF} w.r.t. \hat{h}^{LR} ; S: empirical covariance of Gaussian noise corrupting \hat{h}^{LR} . Optimal λ^* : minimization of $\mathsf{GSURE}(\lambda)$ with a BFGS scheme. (Pascal et al., 2020, Ann. Telecommun.)

Numerical experiments: detectability of disrupted tissues

Detection performance criteria: F-score defined as $F_1^{-1} = \text{precision}^{-1} + \text{recall}^{-1}$

- precision: proportion of pixels segmented in the central patch indeed belonging to it;
- recall: proportion of pixels originally belonging to the central patch and correctly segmented. \implies The larger $F_1 \in [0,1]$ the better the segmentation in terms of both errors of types I and II.

Two configurations: patch of disrupted tissues embedded in *fatty* vs. *dense* background; for each

- eight relative patch sizes $\{2\%, 5\%, 10\%, 15\%, 20\%, 30\%, 40\%, 50\%\}$,
- three image resolutions $N \in \{256, 512, 1024\},\$
- two synthetic texture models: fGf vs. filtered fBf,
- \implies F₁ score average and 95% confidence regions computed on 10 texture realizations.

- images of 512×512 pixels;
- circular central patch: 30% of pixels;
- two configurations: two background types.

Perspectives

- Detectability of disrupted tissues in anistropic textures (Richard & Biermé, 2010, J. Math. Imaging Vis.),
- Confidence level on Hölder exponent-based risk cancer assessment on real datasets, VinDr-Mammo.