

Transformée de Kravchuk réalignée, implémentation efficace et illustration sur signaux élémentaires et réels

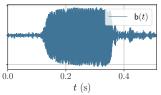
GRETSI'25 : XXX^{ème} Colloque français de Traitement du Signal et des Images Strasbourg, 25 au 29 août 2025

Barbara Pascal[†], Julien Flamant[‡] et Rémi Bardenet^h

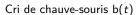
- † Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
- [‡] Université de Lorraine, CNRS, CRAN, F-54000 Nancy France
- th Université de Lille, CNRS, Centrale Lille UMR 9189 CRIStAL, F-59000 Lille, France

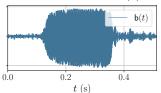
Soutenu par l'ERC Blackjack (ERC-2019-STG-851866) et la chaire IA Baccarat (ANR-20-CHIA-0002)

Cri de chauve-souris b(t)

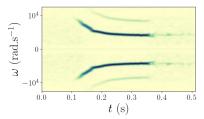


 $\underline{Source:}\ Animals: the\ bat\ call,\ tftb.nongnu.org$





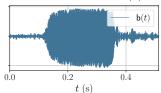
Source: Animals: the bat call, tftb.nongnu.org



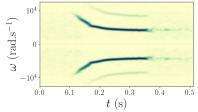
$$|\mathcal{V}_g \mathsf{b}(t,\omega)|^2 = \left| \int_{-\infty}^{\infty} \mathsf{b}(u) \overline{g(u-t)} \exp(-\mathrm{i}\omega u) \, \mathrm{d}u \right|^2, \ g(t) \propto \exp(-t^2/2)$$

(Flandrin 2018, Cambridge University Press; Pascal et coll. 2024, arXiv:2402.19172)

Cri de chauve-souris b(t)

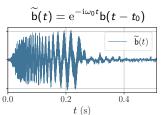


Source: Animals: the bat call, tftb.nongnu.org

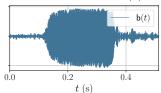


t (s)

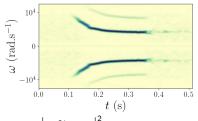
 $|\mathcal{V}_{g}\mathsf{b}(t,\omega)|^{2} = \left|\int_{-\infty}^{\infty}\mathsf{b}(u)\overline{g(u-t)}\exp(-\mathrm{i}\omega u)\,\mathrm{d}u\right|^{2},\ g(t)\propto\exp(-t^{2}/2)$



Cri de chauve-souris b(t)

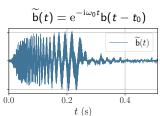


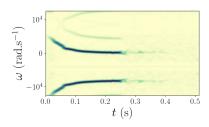
Source: Animals: the bat call, tftb.nongnu.org

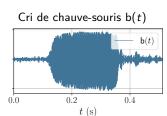


$$\left|\mathcal{V}_{g}\widetilde{\mathsf{b}}(t,\omega)\right|^{2}=\left|\mathcal{V}_{g}\mathsf{b}(t-t_{0},\omega-\omega_{0})\right|^{2}$$

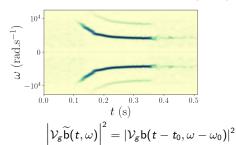
Translation et modulation



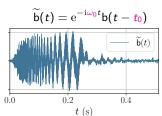




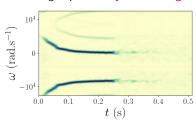
Source: Animals: the bat call, tftb.nongnu.org



Translation et modulation



groupe de Weyl-Heisenberg



covariance

- \mathcal{H} : espace des signaux,
- Ψ : espace des phases,
- $\mathcal{T}: \mathcal{H} \to L^2(\Psi)$: transformée,
- $|\mathcal{T}\cdot|^2$: représentation,

 $L^2(\mathbb{R})$ pour signaux continus d'énergie finie \mathbb{R}^2 pour le plan euclidien \mathcal{V}_g Transformée de Fourier à court terme spectrogramme gaussien

Weyl-Heisenberg

H: espace des signaux,

ullet Ψ : espace des phases,

• $\mathcal{T}:\mathcal{H}\to L^2(\Psi)$: transformée,

• $|\mathcal{T}\cdot|^2$: représentation,

 $L^2(\mathbb{R})$ pour signaux continus d'énergie finie \mathbb{R}^2 pour le plan euclidien \mathcal{V}_g Transformée de Fourier à court terme spectrogramme gaussien

Weyl-Heisenberg

Propriété de covariance : $\forall \mathbf{g} \in \mathbf{G}$, $|\mathcal{T}[\mathbf{g} * \mathbf{y}](\psi)|^2 = |\mathcal{T}\mathbf{y}(\mathbf{g} \cdot \psi)|^2$

H: espace des signaux,

• Ψ : espace des phases,

• $\mathcal{T}: \mathcal{H} \to L^2(\Psi)$: transformée,

• $|\mathcal{T}\cdot|^2$: représentation,

• **G** : groupe agissant sur \mathcal{H} et sur Ψ ,

 $L^2(\mathbb{R})$ pour signaux continus d'énergie finie \mathbb{R}^2 pour le plan euclidien

 \mathcal{V}_g Transformée de Fourier à court terme spectrogramme gaussien

Weyl-Heisenberg

Propriété de covariance : $\forall \mathbf{g} \in \mathbf{G}, \quad |\mathcal{T}[\mathbf{g} * \mathbf{y}](\psi)|^2 = |\mathcal{T}\mathbf{y}(\mathbf{g} \cdot \psi)|^2$

signaux ${\cal H}$	espace des phases Ψ	représentation $ \mathcal{T} \cdot ^2$	groupe G
continus $L^2(\mathbb{R})$	plan euclidien \mathbb{R}^2	spectrogramme	Weyl-Heisenberg

H: espace des signaux.

Ψ : espace des phases,

• $\mathcal{T}: \mathcal{H} \to L^2(\Psi)$: transformée,

• $|\mathcal{T}\cdot|^2$: représentation,

 $\bullet \ \ \textbf{G} : \text{groupe agissant sur } \mathcal{H} \text{ et sur } \Psi,$

 $L^2(\mathbb{R})$ pour signaux continus d'énergie finie \mathbb{R}^2 pour le plan euclidien

 \mathcal{V}_g Transformée de Fourier à court terme spectrogramme gaussien

Weyl-Heisenberg

 $\textbf{Propriété de covariance}: \forall \mathbf{g} \in \mathbf{G}, \quad |\mathcal{T}[\mathbf{g} * \mathbf{\textit{y}}](\psi)|^2 = |\mathcal{T}\mathbf{\textit{y}}(\mathbf{g} \cdot \psi)|^2$

signaux ${\cal H}$	espace des phases Ψ	représentation $\left \mathcal{T}\cdot\right ^2$	groupe G
continus $L^2(\mathbb{R})$	plan euclidien \mathbb{R}^2	spectrogramme	Weyl-Heisenberg
continus $L^2(\mathbb{R})$	plan hyperbolique $\mathbb{R} imes \mathbb{R}_+$	scalogramme	Affine

H: espace des signaux,

Ψ : espace des phases,

• $\mathcal{T}: \mathcal{H} \to L^2(\Psi)$: transformée,

• $|\mathcal{T}\cdot|^2$: représentation,

• **G** : groupe agissant sur \mathcal{H} et sur Ψ ,

 $L^2(\mathbb{R})$ pour signaux continus d'énergie finie \mathbb{R}^2 pour le plan euclidien

 \mathcal{V}_{g} Transformée de Fourier à court terme

spectrogramme gaussien Weyl-Heisenberg

Propriété de covariance : $\forall \mathbf{g} \in \mathbf{G}, \quad |\mathcal{T}[\mathbf{g} * \mathbf{y}](\psi)|^2 = |\mathcal{T}\mathbf{y}(\mathbf{g} \cdot \psi)|^2$

signaux ${\cal H}$	espace des phases Ψ	représentation $\left \mathcal{T}\cdot\right ^2$	groupe G
continus $L^2(\mathbb{R})$	plan euclidien \mathbb{R}^2	spectrogramme	Weyl-Heisenberg
continus $L^2(\mathbb{R})$	plan hyperbolique $\mathbb{R} imes \mathbb{R}_+$	scalogramme	Affine
discrets \mathbb{C}^{N+1} , $N\in\mathbb{N}$	4		

• \mathcal{H} : espace des signaux,

• Ψ : espace des phases,

• $\mathcal{T}:\mathcal{H}\to L^2(\Psi)$: transformée,

• $|\mathcal{T}\cdot|^2$: représentation,

• **G**: groupe agissant sur \mathcal{H} et sur Ψ ,

 $L^2(\mathbb{R})$ pour signaux continus d'énergie finie \mathbb{R}^2 pour le plan euclidien

 \mathcal{V}_g Transformée de Fourier à court terme spectrogramme gaussien

Weyl-Heisenberg

signaux ${\cal H}$	espace des phases Ψ	représentation $ \mathcal{T} \cdot ^2$	groupe G
continus $L^2(\mathbb{R})$	plan euclidien \mathbb{R}^2	spectrogramme	Weyl-Heisenberg
continus $L^2(\mathbb{R})$	plan hyperbolique $\mathbb{R} imes \mathbb{R}_+$	scalogramme	Affine
discrets $\mathbb{C}^{\mathit{N}+1}$, $\mathit{N} \in \mathbb{N}$	\mathbb{S}^2 sphère \mathbb{S}^2		Rotations SO(3)

Propriété de covariance : $\forall g \in G$, $|\mathcal{T}[g * y](\psi)|^2 = |\mathcal{T}y(g \cdot \psi)|^2$

- \mathcal{H} : espace des signaux,
 - Ψ : espace des phases,
- $\mathcal{T}: \mathcal{H} \to L^2(\Psi)$: transformée,
- $|\mathcal{T}\cdot|^2$: représentation,
- **G** : groupe agissant sur \mathcal{H} et sur Ψ ,

 $L^2(\mathbb{R})$ pour signaux continus d'énergie finie \mathbb{R}^2 pour le plan euclidien

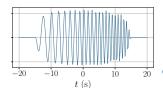
 \mathcal{V}_g Transformée de Fourier à court terme spectrogramme gaussien

Weyl-Heisenberg

Propriété de covariance : $\forall \mathbf{g} \in \mathbf{G}, \quad |\mathcal{T}[\mathbf{g} * \mathbf{y}](\psi)|^2 = |\mathcal{T}\mathbf{y}(\mathbf{g} \cdot \psi)|^2$

signaux ${\cal H}$	espace des phases Ψ	représentation $\left \mathcal{T}\cdot\right ^2$	groupe G
continus $L^2(\mathbb{R})$	plan euclidien \mathbb{R}^2	spectrogramme	Weyl-Heisenberg
continus $L^2(\mathbb{R})$	plan hyperbolique $\mathbb{R} imes \mathbb{R}_+$	scalogramme	Affine
discrets $\mathbb{C}^{\mathit{N}+1}$, $\mathit{N} \in \mathbb{N}$	sphère \mathbb{S}^2	p-Kravchuk	Rotations $SO(3)$

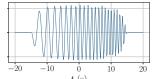
Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :



de
$$u_1=0,5$$
 Hz à $t_1=-15$ s à $u_2=1$ Hz à $t_2=15$ s $x(t)=A_\Omega(t)\sin\left(2\pi\left(\nu_1+(\nu_2-\nu_1)\frac{(t-t_1)}{|\Omega|}\right)t\right)$

échantillonné sur 40 s à $F_{\rm e}=$ 6,4 Hz, N+1=257 points.

Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :



de
$$u_1=0,5$$
 Hz à $t_1=-15$ s à $u_2=1$ Hz à $t_2=15$ s $x(t)=A_\Omega(t)\sin\left(2\pi\left(\nu_1+(\nu_2-\nu_1)rac{(t-t_1)}{|\Omega|}
ight)t$

 $t_{\rm e}=6.4$ Hz, $t_{\rm e}=6.$

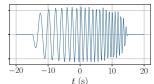
Définition. Pour $p \in (0,1)$, la p-transformée de Kravchuk de y est définie par :

$$T^{(p)}\boldsymbol{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \sqrt{\mathcal{B}_{N}^{n}} c_{\vartheta}^{n} s_{\vartheta}^{N-n} e^{\mathrm{i}n\varphi}(\mathbf{Q}^{(p)}\boldsymbol{y})[n], \text{ pour } (\vartheta,\,\varphi) \in [0,\pi] \times [0,2\pi] \cong \mathbb{S}^{2}$$

où
$$\mathcal{B}_N^n$$
: coefficient binomial, $c_{\vartheta} = \cos(\vartheta/2)$, $s_{\vartheta} = \sin(\vartheta/2)$ et $(\mathbf{Q}^{(p)}\mathbf{v})[n] = \langle \mathbf{q}_n^{(p)}, \mathbf{v} \rangle$

 $n^{\text{ème}}$ composante de y dans la base orthonormée des p-fonctions de Kravchuk.

Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :



de $u_1=0,5$ Hz à $t_1=-15$ s à $u_2=1$ Hz à $t_2=15$ s $x(t)=A_\Omega(t)\sin\left(2\pi\left(\nu_1+(\nu_2-\nu_1)rac{(t-t_1)}{|\Omega|}
ight)t$

échantillonné sur 40 s à $F_{\rm e}=$ 6,4 Hz, N+1= 257 points.

Définition. Pour $p \in (0,1)$, la p-transformée de Kravchuk de y est définie par :

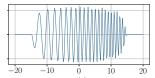
$$T^{(p)}\boldsymbol{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \sqrt{\mathcal{B}_{N}^{n}} c_{\vartheta}^{n} s_{\vartheta}^{N-n} e^{\mathrm{i}n\varphi}(\mathbf{Q}^{(p)}\boldsymbol{y})[n], \text{ pour } (\vartheta,\,\varphi) \in [0,\pi] \times [0,2\pi] \cong \mathbb{S}^{2}$$

où
$$\mathcal{B}_N^n$$
: coefficient binomial, $c_{\vartheta} = \cos(\vartheta/2)$, $s_{\vartheta} = \sin(\vartheta/2)$ et $(\mathbf{Q}^{(p)}\mathbf{v})[n] = \langle \mathbf{q}_n^{(p)}, \mathbf{v} \rangle$

 $n^{\rm ème}$ composante de ${m y}$ dans la base orthonormée des p-fonctions de Kravchuk.

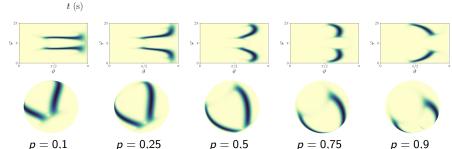
Propriété de covariance :
$$\forall \mathbf{r} \in SO(3), \quad \left| T^{(\rho)}[\mathbf{r} * \mathbf{y}](\vartheta, \varphi) \right|^2 = \left| T^{(\rho)}\mathbf{y}(\mathbf{r} \cdot \vartheta) \right|^2$$

Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :

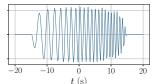


de $u_1=0,5$ Hz à $t_1=-15$ s à $u_2=1$ Hz à $t_2=15$ s $x(t)=A_\Omega(t)\sin\left(2\pi\left(\nu_1+(\nu_2-\nu_1)rac{(t-t_1)}{|\Omega|}
ight)t$

dechantillonné sur 40 s à $F_{
m e}=$ 6,4 Hz, N+1= 257 points.

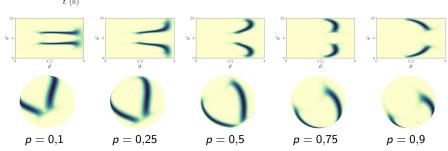


Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :



de $u_1=0,5$ Hz à $t_1=-15$ s à $u_2=1$ Hz à $t_2=15$ s $x(t)=A_\Omega(t)\sin\left(2\pi\left(\nu_1+(\nu_2-\nu_1)rac{(t-t_1)}{|\Omega|}
ight)t$

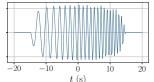
échantillonné sur 40 s à $F_{\rm e}=$ 6,4 Hz, $\mathit{N}+1=$ 257 points.



 $\forall p \in (0,1), \ \exists \mathbf{r}^{(p)} \in \mathrm{SO}(3) \ \mathrm{telle} \ \mathrm{que} \ T^{(p)} \mathbf{y}(\vartheta,\,\varphi) = T^{(1/2)} \mathbf{y} \left(\mathbf{r}^{(p)} \cdot (\vartheta,\,\varphi) \right), \ \forall (\vartheta,\,\varphi) \in \mathbb{S}^2$

(Pascal et coll. 2022, IEEE Trans. Sig. Process.; Pascal et coll. 2022, GRETSI'22)

Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :



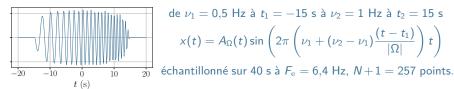
de
$$u_1=0,5$$
 Hz à $t_1=-15$ s à $u_2=1$ Hz à $t_2=15$ s $x(t)=A_\Omega(t)\sin\left(2\pi\left(\nu_1+(\nu_2-\nu_1)rac{(t-t_1)}{|\Omega|}
ight)t$

échantillonné sur 40 s à $F_{\rm e}=$ 6,4 Hz, N+1= 257 points.

Limitations à une utilisation pratique :

$$T^{(p)}\mathbf{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \sqrt{\mathcal{B}_{N}^{n}} c_{\vartheta}^{n} s_{\vartheta}^{N-n} e^{in\varphi} (\mathbf{Q}^{(p)}\mathbf{y})[n], \quad (\mathbf{Q}^{(p)}\mathbf{y})[n] = \langle \mathbf{q}_{n}^{(p)}, \mathbf{y} \rangle$$

Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :



de $\nu_1 = 0.5$ Hz à $t_1 = -15$ s à $\nu_2 = 1$ Hz à $t_2 = 15$ s $x(t) = A_{\Omega}(t) \sin \left(2\pi \left(\nu_1 + (\nu_2 - \nu_1) \frac{(t - t_1)}{|\Omega|} \right) t \right)$

Limitations à une utilisation pratique :

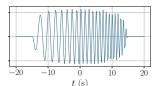
$$T^{(\rho)}\boldsymbol{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \sqrt{\mathcal{B}_{N}^{n}} c_{\vartheta}^{n} s_{\vartheta}^{N-n} e^{in\varphi} (\mathbf{Q}^{(\rho)}\boldsymbol{y})[n], \quad (\mathbf{Q}^{(\rho)}\boldsymbol{y})[n] = \langle \boldsymbol{q}_{n}^{(\rho)}, \boldsymbol{y} \rangle$$

• p-fonctions de Kravchuk : calcul instable des polynômes $Q_n(\cdot; N, p)$

$$q_n(\kappa; N, p) = \sqrt{\mathcal{B}_N^n \mathcal{B}_N^\kappa} \frac{\eta^{n+\kappa} Q_n(\kappa; N, p)}{(1+\eta^2)^{N/2}}, \quad \kappa = 0, 1, \dots, N, \quad \eta = \sqrt{p/(1-p)}$$

formulation alternative via une fonction génératrice \implies coût de calcul prohibitif

Soit $N \in \mathbb{N}$ et $\mathbf{y} \in \mathbb{C}^{N+1}$ un signal *discret*, par exemple un *chirp* de durée $|\Omega| = 30$ s :



de
$$u_1=0,5$$
 Hz à $t_1=-15$ s à $u_2=1$ Hz à $t_2=15$ s $x(t)=A_\Omega(t)\sin\left(2\pi\left(\nu_1+(\nu_2-\nu_1)rac{(t-t_1)}{|\Omega|}
ight)t
ight)$

échantillonné sur 40 s à $F_{\rm e}=$ 6,4 Hz, $\mathit{N}+1=$ 257 points.

Limitations à une utilisation pratique :

$$\mathcal{T}^{(
ho)} oldsymbol{y}(artheta,\,arphi) = \sum_{n=0}^N \sqrt{\mathcal{B}_N^n} c_artheta^n oldsymbol{s}_artheta^{N-n} \mathrm{e}^{\mathrm{i} n arphi} (oldsymbol{\mathsf{Q}}^{(
ho)} oldsymbol{y})[n], \quad (oldsymbol{\mathsf{Q}}^{(
ho)} oldsymbol{y})[n] = \langle oldsymbol{q}_n^{(
ho)}, oldsymbol{y}
angle$$

• p-fonctions de Kravchuk : calcul instable des polynômes $Q_n(\cdot; N, p)$

$$q_n(\kappa; N, p) = \sqrt{\mathcal{B}_N^n \mathcal{B}_N^\kappa} \frac{\eta^{n+\kappa} Q_n(\kappa; N, p)}{(1+\eta^2)^{N/2}}, \quad \kappa = 0, 1, \dots, N, \quad \eta = \sqrt{p/(1-p)}$$

formulation alternative via une fonction génératrice \Longrightarrow coût de calcul prohibitif

• rotation sur \mathbb{S}^2 via p: quelle d'interprétation temps-fréquence de (ϑ, φ) ?

(Pascal et coll. 2022, IEEE Trans. Sig. Process.; Pascal et coll. 2022, GRETSI'22)

Analyse temps-fréquence sur S² et harmoniques sphériques de spin

Conservation de l'énergie : pour tout $p \in (0,1)$

$$\forall \mathbf{y} \in \mathbb{C}^{N+1}, \quad \int_{\mathbb{S}^2} \left| T^{(\rho)}(\vartheta, \varphi) \right|^2 \sin(\vartheta) \, \mathrm{d}\vartheta \, \mathrm{d}\varphi = \frac{4\pi}{N+1} \|\mathbf{y}\|^2$$
$$\implies (\vartheta, \varphi) \mapsto T^{(\rho)}(\vartheta, \varphi) \text{ de carré intégrable sur la sphère}$$

0

(Pascal et coll. 2022, IEEE Trans. Sig. Process.)

Analyse temps-fréquence sur S² et harmoniques sphériques de spin

Conservation de l'énergie : pour tout $p \in (0,1)$

$$orall oldsymbol{y} \in \mathbb{C}^{ extit{N}+1}, \quad \int_{\mathbb{S}^2} \left| oldsymbol{T}^{(
ho)}(artheta, arphi)
ight|^2 \sin(artheta) \, \mathrm{d}artheta \mathrm{d}arphi = rac{4\pi}{ extit{N}+1} \|oldsymbol{y}\|^2$$

 $\Longrightarrow (\vartheta,\varphi) \mapsto \mathcal{T}^{(\rho)}(\vartheta,\varphi) \text{ de carré intégrable sur la sphère}$

(Pascal et coll. 2022, IEEE Trans. Sig. Process.)

Toute fonction de $L^2(\mathbb{S}^2)$ se décompose sur la base des harmoniques sphériques de spin $\left\{ s\, Y_m^\ell : s,m\in\mathbb{Z},\ell\in\mathbb{N} \text{ tels que } |s|\leq \ell,|m|\leq \ell \right\}$ (Newman et coll. 1966, J. Math. Phys.; McEwen et coll. 2011, IEEE Trans. Sig. Process.)

Analyse temps-fréquence sur S² et harmoniques sphériques de spin

Conservation de l'énergie : pour tout $p \in (0,1)$

$$\forall oldsymbol{y} \in \mathbb{C}^{N+1}, \quad \int_{\mathbb{S}^2} \left| T^{(
ho)}(\vartheta, arphi)
ight|^2 \sin(\vartheta) \, \mathrm{d}\vartheta \mathrm{d}arphi = rac{4\pi}{N+1} \|oldsymbol{y}\|^2$$

 $\implies (\vartheta, \varphi) \mapsto T^{(\rho)}(\vartheta, \varphi)$ de carré intégrable sur la sphère

(Pascal et coll. 2022, IEEE Trans. Sig. Process.)

Toute fonction de $L^2(\mathbb{S}^2)$ se décompose sur la base des harmoniques sphériques de spin $\left\{ {}_{s}Y_m^\ell:\, s,m\in\mathbb{Z},\ell\in\mathbb{N} \text{ tels que } |s|\leq\ell,|m|\leq\ell\right\}$

(Newman et coll. 1966, J. Math. Phys.; McEwen et coll. 2011, IEEE Trans. Sig. Process.)

Théorème. Soit $p \in (0,1)$, $\beta = 2 \arcsin(\sqrt{p})$ et $N \in \mathbb{N}$ pair.

Pour tout $\mathbf{y} \in \mathbb{C}^{N+1}$, soit $\widetilde{\mathbf{y}} = \mathbf{r}_{\beta} * \mathbf{y}$, \mathbf{r}_{β} rotation d'angles d'Euler $(0, \beta, 0)$

$$T^{(p)}\boldsymbol{y}(\vartheta,\,\varphi) = \mathcal{C}_N e^{\mathrm{i}\frac{N\varphi}{2}} \sum_{n=0}^N \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}} (\pi - \vartheta,\varphi) \overline{\widetilde{\boldsymbol{y}}[n]}, \quad \forall (\vartheta,\,\varphi) \in [0,\pi] \times [0,2\pi]$$

où \mathcal{C}_N : facteur de normalisation, explicite.

 $T^{(p)}y$ se décompose intégralement sur les harmoniques sphériques de spin N/2.

Preuve. (Pascal, Flamant, Bardenet 2025, En préparation.)

Transformée de Kravchuk réalignée : soit $N \in \mathbb{N}$ pair et $\mathbf{y} \in \mathbb{C}^{N+1}$

$$\widetilde{T}\mathbf{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \, \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi) \overline{y[n]}.$$

Transformée de Kravchuk réalignée : soit $N \in \mathbb{N}$ pair et $\mathbf{y} \in \mathbb{C}^{N+1}$

$$\widetilde{T}\mathbf{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \, \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi) \overline{y[n]}.$$

• algorithmes rapides et stables pour calculer $\frac{N}{2}Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi)$: pyssht

Transformée de Kravchuk réalignée : soit $N \in \mathbb{N}$ pair et $\mathbf{y} \in \mathbb{C}^{N+1}$

$$\widetilde{T}\mathbf{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \, \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi) \overline{y[n]}.$$

- algorithmes rapides et stables pour calculer $\frac{N}{2}Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\varphi)$: pyssht
- directement exprimée en fonction de y : pas de rotation \mathbf{r}_{β} nécessaire

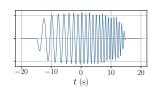
Transformée de Kravchuk réalignée : soit $N \in \mathbb{N}$ pair et $\mathbf{y} \in \mathbb{C}^{N+1}$

$$\widetilde{T} \mathbf{y}(\vartheta, \varphi) = \sum_{n=0}^{N} \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}} (\vartheta, \varphi) \overline{y[n]}.$$

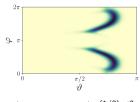
- algorithmes rapides et stables pour calculer $_{\frac{N}{2}}Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi)$: pyssht
- directement exprimée en fonction de y: pas de rotation \mathbf{r}_{β} nécessaire
- ullet variables (ϑ, φ) alignées avec les axes temps-fréquence

 ϑ : variable de temps

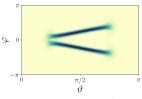
 φ : variable de fréquence



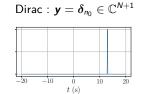
signal y



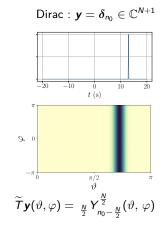
1/2-transformée $|\mathcal{T}^{(1/2)}\mathbf{y}|^2$



transformée réalignée $|\widetilde{T} \mathbf{y}|^2$



$$\widetilde{T} \mathbf{y}(\vartheta, \varphi) = \frac{N}{2} Y_{n_0 - \frac{N}{2}}^{\frac{N}{2}} (\vartheta, \varphi)$$



Lemme. Soit $N \in \mathbb{N}$ pair et $n \in \{0, ..., N\}$. La fonction

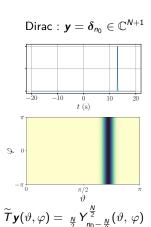
$$\left\{ \begin{array}{ccc} [0,\pi] & \to & \mathbb{R} \\ \vartheta & \mapsto & \left| \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi) \right| \end{array} \right.$$

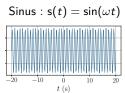
atteint son maximum en un unique point :

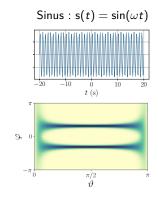
$$\vartheta_n^* = 2 \arctan \sqrt{\frac{n}{N-n}}, \quad \text{pour } n \in \{0, 1, \dots, N\}$$

où par convention $N/0 = +\infty$ et $\arctan(+\infty) = \pi$.

Colatitude ϑ : liée à la variable de temps t

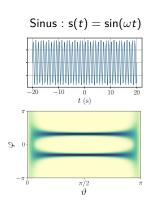




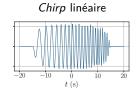


Lemme. Soit
$$N \in \mathbb{N}$$
 pair, $\omega_0 \in \mathbb{R}$, $s \in \mathbb{L}^2(\mathbb{R})$ et $y[n] = s(t_n), \ t_n = t_{\min} + nT_{\mathrm{e}}, \ n = 0, 1, \ldots, N,$ avec $T_{\mathrm{e}} = (t_{\max} - t_{\min})/N.$ Modulation en fréquence $g(t) = \mathrm{e}^{\mathrm{i}\omega_0 t} s(t), \ v[n] = g(t_n)$ $\widetilde{T} \mathbf{v}(\vartheta, \varphi) = \mathrm{e}^{-\mathrm{i}\omega_0 \frac{t_{\max} + t_{\min}}{2}} \widetilde{T} \mathbf{y}(\vartheta, \varphi - \omega_0 T_{\mathrm{e}})$

Longitude φ : liée à la variable de fréquence ω



Signal continu sur $[t_{\rm min},t_{\rm max}]$ échantillonné en $t_n=t_{\rm min}+nT_{\rm e},\;n=0,\,1,\ldots,\;N$ avec un pas $T_{\rm e}=(t_{\rm max}-t_{\rm min})/N$



Signal continu sur $[t_{\min}, t_{\max}]$ échantillonné en

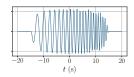
$$t_n = t_{\min} + nT_{\rm e}, \ n = 0, 1, \dots, N$$

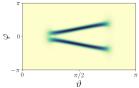
avec un pas $T_{
m e} = (t_{
m max} - t_{
m min})/N$

• colatitude en fonction du temps :

$$artheta^{\star}(t) = 2 \arctan \sqrt{rac{t - t_{\mathsf{min}}}{t_{\mathsf{max}} - t}}$$

Chirp linéaire





Interprétation temps-fréquence des coordonnées sphériques

Signal continu sur $[t_{\min}, t_{\max}]$ échantillonné en

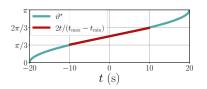
$$t_n = t_{\text{min}} + nT_{\mathrm{e}}, \ n = 0, \ 1, \ldots, \ N$$
 avec un pas $T_{\mathrm{e}} = (t_{\text{max}} - t_{\text{min}})/N$

• colatitude en fonction du temps :

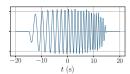
$$artheta^\star(t) = 2 rctan \sqrt{rac{t-t_{\mathsf{min}}}{t_{\mathsf{max}}-t}}$$

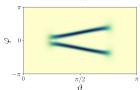
• longitude en fonction de la pulsation :

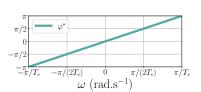
$$\varphi(\omega) = \omega T_{\rm e}$$



Chirp linéaire







États cohérents : énergie maximalement concentrée dans l'espace des phases

États cohérents : énergie maximalement concentrée dans l'espace des phases

Transformée de Fourier à court terme de fenêtre gaussienne : atomes de Gabor (Chapitre 4 2018, *Cambridge University Press*)

États cohérents : énergie maximalement concentrée dans l'espace des phases

Transformée de Fourier à court terme de fenêtre gaussienne : atomes de Gabor (Chapitre 4 2018, Cambridge University Press)

États cohérents de spin : famille covariante

$$\{\Psi_{\vartheta,\,\varphi},\,(\vartheta,\,\varphi)\in[0,\pi]\times[-\pi,\pi]\}$$

action du groupe SO(3) sur une ondelette mère

$$\forall \mathsf{r}_{(\vartheta,\varphi)} \in \mathrm{SO}(3), \quad \Psi_{\vartheta,\varphi} = \mathsf{r}_{(\vartheta,\varphi)} * \Psi_{0,0}$$

(Gazeau 2009, WILEY-VCH Verlag GmbH & Co. KGaA; Pascal et coll.

États cohérents : énergie maximalement concentrée dans l'espace des phases

Transformée de Fourier à court terme de fenêtre gaussienne : atomes de Gabor

(Chapitre 4 2018, Cambridge University Press)

États cohérents de spin : famille covariante

$$\{\Psi_{\vartheta,\,\varphi},\,(\vartheta,\,arphi)\in[0,\pi]\times[-\pi,\pi]\}$$

action du groupe SO(3) sur une ondelette mère

$$\forall \mathsf{r}_{(\vartheta,\varphi)} \in \mathrm{SO}(3), \quad \Psi_{\vartheta,\,\varphi} = \mathsf{r}_{(\vartheta,\varphi)} * \Psi_{0,0}$$

Pour la transformée de Kravchuk réalignée : forme close

$$\Psi_{\vartheta,\,\varphi}[n] = \mathcal{B}_N^n c_\vartheta^{N-n} s_\vartheta^n \mathrm{e}^{-\mathrm{i} n \varphi}, \quad n \in \{0,\,\dots,\,N\}$$

$$\mathcal{B}_{N}^{n}$$
 : coefficient binomial, $c_{\vartheta}=\cos(\vartheta/2)$, $s_{\vartheta}=\sin(\vartheta/2)$

(Gazeau 2009, WILEY-VCH Verlag GmbH & Co. KGaA; Pascal et coll. 2022, IEEE Trans. Sig. Process.; Pascal et coll. 2022, GRETSI'22)

États cohérents : énergie maximalement concentrée dans l'espace des phases

Transformée de Fourier à court terme de fenêtre gaussienne : atomes de Gabor

(Chapitre 4 2018, Cambridge University Press)

États cohérents de spin : famille covariante

$$\{\Psi_{\vartheta,\,\varphi},\,(\vartheta,\,\varphi)\in[0,\pi]\times[-\pi,\pi]\}$$

action du groupe SO(3) sur une ondelette mère

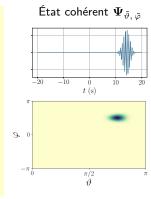
$$\forall \mathsf{r}_{(\vartheta,\varphi)} \in \mathrm{SO}(3), \quad \Psi_{\vartheta,\,\varphi} = \mathsf{r}_{(\vartheta,\varphi)} * \Psi_{0,0}$$

Pour la transformée de Kravchuk réalignée : forme close

$$\Psi_{\vartheta,\,\varphi}[n] = \mathcal{B}_N^n c_\vartheta^{N-n} s_\vartheta^n e^{-in\varphi}, \quad n \in \{0, \ldots, N\}$$

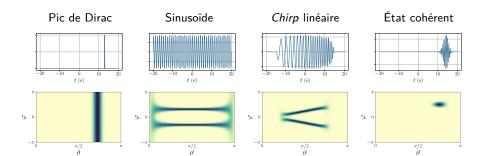
$$\mathcal{B}_N^n$$
: coefficient binomial, $c_\vartheta = \cos(\vartheta/2)$, $s_\vartheta = \sin(\vartheta/2)$

(Gazeau 2009, WILEY-VCH Verlag GmbH & Co. KGaA; Pascal et coll. 2022, IEEE Trans. Sig. Process.; Pascal et coll. 2022, GRETSI'22)

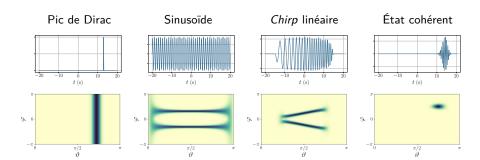


$$\widetilde{artheta}=3\pi/4$$
, $\widetilde{arphi}=\pi/2$

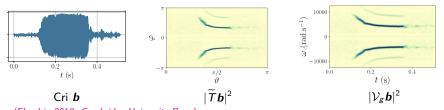
Transformée de Kravchuk réalignée : exemples



Transformée de Kravchuk réalignée : exemples



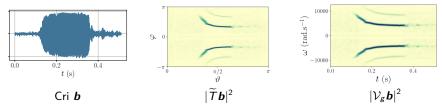
Cri d'écholocation de chauve souris, Animals : the bat call, tftb.nongnu.org



(Flandrin 2018, Cambridge University Press)

Représentations de Fourier vs. de Kravchuk d'un cri de chauve-souris

Cri d'écholocation de chauve souris, Animals : the bat call, tftb.nongnu.org



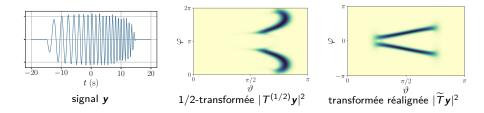
 $|\mathcal{V}_g \mathbf{b}|^2$: spectrogramme gaussien et implémentation sans adaptation via SciPy

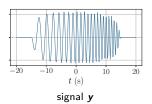
(Flandrin 2018, Cambridge University Press)

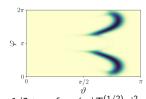
- grande **similitude** entre le spectrogramme de Fourier et de Kravchuk réaligné : *chirp* non linéaire décroissant, fréquences positives et négatives, interférences
- excellente localisation sans aucun paramètre à régler

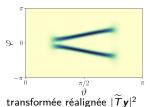
$$\widetilde{T}\boldsymbol{b}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}} (\vartheta,\,\varphi) \overline{\mathbf{b}[n]}$$

⇒ transformée de Kravchuk réalignée : pertinente pour représenter des signaux réels









1/2-transformée $|\mathcal{T}^{(1/2)}\mathbf{y}|^2$

transformee realign

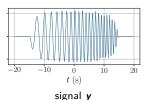
Transformée originelle : p = 1/2

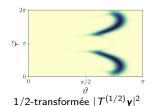
$$T\mathbf{y}(\vartheta,\,\varphi) = \sum_{n=0}^{N} \sqrt{\mathcal{B}_{N}^{n}} c_{\vartheta}^{n} \mathbf{s}_{\vartheta}^{N-n} \mathrm{e}^{\mathrm{i}n\varphi}(\mathbf{Q}\mathbf{y})[n]$$

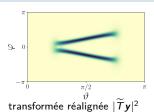
enjeu : si $N\sim 10^2$ calcul de ${f Q}{\it y}$ instable

⇒ réécriture via fonction génératrice

(Pascal et coll. 2022, IEEE Trans. Sig. Process.)







Transformée originelle : p = 1/2

$$\mathcal{T}\mathbf{y}(\vartheta,\,arphi) = \sum_{n=0}^{N} \sqrt{\mathcal{B}_{N}^{n}} \mathbf{c}_{\vartheta}^{n} \mathbf{s}_{\vartheta}^{N-n} \mathrm{e}^{\mathrm{i}narphi}(\mathbf{Q}\mathbf{y})[n]$$

⇒ réécriture via fonction génératrice

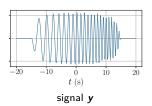
(Pascal et coll. 2022, IEEE Trans. Sig. Process.)

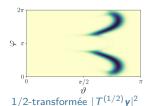
Transformée réalignée :

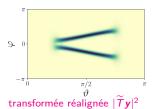
$$\widetilde{\mathcal{T}} \mathbf{y}(\vartheta, \, \varphi) = \sum_{n=1}^{N} \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}} (\vartheta, \, \varphi) \overline{\mathbf{y}[n]}$$

enjeu : si $N \sim 10^2$ calcul de $\mathbf{Q}\mathbf{y}$ instable enjeu : calcul rapide de $\frac{N}{2}Y_{n-\frac{N}{2}}^{\frac{N}{2}}$ pour $N \sim 10^3$

pvpi.org/project/pvssht







Transformée originelle : p = 1/2

$$\mathcal{T} oldsymbol{y}(\vartheta,\,arphi) = \sum_{n=0}^N \sqrt{\mathcal{B}_N^n} c_{artheta}^n s_{artheta}^{N-n} \mathrm{e}^{\mathrm{i} n arphi}(\mathbf{Q} oldsymbol{y})[n]$$

⇒ réécriture via fonction génératrice

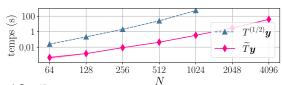
Transformée réalignée :

$$\widetilde{\mathcal{T}}\mathbf{y}(\vartheta,\,arphi) = \sum_{\substack{N \ \underline{N} \\ N-\underline{N} \\ }} Y_{n-\underline{N}}^{\underline{N}}(\vartheta,\,arphi) \overline{\mathbf{y}[n]}$$

enjeu : si $N \sim 10^2$ calcul de $\mathbf{Q}\mathbf{y}$ instable enjeu : calcul rapide de $\frac{N}{2}Y_{n-\frac{N}{2}}^{\frac{N}{2}}$ pour $N \sim 10^3$

(Pascal et coll. 2022, IEEE Trans. Sig. Process.)

pvpi.org/project/pvssht



Transformée de Kravchuk réalignée inverse :

$$y[n] = \overline{\left\langle \widetilde{T} \mathbf{y}(\vartheta, \varphi), \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta, \varphi) \right\rangle} = \int_{\mathbb{S}^2} \widetilde{T} \mathbf{y}(\vartheta, \varphi) \overline{\frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta, \varphi)} \sin \vartheta \, d\vartheta d\varphi$$

 \implies décomposition sur la base des harmoniques sphériques de spin N/2

Transformée de Kravchuk réalignée inverse :

$$y[n] = \overline{\left\langle \widetilde{T} \mathbf{\textit{y}}(\vartheta, \, \varphi), \, \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta, \, \varphi) \right\rangle} = \int_{\mathbb{S}^2} \widetilde{T} \mathbf{\textit{y}}(\vartheta, \, \varphi) \overline{\frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta, \, \varphi)} \sin \vartheta \, d\vartheta d\varphi$$

 \Longrightarrow décomposition sur la base des harmoniques sphériques de spin N/2

Algorithmes rapides et robustes de type Transformée de Fourier rapide : pyssht

Transformée de Kravchuk réalignée inverse :

$$\mathsf{y}[\mathsf{n}] = \overline{\left\langle \widetilde{T} \mathbf{y}(\vartheta,\,\varphi),\, \frac{N}{2} Y_{\mathsf{n}-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi) \right\rangle} = \int_{\mathbb{S}^2} \widetilde{T} \mathbf{y}(\vartheta,\,\varphi) \overline{\frac{N}{2} Y_{\mathsf{n}-\frac{N}{2}}^{\frac{N}{2}}(\vartheta,\,\varphi)} \sin\vartheta \,\mathrm{d}\vartheta \mathrm{d}\varphi$$

 \implies décomposition sur la base des harmoniques sphériques de spin N/2

Algorithmes rapides et robustes de type Transformée de Fourier rapide : pyssht

Évaluation de la stabilité numérique de l'inversion : précision de reconstruction

$$\mathcal{P} = \frac{\|\mathbf{y}\|}{\|\mathbf{y}^{r} - \mathbf{y}\|}, \text{ pour } \mathbf{y}^{r} = \widetilde{T}^{-1}\widetilde{T}\mathbf{y}$$

Transformée de Kravchuk réalignée inverse :

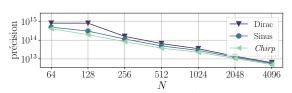
$$y[n] = \overline{\left\langle \widetilde{T} \mathbf{\textit{y}}(\vartheta, \, \varphi), \, \frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta, \, \varphi) \right\rangle} = \int_{\mathbb{S}^2} \widetilde{T} \mathbf{\textit{y}}(\vartheta, \, \varphi) \overline{\frac{N}{2} Y_{n-\frac{N}{2}}^{\frac{N}{2}}(\vartheta, \, \varphi)} \sin \vartheta \, d\vartheta d\varphi$$

 \Longrightarrow décomposition sur la base des harmoniques sphériques de spin N/2

Algorithmes rapides et robustes de type Transformée de Fourier rapide : pyssht

Évaluation de la stabilité numérique de l'inversion : précision de reconstruction

$$\mathcal{P} = \frac{\|\mathbf{y}\|}{\|\mathbf{y}^r - \mathbf{y}\|}, \text{ pour } \mathbf{y}^r = \widetilde{T}^{-1}\widetilde{T}\mathbf{y}$$

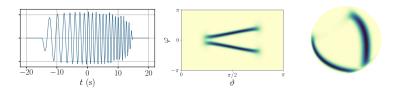


 \Longrightarrow excellente précision numérique du calcul de \widetilde{T}^{-1} indépendamment du signal

Conclusion

Contributions principales:

- p-transformée de Kravchuk réécrite en harmoniques sphériques de spin
- construction d'une transformée de Kravchuk réalignée
- interprétation des angles (ϑ, φ) de l'espace des phases en temps et fréquence
- transformée inverse comme décomposition en harmoniques sphériques de spin
- implémentation rapide et robuste tirant parti de pyssht



Perspectives

Travaux en cours et futurs :

- problèmes réels de traitement du signal N ≥ 10³ à 10⁴
 détection de signaux à partir des zéros de la transformée de Kravchuk
 (Bardenet et coll. 2020, Appl. Comput. Harmon. Anal.; Pascal et coll. 2022, IEEE Trans. Sig. Process.)
- surveillance de population d'oiseaux et suivi de migration base de 70 · 10³ données annotées cri ou non BirdVox (Lostanlen et coll. 2018)
- asymptotique pour la transformée de Kravchuk réalignée : à grand N ≫ 1 discrétisation covariante de la transformée de Fourier à court terme

