I am currently a CNRS Researcher in the LS2N, in Nantes, France. Before that I was a postdoctoral researcher at the CRIStAL for two years, taking part in the ERC project of R. Bardenet. I received the degree of Professeur-Agrégé of Mathematics in 2016 at École Normale Supérieure de Lyon, then completed my M.S. degree in Physics from the ENS Lyon, France, in 2017, and received the Ph.D degree in Signal & Image Processing from the ENSL in 2020, for my work at the Laboratoire de Physique, under the supervision of P. Abry and N. Pustelnik.
Pascal, B., & Bardenet, R. (2022). A covariant, discrete time-frequency representation tailored for zero-based signal detection. IEEE Transactions on Signal Processing, 70, 2950–2961.
Pascal, B., Abry, P., Pustelnik, N., Roux, S., Gribonval, R., & Flandrin, P. (2022). Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data. IEEE Transactions on Signal Processing, 70, 2859–2868.
Pascal, B., Vaiter, S., Pustelnik, N., & Abry, P. (2021). Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation. J. Math. Imaging Vis., 1–30.
Abry, P., Fort, G., Pascal, B., & Pustelnik, N. (2023, September). Credibility intervals for the reproduction number of the Covid-19 pandemic using proximal Langevin samplers. EUSIPCO 2023.
Du, J., Pascal, B., & Abry, P. (2023, August). Compared performance of Covid19 reproduction number estimators based on realistic synthetic data. GRETSI’23 XXIXème Colloque Francophone De Traitement Du Signal Et Des Images.
Artigas, H., Pascal, B., Fort, G., Abry, P., & Pustelnik, N. (2022, August). Credibility interval design for COVID19 reproduction number from nonsmooth Langevin-type Monte Carlo sampling. EUSIPCO 2022.
Abry, P., Fort, G., Pascal, B., & Pustelnik, N. (2022, July). Temporal evolution of the Covid19 pandemic reproduction number: Estimations from proximal optimization to Monte Carlo sampling. 44th Annual International Conference of IEEE Eng. Med. Biol. Soc.
Abry, P., Fort, G., Pascal, B., & Pustelnik, N. (2022, September). Estimation et intervalles de crédibilité pour le taux de reproduction de la Covid19 par échantillonnage Monte Carlo Langevin proximal. GRETSI’22 XXVIIIème Colloque Francophone De Traitement Du Signal Et Des Images.
Le, H. T. V., Pascal, B., Pustelnik, N., Foare, M., & Abry, P. (2022, September). Algorithmes proximaux rapides déroulés pour l’analyse d’images fractales homogènes par morceaux. GRETSI’22 XXVIIIème Colloque Francophone De Traitement Du Signal Et Des Images.
Pascal, B., & Bardenet, R. (2022, September). Une famille de représentations covariantes de signaux discrets et son application à la détection de signaux à partir de leurs zéros. GRETSI’22 XXVIIIème Colloque Francophone De Traitement Du Signal Et Des Images.
Busser, T., Pascal, B., Pustelnik, N., Abry, P., Serres, M., Philippe, R., & Vidal, V. (2019). Ecoulement gaz-liquide dans un milieu poreux confiné: caractérisation par analyse d’images. Rencontres Du Non-Linéaire 2019.
Pascal, B., Busser, T., Pustelnik, N., Abry, P., & Vidal, V. (2019). Segmentation d’images texturées en grande dimension. Application à l’analyse d’écoulements multiphasiques. GRETSI 2019 XXVIIème Colloque Francophone De Traitement Du Signal Et Des Images.
Pascal, B., Pustelnik, N., Abry, P., Serres, M., & Vidal, V. (2018). Joint estimation of local variance and local regularity for texture segmentation. Application to multiphase flow characterization. Proc. Int. Conf. Image Process., 2092–2096.
Pascal, B. (2020). Estimation régularisée d’attributs fractals par minimisation convexe pour la segmentation de textures [École Normale Supérieure de Lyon].